godot/thirdparty/embree/kernels/subdiv/tessellation_cache.h
2021-01-14 18:02:07 +01:00

326 lines
11 KiB
C++

// Copyright 2009-2020 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#pragma once
#include "../common/default.h"
/* force a complete cache invalidation when running out of allocation space */
#define FORCE_SIMPLE_FLUSH 0
#define THREAD_BLOCK_ATOMIC_ADD 4
#if defined(DEBUG)
#define CACHE_STATS(x)
#else
#define CACHE_STATS(x)
#endif
namespace embree
{
class SharedTessellationCacheStats
{
public:
/* stats */
static std::atomic<size_t> cache_accesses;
static std::atomic<size_t> cache_hits;
static std::atomic<size_t> cache_misses;
static std::atomic<size_t> cache_flushes;
static size_t cache_num_patches;
__aligned(64) static SpinLock mtx;
/* print stats for debugging */
static void printStats();
static void clearStats();
};
void resizeTessellationCache(size_t new_size);
void resetTessellationCache();
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
struct __aligned(64) ThreadWorkState
{
ALIGNED_STRUCT_(64);
std::atomic<size_t> counter;
ThreadWorkState* next;
bool allocated;
__forceinline ThreadWorkState(bool allocated = false)
: counter(0), next(nullptr), allocated(allocated)
{
assert( ((size_t)this % 64) == 0 );
}
};
class __aligned(64) SharedLazyTessellationCache
{
public:
static const size_t NUM_CACHE_SEGMENTS = 8;
static const size_t NUM_PREALLOC_THREAD_WORK_STATES = 512;
static const size_t COMMIT_INDEX_SHIFT = 32+8;
#if defined(__X86_64__)
static const size_t REF_TAG_MASK = 0xffffffffff;
#else
static const size_t REF_TAG_MASK = 0x7FFFFFFF;
#endif
static const size_t MAX_TESSELLATION_CACHE_SIZE = REF_TAG_MASK+1;
static const size_t BLOCK_SIZE = 64;
/*! Per thread tessellation ref cache */
static __thread ThreadWorkState* init_t_state;
static ThreadWorkState* current_t_state;
static __forceinline ThreadWorkState *threadState()
{
if (unlikely(!init_t_state))
/* sets init_t_state, can't return pointer due to macosx icc bug*/
SharedLazyTessellationCache::sharedLazyTessellationCache.getNextRenderThreadWorkState();
return init_t_state;
}
struct Tag
{
__forceinline Tag() : data(0) {}
__forceinline Tag(void* ptr, size_t combinedTime) {
init(ptr,combinedTime);
}
__forceinline Tag(size_t ptr, size_t combinedTime) {
init((void*)ptr,combinedTime);
}
__forceinline void init(void* ptr, size_t combinedTime)
{
if (ptr == nullptr) {
data = 0;
return;
}
int64_t new_root_ref = (int64_t) ptr;
new_root_ref -= (int64_t)SharedLazyTessellationCache::sharedLazyTessellationCache.getDataPtr();
assert( new_root_ref <= (int64_t)REF_TAG_MASK );
new_root_ref |= (int64_t)combinedTime << COMMIT_INDEX_SHIFT;
data = new_root_ref;
}
__forceinline int64_t get() const { return data.load(); }
__forceinline void set( int64_t v ) { data.store(v); }
__forceinline void reset() { data.store(0); }
private:
atomic<int64_t> data;
};
static __forceinline size_t extractCommitIndex(const int64_t v) { return v >> SharedLazyTessellationCache::COMMIT_INDEX_SHIFT; }
struct CacheEntry
{
Tag tag;
SpinLock mutex;
};
private:
float *data;
bool hugepages;
size_t size;
size_t maxBlocks;
ThreadWorkState *threadWorkState;
__aligned(64) std::atomic<size_t> localTime;
__aligned(64) std::atomic<size_t> next_block;
__aligned(64) SpinLock reset_state;
__aligned(64) SpinLock linkedlist_mtx;
__aligned(64) std::atomic<size_t> switch_block_threshold;
__aligned(64) std::atomic<size_t> numRenderThreads;
public:
SharedLazyTessellationCache();
~SharedLazyTessellationCache();
void getNextRenderThreadWorkState();
__forceinline size_t maxAllocSize() const {
return switch_block_threshold;
}
__forceinline size_t getCurrentIndex() { return localTime.load(); }
__forceinline void addCurrentIndex(const size_t i=1) { localTime.fetch_add(i); }
__forceinline size_t getTime(const size_t globalTime) {
return localTime.load()+NUM_CACHE_SEGMENTS*globalTime;
}
__forceinline size_t lockThread (ThreadWorkState *const t_state, const ssize_t plus=1) { return t_state->counter.fetch_add(plus); }
__forceinline size_t unlockThread(ThreadWorkState *const t_state, const ssize_t plus=-1) { assert(isLocked(t_state)); return t_state->counter.fetch_add(plus); }
__forceinline bool isLocked(ThreadWorkState *const t_state) { return t_state->counter.load() != 0; }
static __forceinline void lock () { sharedLazyTessellationCache.lockThread(threadState()); }
static __forceinline void unlock() { sharedLazyTessellationCache.unlockThread(threadState()); }
static __forceinline bool isLocked() { return sharedLazyTessellationCache.isLocked(threadState()); }
static __forceinline size_t getState() { return threadState()->counter.load(); }
static __forceinline void lockThreadLoop() { sharedLazyTessellationCache.lockThreadLoop(threadState()); }
static __forceinline size_t getTCacheTime(const size_t globalTime) {
return sharedLazyTessellationCache.getTime(globalTime);
}
/* per thread lock */
__forceinline void lockThreadLoop (ThreadWorkState *const t_state)
{
while(1)
{
size_t lock = SharedLazyTessellationCache::sharedLazyTessellationCache.lockThread(t_state,1);
if (unlikely(lock >= THREAD_BLOCK_ATOMIC_ADD))
{
/* lock failed wait until sync phase is over */
sharedLazyTessellationCache.unlockThread(t_state,-1);
sharedLazyTessellationCache.waitForUsersLessEqual(t_state,0);
}
else
break;
}
}
static __forceinline void* lookup(CacheEntry& entry, size_t globalTime)
{
const int64_t subdiv_patch_root_ref = entry.tag.get();
CACHE_STATS(SharedTessellationCacheStats::cache_accesses++);
if (likely(subdiv_patch_root_ref != 0))
{
const size_t subdiv_patch_root = (subdiv_patch_root_ref & REF_TAG_MASK) + (size_t)sharedLazyTessellationCache.getDataPtr();
const size_t subdiv_patch_cache_index = extractCommitIndex(subdiv_patch_root_ref);
if (likely( sharedLazyTessellationCache.validCacheIndex(subdiv_patch_cache_index,globalTime) ))
{
CACHE_STATS(SharedTessellationCacheStats::cache_hits++);
return (void*) subdiv_patch_root;
}
}
CACHE_STATS(SharedTessellationCacheStats::cache_misses++);
return nullptr;
}
template<typename Constructor>
static __forceinline auto lookup (CacheEntry& entry, size_t globalTime, const Constructor constructor, const bool before=false) -> decltype(constructor())
{
ThreadWorkState *t_state = SharedLazyTessellationCache::threadState();
while (true)
{
sharedLazyTessellationCache.lockThreadLoop(t_state);
void* patch = SharedLazyTessellationCache::lookup(entry,globalTime);
if (patch) return (decltype(constructor())) patch;
if (entry.mutex.try_lock())
{
if (!validTag(entry.tag,globalTime))
{
auto timeBefore = sharedLazyTessellationCache.getTime(globalTime);
auto ret = constructor(); // thread is locked here!
assert(ret);
/* this should never return nullptr */
auto timeAfter = sharedLazyTessellationCache.getTime(globalTime);
auto time = before ? timeBefore : timeAfter;
__memory_barrier();
entry.tag = SharedLazyTessellationCache::Tag(ret,time);
__memory_barrier();
entry.mutex.unlock();
return ret;
}
entry.mutex.unlock();
}
SharedLazyTessellationCache::sharedLazyTessellationCache.unlockThread(t_state);
}
}
__forceinline bool validCacheIndex(const size_t i, const size_t globalTime)
{
#if FORCE_SIMPLE_FLUSH == 1
return i == getTime(globalTime);
#else
return i+(NUM_CACHE_SEGMENTS-1) >= getTime(globalTime);
#endif
}
static __forceinline bool validTime(const size_t oldtime, const size_t newTime)
{
return oldtime+(NUM_CACHE_SEGMENTS-1) >= newTime;
}
static __forceinline bool validTag(const Tag& tag, size_t globalTime)
{
const int64_t subdiv_patch_root_ref = tag.get();
if (subdiv_patch_root_ref == 0) return false;
const size_t subdiv_patch_cache_index = extractCommitIndex(subdiv_patch_root_ref);
return sharedLazyTessellationCache.validCacheIndex(subdiv_patch_cache_index,globalTime);
}
void waitForUsersLessEqual(ThreadWorkState *const t_state,
const unsigned int users);
__forceinline size_t alloc(const size_t blocks)
{
if (unlikely(blocks >= switch_block_threshold))
throw_RTCError(RTC_ERROR_INVALID_OPERATION,"allocation exceeds size of tessellation cache segment");
assert(blocks < switch_block_threshold);
size_t index = next_block.fetch_add(blocks);
if (unlikely(index + blocks >= switch_block_threshold)) return (size_t)-1;
return index;
}
static __forceinline void* malloc(const size_t bytes)
{
size_t block_index = -1;
ThreadWorkState *const t_state = threadState();
while (true)
{
block_index = sharedLazyTessellationCache.alloc((bytes+BLOCK_SIZE-1)/BLOCK_SIZE);
if (block_index == (size_t)-1)
{
sharedLazyTessellationCache.unlockThread(t_state);
sharedLazyTessellationCache.allocNextSegment();
sharedLazyTessellationCache.lockThread(t_state);
continue;
}
break;
}
return sharedLazyTessellationCache.getBlockPtr(block_index);
}
__forceinline void *getBlockPtr(const size_t block_index)
{
assert(block_index < maxBlocks);
assert(data);
assert(block_index*16 <= size);
return (void*)&data[block_index*16];
}
__forceinline void* getDataPtr() { return data; }
__forceinline size_t getNumUsedBytes() { return next_block * BLOCK_SIZE; }
__forceinline size_t getMaxBlocks() { return maxBlocks; }
__forceinline size_t getSize() { return size; }
void allocNextSegment();
void realloc(const size_t newSize);
void reset();
static SharedLazyTessellationCache sharedLazyTessellationCache;
};
}