godot/drivers/gles3/rasterizer_scene_gles3.h

448 lines
12 KiB
C++

#ifndef RASTERIZERSCENEGLES3_H
#define RASTERIZERSCENEGLES3_H
#include "rasterizer_storage_gles3.h"
#include "drivers/gles3/shaders/scene.glsl.h"
#include "drivers/gles3/shaders/cube_to_dp.glsl.h"
class RasterizerSceneGLES3 : public RasterizerScene {
public:
uint64_t shadow_atlas_realloc_tolerance_msec;
uint64_t render_pass;
uint64_t scene_pass;
uint32_t current_material_index;
uint32_t current_geometry_index;
RID default_material;
RID default_material_twosided;
RID default_shader;
RID default_shader_twosided;
RasterizerStorageGLES3 *storage;
struct State {
bool texscreen_copied;
int current_blend_mode;
float current_line_width;
int current_depth_draw;
SceneShaderGLES3 scene_shader;
CubeToDpShaderGLES3 cube_to_dp_shader;
struct SceneDataUBO {
float projection_matrix[16];
float camera_inverse_matrix[16];
float camera_matrix[16];
float time[4];
float ambient_light_color[4];
float bg_color[4];
float ambient_energy;
float bg_energy;
float shadow_z_offset;
float shadow_slope_scale;
float shadow_dual_paraboloid_render_zfar;
float shadow_dual_paraboloid_render_side;
float shadow_atlas_pixel_size[2];
float shadow_directional_pixel_size[2];
} ubo_data;
GLuint scene_ubo;
struct EnvironmentRadianceUBO {
float transform[16];
float box_min[4]; //unused for now
float box_max[4];
float ambient_contribution;
} env_radiance_data;
GLuint env_radiance_ubo;
GLuint brdf_texture;
GLuint skybox_verts;
GLuint skybox_array;
bool cull_front;
} state;
/* SHADOW ATLAS API */
struct ShadowAtlas : public RID_Data {
enum {
QUADRANT_SHIFT=27,
SHADOW_INDEX_MASK=(1<<QUADRANT_SHIFT)-1,
SHADOW_INVALID=0xFFFFFFFF
};
struct Quadrant {
uint32_t subdivision;
struct Shadow {
RID owner;
uint64_t version;
uint64_t alloc_tick;
Shadow() {
version=0;
alloc_tick=0;
}
};
Vector<Shadow> shadows;
Quadrant() {
subdivision=0; //not in use
}
} quadrants[4];
int size_order[4];
uint32_t smallest_subdiv;
int size;
GLuint fbo;
GLuint depth;
Map<RID,uint32_t> shadow_owners;
};
struct ShadowCubeMap {
GLuint fbo_id[6];
GLuint cubemap;
int size;
};
Vector<ShadowCubeMap> shadow_cubemaps;
RID_Owner<ShadowAtlas> shadow_atlas_owner;
RID shadow_atlas_create();
void shadow_atlas_set_size(RID p_atlas,int p_size);
void shadow_atlas_set_quadrant_subdivision(RID p_atlas,int p_quadrant,int p_subdivision);
bool _shadow_atlas_find_shadow(ShadowAtlas *shadow_atlas, int *p_in_quadrants, int p_quadrant_count, int p_current_subdiv, uint64_t p_tick, int &r_quadrant, int &r_shadow);
bool shadow_atlas_update_light(RID p_atlas,RID p_light_intance,float p_coverage,uint64_t p_light_version);
struct DirectionalShadow {
GLuint fbo;
GLuint depth;
int light_count;
int size;
int current_light;
} directional_shadow;
virtual int get_directional_light_shadow_size(RID p_light_intance);
virtual void set_directional_shadow_count(int p_count);
/* ENVIRONMENT API */
struct Environment : public RID_Data {
VS::EnvironmentBG bg_mode;
RID skybox_color;
RID skybox_radiance;
float skybox_scale;
Color bg_color;
float bg_energy;
float skybox_ambient;
Color ambient_color;
float ambient_energy;
float ambient_skybox_contribution;
int canvas_max_layer;
Environment() {
bg_mode=VS::ENV_BG_CLEAR_COLOR;
skybox_scale=1.0;
bg_energy=1.0;
skybox_ambient=0;
ambient_energy=1.0;
ambient_skybox_contribution=0.0;
canvas_max_layer=0;
}
};
RID_Owner<Environment> environment_owner;
virtual RID environment_create();
virtual void environment_set_background(RID p_env,VS::EnvironmentBG p_bg);
virtual void environment_set_skybox(RID p_env,RID p_skybox,int p_radiance_size);
virtual void environment_set_skybox_scale(RID p_env,float p_scale);
virtual void environment_set_bg_color(RID p_env,const Color& p_color);
virtual void environment_set_bg_energy(RID p_env,float p_energy);
virtual void environment_set_canvas_max_layer(RID p_env,int p_max_layer);
virtual void environment_set_ambient_light(RID p_env,const Color& p_color,float p_energy=1.0,float p_skybox_contribution=0.0);
virtual void environment_set_glow(RID p_env,bool p_enable,int p_radius,float p_intensity,float p_strength,float p_bloom_treshold,VS::EnvironmentGlowBlendMode p_blend_mode);
virtual void environment_set_fog(RID p_env,bool p_enable,float p_begin,float p_end,RID p_gradient_texture);
virtual void environment_set_tonemap(RID p_env,bool p_enable,float p_exposure,float p_white,float p_min_luminance,float p_max_luminance,float p_auto_exp_speed,float p_auto_exp_scale,VS::EnvironmentToneMapper p_tone_mapper);
virtual void environment_set_adjustment(RID p_env,bool p_enable,float p_brightness,float p_contrast,float p_saturation,RID p_ramp);
/* LIGHT INSTANCE */
struct LightInstance : public RID_Data {
struct ShadowTransform {
CameraMatrix camera;
Transform transform;
float far;
float split;
};
struct LightDataUBO {
float light_pos_inv_radius[4];
float light_direction_attenuation[4];
float light_color_energy[4];
float light_params[4]; //cone attenuation, specular, shadow darkening,
float light_clamp[4]; //cone attenuation, specular, shadow darkening,
float shadow_split_offsets[4];
float shadow_matrix1[16];
float shadow_matrix2[16];
float shadow_matrix3[16];
float shadow_matrix4[16];
} light_ubo_data;
ShadowTransform shadow_transform[4];
RID self;
RID light;
RasterizerStorageGLES3::Light *light_ptr;
Transform transform;
Vector3 light_vector;
Vector3 spot_vector;
float linear_att;
GLuint light_ubo;
uint64_t shadow_pass;
uint64_t last_scene_pass;
uint64_t last_scene_shadow_pass;
uint64_t last_pass;
uint16_t light_index;
uint16_t light_directional_index;
uint32_t current_shadow_atlas_key;
Vector2 dp;
Rect2 directional_rect;
Set<RID> shadow_atlases; //shadow atlases where this light is registered
LightInstance() { }
};
mutable RID_Owner<LightInstance> light_instance_owner;
virtual RID light_instance_create(RID p_light);
virtual void light_instance_set_transform(RID p_light_instance,const Transform& p_transform);
virtual void light_instance_set_shadow_transform(RID p_light_instance,const CameraMatrix& p_projection,const Transform& p_transform,float p_far,float p_split,int p_pass);
virtual void light_instance_mark_visible(RID p_light_instance);
/* RENDER LIST */
struct RenderList {
enum {
DEFAULT_MAX_ELEMENTS=65536,
SORT_FLAG_SKELETON=1,
SORT_FLAG_INSTANCING=2,
MAX_DIRECTIONAL_LIGHTS=16,
MAX_LIGHTS=4096,
SORT_KEY_DEPTH_LAYER_SHIFT=58,
SORT_KEY_LIGHT_TYPE_SHIFT=54, //type is most important
SORT_KEY_LIGHT_INDEX_SHIFT=38, //type is most important
SORT_KEY_LIGHT_INDEX_UNSHADED=uint64_t(0xF) << SORT_KEY_LIGHT_TYPE_SHIFT, //type is most important
SORT_KEY_LIGHT_MASK=(uint64_t(0xFFFFF) << SORT_KEY_LIGHT_INDEX_SHIFT), //type is most important
SORT_KEY_MATERIAL_INDEX_SHIFT=22,
SORT_KEY_GEOMETRY_INDEX_SHIFT=6,
SORT_KEY_GEOMETRY_TYPE_SHIFT=2,
SORT_KEY_SKELETON_FLAG=2,
SORT_KEY_MIRROR_FLAG=1
};
int max_elements;
struct Element {
RasterizerScene::InstanceBase *instance;
RasterizerStorageGLES3::Geometry *geometry;
RasterizerStorageGLES3::Material *material;
RasterizerStorageGLES3::GeometryOwner *owner;
uint64_t sort_key;
bool *additive_ptr;
bool additive;
};
Element *_elements;
Element **elements;
int element_count;
int alpha_element_count;
void clear() {
element_count=0;
alpha_element_count=0;
}
//should eventually be replaced by radix
struct SortByKey {
_FORCE_INLINE_ bool operator()(const Element* A, const Element* B ) const {
return A->sort_key < B->sort_key;
}
};
void sort_by_key(bool p_alpha) {
SortArray<Element*,SortByKey> sorter;
if (p_alpha) {
sorter.sort(&elements[max_elements-alpha_element_count],alpha_element_count);
} else {
sorter.sort(elements,element_count);
}
}
struct SortByDepth {
_FORCE_INLINE_ bool operator()(const Element* A, const Element* B ) const {
return A->instance->depth > B->instance->depth;
}
};
void sort_by_depth(bool p_alpha) {
SortArray<Element*,SortByDepth> sorter;
if (p_alpha) {
sorter.sort(&elements[max_elements-alpha_element_count],alpha_element_count);
} else {
sorter.sort(elements,element_count);
}
}
_FORCE_INLINE_ Element* add_element() {
if (element_count+alpha_element_count>=max_elements)
return NULL;
elements[element_count]=&_elements[element_count];
return elements[element_count++];
}
_FORCE_INLINE_ Element* add_alpha_element() {
if (element_count+alpha_element_count>=max_elements)
return NULL;
int idx = max_elements-alpha_element_count-1;
elements[idx]=&_elements[idx];
alpha_element_count++;
return elements[idx];
}
void init() {
element_count = 0;
alpha_element_count =0;
elements=memnew_arr(Element*,max_elements);
_elements=memnew_arr(Element,max_elements);
for (int i=0;i<max_elements;i++)
elements[i]=&_elements[i]; // assign elements
}
RenderList() {
max_elements=DEFAULT_MAX_ELEMENTS;
}
~RenderList() {
memdelete_arr(elements);
memdelete_arr(_elements);
}
};
LightInstance *directional_light_instances[RenderList::MAX_DIRECTIONAL_LIGHTS];
int directional_light_instance_count;
LightInstance *light_instances[RenderList::MAX_LIGHTS];
int light_instance_count;
RenderList render_list;
_FORCE_INLINE_ void _set_cull(bool p_front,bool p_reverse_cull);
_FORCE_INLINE_ bool _setup_material(RasterizerStorageGLES3::Material* p_material,bool p_alpha_pass);
_FORCE_INLINE_ void _setup_transform(InstanceBase *p_instance,const Transform& p_view_transform,const CameraMatrix& p_projection);
_FORCE_INLINE_ void _setup_geometry(RenderList::Element *e);
_FORCE_INLINE_ void _render_geometry(RenderList::Element *e);
_FORCE_INLINE_ void _setup_light(LightInstance *p_light);
void _render_list(RenderList::Element **p_elements, int p_element_count, const Transform& p_view_transform, const CameraMatrix& p_projection, RasterizerStorageGLES3::Texture *p_base_env, bool p_reverse_cull, bool p_alpha_pass, bool p_shadow);
_FORCE_INLINE_ void _add_geometry( RasterizerStorageGLES3::Geometry* p_geometry, InstanceBase *p_instance, RasterizerStorageGLES3::GeometryOwner *p_owner,int p_material,bool p_shadow);
void _draw_skybox(RID p_skybox, const CameraMatrix& p_projection, const Transform& p_transform, bool p_vflip, float p_scale);
void _setup_environment(Environment *env, const CameraMatrix &p_cam_projection, const Transform& p_cam_transform);
void _setup_lights(RID *p_light_cull_result, int p_light_cull_count, const Transform &p_camera_inverse_transform, const CameraMatrix& p_camera_projection, RID p_shadow_atlas);
void _copy_screen();
void _copy_to_front_buffer(Environment *env);
void _copy_texture_to_front_buffer(GLuint p_texture); //used for debug
void _fill_render_list(InstanceBase** p_cull_result,int p_cull_count,bool p_shadow);
virtual void render_scene(const Transform& p_cam_transform,const CameraMatrix& p_cam_projection,bool p_cam_ortogonal,InstanceBase** p_cull_result,int p_cull_count,RID* p_light_cull_result,int p_light_cull_count,RID p_environment,RID p_shadow_atlas);
virtual void render_shadow(RID p_light,RID p_shadow_atlas,int p_pass,InstanceBase** p_cull_result,int p_cull_count);
virtual bool free(RID p_rid);
void _generate_brdf();
virtual void set_scene_pass(uint64_t p_pass);
void initialize();
void finalize();
RasterizerSceneGLES3();
};
#endif // RASTERIZERSCENEGLES3_H