godot/thirdparty/embree/kernels/subdiv/feature_adaptive_eval_simd.h
2021-01-14 18:02:07 +01:00

187 lines
9.8 KiB
C++

// Copyright 2009-2020 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#pragma once
#include "patch.h"
namespace embree
{
namespace isa
{
template<typename vbool, typename vint, typename vfloat, typename Vertex, typename Vertex_t = Vertex>
struct FeatureAdaptiveEvalSimd
{
public:
typedef PatchT<Vertex,Vertex_t> Patch;
typedef typename Patch::Ref Ref;
typedef GeneralCatmullClarkPatchT<Vertex,Vertex_t> GeneralCatmullClarkPatch;
typedef CatmullClark1RingT<Vertex,Vertex_t> CatmullClarkRing;
typedef CatmullClarkPatchT<Vertex,Vertex_t> CatmullClarkPatch;
typedef BSplinePatchT<Vertex,Vertex_t> BSplinePatch;
typedef BezierPatchT<Vertex,Vertex_t> BezierPatch;
typedef GregoryPatchT<Vertex,Vertex_t> GregoryPatch;
typedef BilinearPatchT<Vertex,Vertex_t> BilinearPatch;
typedef BezierCurveT<Vertex> BezierCurve;
FeatureAdaptiveEvalSimd (const HalfEdge* edge, const char* vertices, size_t stride, const vbool& valid, const vfloat& u, const vfloat& v,
float* P, float* dPdu, float* dPdv, float* ddPdudu, float* ddPdvdv, float* ddPdudv, const size_t dstride, const size_t N)
: P(P), dPdu(dPdu), dPdv(dPdv), ddPdudu(ddPdudu), ddPdvdv(ddPdvdv), ddPdudv(ddPdudv), dstride(dstride), N(N)
{
switch (edge->patch_type) {
case HalfEdge::BILINEAR_PATCH: BilinearPatch(edge,vertices,stride).eval(valid,u,v,P,dPdu,dPdv,ddPdudu,ddPdvdv,ddPdudv,1.0f,dstride,N); break;
case HalfEdge::REGULAR_QUAD_PATCH: RegularPatchT(edge,vertices,stride).eval(valid,u,v,P,dPdu,dPdv,ddPdudu,ddPdvdv,ddPdudv,1.0f,dstride,N); break;
#if PATCH_USE_GREGORY == 2
case HalfEdge::IRREGULAR_QUAD_PATCH: GregoryPatchT<Vertex,Vertex_t>(edge,vertices,stride).eval(valid,u,v,P,dPdu,dPdv,ddPdudu,ddPdvdv,ddPdudv,1.0f,dstride,N); break;
#endif
default: {
GeneralCatmullClarkPatch patch(edge,vertices,stride);
eval_direct(valid,patch,Vec2<vfloat>(u,v),0);
break;
}
}
}
FeatureAdaptiveEvalSimd (const CatmullClarkPatch& patch, const vbool& valid, const vfloat& u, const vfloat& v, float dscale, size_t depth,
float* P, float* dPdu, float* dPdv, float* ddPdudu, float* ddPdvdv, float* ddPdudv, const size_t dstride, const size_t N)
: P(P), dPdu(dPdu), dPdv(dPdv), ddPdudu(ddPdudu), ddPdvdv(ddPdvdv), ddPdudv(ddPdudv), dstride(dstride), N(N)
{
eval_direct(valid,patch,Vec2<vfloat>(u,v),dscale,depth);
}
template<size_t N>
__forceinline void eval_quad_direct(const vbool& valid, array_t<CatmullClarkPatch,N>& patches, const Vec2<vfloat>& uv, float dscale, size_t depth)
{
const vfloat u = uv.x, v = uv.y;
const vbool u0_mask = u < 0.5f, u1_mask = u >= 0.5f;
const vbool v0_mask = v < 0.5f, v1_mask = v >= 0.5f;
const vbool u0v0_mask = valid & u0_mask & v0_mask;
const vbool u0v1_mask = valid & u0_mask & v1_mask;
const vbool u1v0_mask = valid & u1_mask & v0_mask;
const vbool u1v1_mask = valid & u1_mask & v1_mask;
if (any(u0v0_mask)) eval_direct(u0v0_mask,patches[0],Vec2<vfloat>(2.0f*u,2.0f*v),2.0f*dscale,depth+1);
if (any(u1v0_mask)) eval_direct(u1v0_mask,patches[1],Vec2<vfloat>(2.0f*u-1.0f,2.0f*v),2.0f*dscale,depth+1);
if (any(u1v1_mask)) eval_direct(u1v1_mask,patches[2],Vec2<vfloat>(2.0f*u-1.0f,2.0f*v-1.0f),2.0f*dscale,depth+1);
if (any(u0v1_mask)) eval_direct(u0v1_mask,patches[3],Vec2<vfloat>(2.0f*u,2.0f*v-1.0f),2.0f*dscale,depth+1);
}
template<size_t N>
__forceinline void eval_general_quad_direct(const vbool& valid, const GeneralCatmullClarkPatch& patch, array_t<CatmullClarkPatch,N>& patches, const Vec2<vfloat>& uv, float dscale, size_t depth)
{
#if PATCH_USE_GREGORY == 2
BezierCurve borders[GeneralCatmullClarkPatch::SIZE]; patch.getLimitBorder(borders);
BezierCurve border0l,border0r; borders[0].subdivide(border0l,border0r);
BezierCurve border1l,border1r; borders[1].subdivide(border1l,border1r);
BezierCurve border2l,border2r; borders[2].subdivide(border2l,border2r);
BezierCurve border3l,border3r; borders[3].subdivide(border3l,border3r);
#endif
GeneralCatmullClarkPatch::fix_quad_ring_order(patches);
const vfloat u = uv.x, v = uv.y;
const vbool u0_mask = u < 0.5f, u1_mask = u >= 0.5f;
const vbool v0_mask = v < 0.5f, v1_mask = v >= 0.5f;
const vbool u0v0_mask = valid & u0_mask & v0_mask;
const vbool u0v1_mask = valid & u0_mask & v1_mask;
const vbool u1v0_mask = valid & u1_mask & v0_mask;
const vbool u1v1_mask = valid & u1_mask & v1_mask;
#if PATCH_USE_GREGORY == 2
if (any(u0v0_mask)) eval_direct(u0v0_mask,patches[0],Vec2<vfloat>(2.0f*u,2.0f*v),2.0f*dscale,depth+1,&border0l,nullptr,nullptr,&border3r);
if (any(u1v0_mask)) eval_direct(u1v0_mask,patches[1],Vec2<vfloat>(2.0f*u-1.0f,2.0f*v),2.0f*dscale,depth+1,&border0r,&border1l,nullptr,nullptr);
if (any(u1v1_mask)) eval_direct(u1v1_mask,patches[2],Vec2<vfloat>(2.0f*u-1.0f,2.0f*v-1.0f),2.0f*dscale,depth+1,nullptr,&border1r,&border2l,nullptr);
if (any(u0v1_mask)) eval_direct(u0v1_mask,patches[3],Vec2<vfloat>(2.0f*u,2.0f*v-1.0f),2.0f*dscale,depth+1,nullptr,nullptr,&border2r,&border3l);
#else
if (any(u0v0_mask)) eval_direct(u0v0_mask,patches[0],Vec2<vfloat>(2.0f*u,2.0f*v),2.0f*dscale,depth+1);
if (any(u1v0_mask)) eval_direct(u1v0_mask,patches[1],Vec2<vfloat>(2.0f*u-1.0f,2.0f*v),2.0f*dscale,depth+1);
if (any(u1v1_mask)) eval_direct(u1v1_mask,patches[2],Vec2<vfloat>(2.0f*u-1.0f,2.0f*v-1.0f),2.0f*dscale,depth+1);
if (any(u0v1_mask)) eval_direct(u0v1_mask,patches[3],Vec2<vfloat>(2.0f*u,2.0f*v-1.0f),2.0f*dscale,depth+1);
#endif
}
__forceinline bool final(const CatmullClarkPatch& patch, const typename CatmullClarkRing::Type type, size_t depth)
{
const size_t max_eval_depth = (type & CatmullClarkRing::TYPE_CREASES) ? PATCH_MAX_EVAL_DEPTH_CREASE : PATCH_MAX_EVAL_DEPTH_IRREGULAR;
//#if PATCH_MIN_RESOLUTION
// return patch.isFinalResolution(PATCH_MIN_RESOLUTION) || depth>=max_eval_depth;
//#else
return depth>=max_eval_depth;
//#endif
}
void eval_direct(const vbool& valid, const CatmullClarkPatch& patch, const Vec2<vfloat>& uv, float dscale, size_t depth,
BezierCurve* border0 = nullptr, BezierCurve* border1 = nullptr, BezierCurve* border2 = nullptr, BezierCurve* border3 = nullptr)
{
typename CatmullClarkPatch::Type ty = patch.type();
if (unlikely(final(patch,ty,depth)))
{
if (ty & CatmullClarkRing::TYPE_REGULAR) {
RegularPatch(patch,border0,border1,border2,border3).eval(valid,uv.x,uv.y,P,dPdu,dPdv,ddPdudu,ddPdvdv,ddPdudv,dscale,dstride,N);
} else {
IrregularFillPatch(patch,border0,border1,border2,border3).eval(valid,uv.x,uv.y,P,dPdu,dPdv,ddPdudu,ddPdvdv,ddPdudv,dscale,dstride,N);
}
}
else if (ty & CatmullClarkRing::TYPE_REGULAR_CREASES) {
assert(depth > 0); RegularPatch(patch,border0,border1,border2,border3).eval(valid,uv.x,uv.y,P,dPdu,dPdv,ddPdudu,ddPdvdv,ddPdudv,dscale,dstride,N);
}
#if PATCH_USE_GREGORY == 2
else if (ty & CatmullClarkRing::TYPE_GREGORY_CREASES) {
assert(depth > 0); GregoryPatch(patch,border0,border1,border2,border3).eval(valid,uv.x,uv.y,P,dPdu,dPdv,ddPdudu,ddPdvdv,ddPdudv,dscale,dstride,N);
}
#endif
else
{
array_t<CatmullClarkPatch,4> patches;
patch.subdivide(patches); // FIXME: only have to generate one of the patches
eval_quad_direct(valid,patches,uv,dscale,depth);
}
}
void eval_direct(const vbool& valid, const GeneralCatmullClarkPatch& patch, const Vec2<vfloat>& uv, const size_t depth)
{
/* convert into standard quad patch if possible */
if (likely(patch.isQuadPatch())) {
CatmullClarkPatch qpatch; patch.init(qpatch);
return eval_direct(valid,qpatch,uv,1.0f,depth);
}
/* subdivide patch */
unsigned Nc;
array_t<CatmullClarkPatch,GeneralCatmullClarkPatch::SIZE> patches;
patch.subdivide(patches,Nc); // FIXME: only have to generate one of the patches
/* parametrization for quads */
if (Nc == 4)
eval_general_quad_direct(valid,patch,patches,uv,1.0f,depth);
/* parametrization for arbitrary polygons */
else
{
const vint l = (vint)floor(0.5f*uv.x); const vfloat u = 2.0f*frac(0.5f*uv.x)-0.5f;
const vint h = (vint)floor(0.5f*uv.y); const vfloat v = 2.0f*frac(0.5f*uv.y)-0.5f;
const vint i = (h<<2)+l; assert(all(valid,i<Nc));
foreach_unique(valid,i,[&](const vbool& valid, const int i) {
#if PATCH_USE_GREGORY == 2
BezierCurve borders[2]; patch.getLimitBorder(borders,i);
BezierCurve border0l,border0r; borders[0].subdivide(border0l,border0r);
BezierCurve border2l,border2r; borders[1].subdivide(border2l,border2r);
eval_direct(valid,patches[i],Vec2<vfloat>(u,v),1.0f,depth+1, &border0l, nullptr, nullptr, &border2r);
#else
eval_direct(valid,patches[i],Vec2<vfloat>(u,v),1.0f,depth+1);
#endif
});
}
}
private:
float* const P;
float* const dPdu;
float* const dPdv;
float* const ddPdudu;
float* const ddPdvdv;
float* const ddPdudv;
const size_t dstride;
const size_t N;
};
}
}