godot/servers/physics_3d/shape_3d_sw.cpp

1723 lines
43 KiB
C++

/*************************************************************************/
/* shape_3d_sw.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "shape_3d_sw.h"
#include "core/math/geometry_3d.h"
#include "core/math/quick_hull.h"
#include "core/templates/sort_array.h"
#define _EDGE_IS_VALID_SUPPORT_THRESHOLD 0.0002
#define _FACE_IS_VALID_SUPPORT_THRESHOLD 0.9998
#define _CYLINDER_EDGE_IS_VALID_SUPPORT_THRESHOLD 0.002
#define _CYLINDER_FACE_IS_VALID_SUPPORT_THRESHOLD 0.999
void Shape3DSW::configure(const AABB &p_aabb) {
aabb = p_aabb;
configured = true;
for (Map<ShapeOwner3DSW *, int>::Element *E = owners.front(); E; E = E->next()) {
ShapeOwner3DSW *co = (ShapeOwner3DSW *)E->key();
co->_shape_changed();
}
}
Vector3 Shape3DSW::get_support(const Vector3 &p_normal) const {
Vector3 res;
int amnt;
FeatureType type;
get_supports(p_normal, 1, &res, amnt, type);
return res;
}
void Shape3DSW::add_owner(ShapeOwner3DSW *p_owner) {
Map<ShapeOwner3DSW *, int>::Element *E = owners.find(p_owner);
if (E) {
E->get()++;
} else {
owners[p_owner] = 1;
}
}
void Shape3DSW::remove_owner(ShapeOwner3DSW *p_owner) {
Map<ShapeOwner3DSW *, int>::Element *E = owners.find(p_owner);
ERR_FAIL_COND(!E);
E->get()--;
if (E->get() == 0) {
owners.erase(E);
}
}
bool Shape3DSW::is_owner(ShapeOwner3DSW *p_owner) const {
return owners.has(p_owner);
}
const Map<ShapeOwner3DSW *, int> &Shape3DSW::get_owners() const {
return owners;
}
Shape3DSW::Shape3DSW() {
custom_bias = 0;
configured = false;
}
Shape3DSW::~Shape3DSW() {
ERR_FAIL_COND(owners.size());
}
Plane PlaneShape3DSW::get_plane() const {
return plane;
}
void PlaneShape3DSW::project_range(const Vector3 &p_normal, const Transform &p_transform, real_t &r_min, real_t &r_max) const {
// gibberish, a plane is infinity
r_min = -1e7;
r_max = 1e7;
}
Vector3 PlaneShape3DSW::get_support(const Vector3 &p_normal) const {
return p_normal * 1e15;
}
bool PlaneShape3DSW::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_result, Vector3 &r_normal) const {
bool inters = plane.intersects_segment(p_begin, p_end, &r_result);
if (inters) {
r_normal = plane.normal;
}
return inters;
}
bool PlaneShape3DSW::intersect_point(const Vector3 &p_point) const {
return plane.distance_to(p_point) < 0;
}
Vector3 PlaneShape3DSW::get_closest_point_to(const Vector3 &p_point) const {
if (plane.is_point_over(p_point)) {
return plane.project(p_point);
} else {
return p_point;
}
}
Vector3 PlaneShape3DSW::get_moment_of_inertia(real_t p_mass) const {
return Vector3(); //wtf
}
void PlaneShape3DSW::_setup(const Plane &p_plane) {
plane = p_plane;
configure(AABB(Vector3(-1e4, -1e4, -1e4), Vector3(1e4 * 2, 1e4 * 2, 1e4 * 2)));
}
void PlaneShape3DSW::set_data(const Variant &p_data) {
_setup(p_data);
}
Variant PlaneShape3DSW::get_data() const {
return plane;
}
PlaneShape3DSW::PlaneShape3DSW() {
}
//
real_t RayShape3DSW::get_length() const {
return length;
}
bool RayShape3DSW::get_slips_on_slope() const {
return slips_on_slope;
}
void RayShape3DSW::project_range(const Vector3 &p_normal, const Transform &p_transform, real_t &r_min, real_t &r_max) const {
// don't think this will be even used
r_min = 0;
r_max = 1;
}
Vector3 RayShape3DSW::get_support(const Vector3 &p_normal) const {
if (p_normal.z > 0) {
return Vector3(0, 0, length);
} else {
return Vector3(0, 0, 0);
}
}
void RayShape3DSW::get_supports(const Vector3 &p_normal, int p_max, Vector3 *r_supports, int &r_amount, FeatureType &r_type) const {
if (Math::abs(p_normal.z) < _EDGE_IS_VALID_SUPPORT_THRESHOLD) {
r_amount = 2;
r_type = FEATURE_EDGE;
r_supports[0] = Vector3(0, 0, 0);
r_supports[1] = Vector3(0, 0, length);
} else if (p_normal.z > 0) {
r_amount = 1;
r_type = FEATURE_POINT;
*r_supports = Vector3(0, 0, length);
} else {
r_amount = 1;
r_type = FEATURE_POINT;
*r_supports = Vector3(0, 0, 0);
}
}
bool RayShape3DSW::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_result, Vector3 &r_normal) const {
return false; //simply not possible
}
bool RayShape3DSW::intersect_point(const Vector3 &p_point) const {
return false; //simply not possible
}
Vector3 RayShape3DSW::get_closest_point_to(const Vector3 &p_point) const {
Vector3 s[2] = {
Vector3(0, 0, 0),
Vector3(0, 0, length)
};
return Geometry3D::get_closest_point_to_segment(p_point, s);
}
Vector3 RayShape3DSW::get_moment_of_inertia(real_t p_mass) const {
return Vector3();
}
void RayShape3DSW::_setup(real_t p_length, bool p_slips_on_slope) {
length = p_length;
slips_on_slope = p_slips_on_slope;
configure(AABB(Vector3(0, 0, 0), Vector3(0.1, 0.1, length)));
}
void RayShape3DSW::set_data(const Variant &p_data) {
Dictionary d = p_data;
_setup(d["length"], d["slips_on_slope"]);
}
Variant RayShape3DSW::get_data() const {
Dictionary d;
d["length"] = length;
d["slips_on_slope"] = slips_on_slope;
return d;
}
RayShape3DSW::RayShape3DSW() {
length = 1;
slips_on_slope = false;
}
/********** SPHERE *************/
real_t SphereShape3DSW::get_radius() const {
return radius;
}
void SphereShape3DSW::project_range(const Vector3 &p_normal, const Transform &p_transform, real_t &r_min, real_t &r_max) const {
real_t d = p_normal.dot(p_transform.origin);
// figure out scale at point
Vector3 local_normal = p_transform.basis.xform_inv(p_normal);
real_t scale = local_normal.length();
r_min = d - (radius)*scale;
r_max = d + (radius)*scale;
}
Vector3 SphereShape3DSW::get_support(const Vector3 &p_normal) const {
return p_normal * radius;
}
void SphereShape3DSW::get_supports(const Vector3 &p_normal, int p_max, Vector3 *r_supports, int &r_amount, FeatureType &r_type) const {
*r_supports = p_normal * radius;
r_amount = 1;
r_type = FEATURE_POINT;
}
bool SphereShape3DSW::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_result, Vector3 &r_normal) const {
return Geometry3D::segment_intersects_sphere(p_begin, p_end, Vector3(), radius, &r_result, &r_normal);
}
bool SphereShape3DSW::intersect_point(const Vector3 &p_point) const {
return p_point.length() < radius;
}
Vector3 SphereShape3DSW::get_closest_point_to(const Vector3 &p_point) const {
Vector3 p = p_point;
real_t l = p.length();
if (l < radius) {
return p_point;
}
return (p / l) * radius;
}
Vector3 SphereShape3DSW::get_moment_of_inertia(real_t p_mass) const {
real_t s = 0.4 * p_mass * radius * radius;
return Vector3(s, s, s);
}
void SphereShape3DSW::_setup(real_t p_radius) {
radius = p_radius;
configure(AABB(Vector3(-radius, -radius, -radius), Vector3(radius * 2.0, radius * 2.0, radius * 2.0)));
}
void SphereShape3DSW::set_data(const Variant &p_data) {
_setup(p_data);
}
Variant SphereShape3DSW::get_data() const {
return radius;
}
SphereShape3DSW::SphereShape3DSW() {
radius = 0;
}
/********** BOX *************/
void BoxShape3DSW::project_range(const Vector3 &p_normal, const Transform &p_transform, real_t &r_min, real_t &r_max) const {
// no matter the angle, the box is mirrored anyway
Vector3 local_normal = p_transform.basis.xform_inv(p_normal);
real_t length = local_normal.abs().dot(half_extents);
real_t distance = p_normal.dot(p_transform.origin);
r_min = distance - length;
r_max = distance + length;
}
Vector3 BoxShape3DSW::get_support(const Vector3 &p_normal) const {
Vector3 point(
(p_normal.x < 0) ? -half_extents.x : half_extents.x,
(p_normal.y < 0) ? -half_extents.y : half_extents.y,
(p_normal.z < 0) ? -half_extents.z : half_extents.z);
return point;
}
void BoxShape3DSW::get_supports(const Vector3 &p_normal, int p_max, Vector3 *r_supports, int &r_amount, FeatureType &r_type) const {
static const int next[3] = { 1, 2, 0 };
static const int next2[3] = { 2, 0, 1 };
for (int i = 0; i < 3; i++) {
Vector3 axis;
axis[i] = 1.0;
real_t dot = p_normal.dot(axis);
if (Math::abs(dot) > _FACE_IS_VALID_SUPPORT_THRESHOLD) {
//Vector3 axis_b;
bool neg = dot < 0;
r_amount = 4;
r_type = FEATURE_FACE;
Vector3 point;
point[i] = half_extents[i];
int i_n = next[i];
int i_n2 = next2[i];
static const real_t sign[4][2] = {
{ -1.0, 1.0 },
{ 1.0, 1.0 },
{ 1.0, -1.0 },
{ -1.0, -1.0 },
};
for (int j = 0; j < 4; j++) {
point[i_n] = sign[j][0] * half_extents[i_n];
point[i_n2] = sign[j][1] * half_extents[i_n2];
r_supports[j] = neg ? -point : point;
}
if (neg) {
SWAP(r_supports[1], r_supports[2]);
SWAP(r_supports[0], r_supports[3]);
}
return;
}
r_amount = 0;
}
for (int i = 0; i < 3; i++) {
Vector3 axis;
axis[i] = 1.0;
if (Math::abs(p_normal.dot(axis)) < _EDGE_IS_VALID_SUPPORT_THRESHOLD) {
r_amount = 2;
r_type = FEATURE_EDGE;
int i_n = next[i];
int i_n2 = next2[i];
Vector3 point = half_extents;
if (p_normal[i_n] < 0) {
point[i_n] = -point[i_n];
}
if (p_normal[i_n2] < 0) {
point[i_n2] = -point[i_n2];
}
r_supports[0] = point;
point[i] = -point[i];
r_supports[1] = point;
return;
}
}
/* USE POINT */
Vector3 point(
(p_normal.x < 0) ? -half_extents.x : half_extents.x,
(p_normal.y < 0) ? -half_extents.y : half_extents.y,
(p_normal.z < 0) ? -half_extents.z : half_extents.z);
r_amount = 1;
r_type = FEATURE_POINT;
r_supports[0] = point;
}
bool BoxShape3DSW::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_result, Vector3 &r_normal) const {
AABB aabb(-half_extents, half_extents * 2.0);
return aabb.intersects_segment(p_begin, p_end, &r_result, &r_normal);
}
bool BoxShape3DSW::intersect_point(const Vector3 &p_point) const {
return (Math::abs(p_point.x) < half_extents.x && Math::abs(p_point.y) < half_extents.y && Math::abs(p_point.z) < half_extents.z);
}
Vector3 BoxShape3DSW::get_closest_point_to(const Vector3 &p_point) const {
int outside = 0;
Vector3 min_point;
for (int i = 0; i < 3; i++) {
if (Math::abs(p_point[i]) > half_extents[i]) {
outside++;
if (outside == 1) {
//use plane if only one side matches
Vector3 n;
n[i] = SGN(p_point[i]);
Plane p(n, half_extents[i]);
min_point = p.project(p_point);
}
}
}
if (!outside) {
return p_point; //it's inside, don't do anything else
}
if (outside == 1) { //if only above one plane, this plane clearly wins
return min_point;
}
//check segments
real_t min_distance = 1e20;
Vector3 closest_vertex = half_extents * p_point.sign();
Vector3 s[2] = {
closest_vertex,
closest_vertex
};
for (int i = 0; i < 3; i++) {
s[1] = closest_vertex;
s[1][i] = -s[1][i]; //edge
Vector3 closest_edge = Geometry3D::get_closest_point_to_segment(p_point, s);
real_t d = p_point.distance_to(closest_edge);
if (d < min_distance) {
min_point = closest_edge;
min_distance = d;
}
}
return min_point;
}
Vector3 BoxShape3DSW::get_moment_of_inertia(real_t p_mass) const {
real_t lx = half_extents.x;
real_t ly = half_extents.y;
real_t lz = half_extents.z;
return Vector3((p_mass / 3.0) * (ly * ly + lz * lz), (p_mass / 3.0) * (lx * lx + lz * lz), (p_mass / 3.0) * (lx * lx + ly * ly));
}
void BoxShape3DSW::_setup(const Vector3 &p_half_extents) {
half_extents = p_half_extents.abs();
configure(AABB(-half_extents, half_extents * 2));
}
void BoxShape3DSW::set_data(const Variant &p_data) {
_setup(p_data);
}
Variant BoxShape3DSW::get_data() const {
return half_extents;
}
BoxShape3DSW::BoxShape3DSW() {
}
/********** CAPSULE *************/
void CapsuleShape3DSW::project_range(const Vector3 &p_normal, const Transform &p_transform, real_t &r_min, real_t &r_max) const {
Vector3 n = p_transform.basis.xform_inv(p_normal).normalized();
real_t h = (n.y > 0) ? height : -height;
n *= radius;
n.y += h * 0.5;
r_max = p_normal.dot(p_transform.xform(n));
r_min = p_normal.dot(p_transform.xform(-n));
}
Vector3 CapsuleShape3DSW::get_support(const Vector3 &p_normal) const {
Vector3 n = p_normal;
real_t h = (n.y > 0) ? height : -height;
n *= radius;
n.y += h * 0.5;
return n;
}
void CapsuleShape3DSW::get_supports(const Vector3 &p_normal, int p_max, Vector3 *r_supports, int &r_amount, FeatureType &r_type) const {
Vector3 n = p_normal;
real_t d = n.y;
if (Math::abs(d) < _EDGE_IS_VALID_SUPPORT_THRESHOLD) {
// make it flat
n.y = 0.0;
n.normalize();
n *= radius;
r_amount = 2;
r_type = FEATURE_EDGE;
r_supports[0] = n;
r_supports[0].y += height * 0.5;
r_supports[1] = n;
r_supports[1].y -= height * 0.5;
} else {
real_t h = (d > 0) ? height : -height;
n *= radius;
n.y += h * 0.5;
r_amount = 1;
r_type = FEATURE_POINT;
*r_supports = n;
}
}
bool CapsuleShape3DSW::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_result, Vector3 &r_normal) const {
Vector3 norm = (p_end - p_begin).normalized();
real_t min_d = 1e20;
Vector3 res, n;
bool collision = false;
Vector3 auxres, auxn;
bool collided;
// test against cylinder and spheres :-|
collided = Geometry3D::segment_intersects_cylinder(p_begin, p_end, height, radius, &auxres, &auxn, 1);
if (collided) {
real_t d = norm.dot(auxres);
if (d < min_d) {
min_d = d;
res = auxres;
n = auxn;
collision = true;
}
}
collided = Geometry3D::segment_intersects_sphere(p_begin, p_end, Vector3(0, height * 0.5, 0), radius, &auxres, &auxn);
if (collided) {
real_t d = norm.dot(auxres);
if (d < min_d) {
min_d = d;
res = auxres;
n = auxn;
collision = true;
}
}
collided = Geometry3D::segment_intersects_sphere(p_begin, p_end, Vector3(0, height * -0.5, 0), radius, &auxres, &auxn);
if (collided) {
real_t d = norm.dot(auxres);
if (d < min_d) {
min_d = d;
res = auxres;
n = auxn;
collision = true;
}
}
if (collision) {
r_result = res;
r_normal = n;
}
return collision;
}
bool CapsuleShape3DSW::intersect_point(const Vector3 &p_point) const {
if (Math::abs(p_point.y) < height * 0.5) {
return Vector3(p_point.x, 0, p_point.z).length() < radius;
} else {
Vector3 p = p_point;
p.y = Math::abs(p.y) - height * 0.5;
return p.length() < radius;
}
}
Vector3 CapsuleShape3DSW::get_closest_point_to(const Vector3 &p_point) const {
Vector3 s[2] = {
Vector3(0, -height * 0.5, 0),
Vector3(0, height * 0.5, 0),
};
Vector3 p = Geometry3D::get_closest_point_to_segment(p_point, s);
if (p.distance_to(p_point) < radius) {
return p_point;
}
return p + (p_point - p).normalized() * radius;
}
Vector3 CapsuleShape3DSW::get_moment_of_inertia(real_t p_mass) const {
// use bad AABB approximation
Vector3 extents = get_aabb().size * 0.5;
return Vector3(
(p_mass / 3.0) * (extents.y * extents.y + extents.z * extents.z),
(p_mass / 3.0) * (extents.x * extents.x + extents.z * extents.z),
(p_mass / 3.0) * (extents.x * extents.x + extents.y * extents.y));
}
void CapsuleShape3DSW::_setup(real_t p_height, real_t p_radius) {
height = p_height;
radius = p_radius;
configure(AABB(Vector3(-radius, -height * 0.5 - radius, -radius), Vector3(radius * 2, height + radius * 2.0, radius * 2)));
}
void CapsuleShape3DSW::set_data(const Variant &p_data) {
Dictionary d = p_data;
ERR_FAIL_COND(!d.has("radius"));
ERR_FAIL_COND(!d.has("height"));
_setup(d["height"], d["radius"]);
}
Variant CapsuleShape3DSW::get_data() const {
Dictionary d;
d["radius"] = radius;
d["height"] = height;
return d;
}
CapsuleShape3DSW::CapsuleShape3DSW() {
height = radius = 0;
}
/********** CYLINDER *************/
void CylinderShape3DSW::project_range(const Vector3 &p_normal, const Transform &p_transform, real_t &r_min, real_t &r_max) const {
Vector3 cylinder_axis = p_transform.basis.get_axis(1).normalized();
real_t axis_dot = cylinder_axis.dot(p_normal);
Vector3 local_normal = p_transform.basis.xform_inv(p_normal);
real_t scale = local_normal.length();
real_t scaled_radius = radius * scale;
real_t scaled_height = height * scale;
real_t length;
if (Math::abs(axis_dot) > 1.0) {
length = scaled_height * 0.5;
} else {
length = Math::abs(axis_dot * scaled_height * 0.5) + scaled_radius * Math::sqrt(1.0 - axis_dot * axis_dot);
}
real_t distance = p_normal.dot(p_transform.origin);
r_min = distance - length;
r_max = distance + length;
}
Vector3 CylinderShape3DSW::get_support(const Vector3 &p_normal) const {
Vector3 n = p_normal;
real_t h = (n.y > 0) ? height : -height;
real_t s = Math::sqrt(n.x * n.x + n.z * n.z);
if (Math::is_zero_approx(s)) {
n.x = radius;
n.y = h * 0.5;
n.z = 0.0;
} else {
real_t d = radius / s;
n.x = n.x * d;
n.y = h * 0.5;
n.z = n.z * d;
}
return n;
}
void CylinderShape3DSW::get_supports(const Vector3 &p_normal, int p_max, Vector3 *r_supports, int &r_amount, FeatureType &r_type) const {
real_t d = p_normal.y;
if (Math::abs(d) > _CYLINDER_FACE_IS_VALID_SUPPORT_THRESHOLD) {
real_t h = (d > 0) ? height : -height;
Vector3 n = p_normal;
n.x = 0.0;
n.z = 0.0;
n.y = h * 0.5;
r_amount = 3;
r_type = FEATURE_CIRCLE;
r_supports[0] = n;
r_supports[1] = n;
r_supports[1].x += radius;
r_supports[2] = n;
r_supports[2].z += radius;
} else if (Math::abs(d) < _CYLINDER_EDGE_IS_VALID_SUPPORT_THRESHOLD) {
// make it flat
Vector3 n = p_normal;
n.y = 0.0;
n.normalize();
n *= radius;
r_amount = 2;
r_type = FEATURE_EDGE;
r_supports[0] = n;
r_supports[0].y += height * 0.5;
r_supports[1] = n;
r_supports[1].y -= height * 0.5;
} else {
r_amount = 1;
r_type = FEATURE_POINT;
r_supports[0] = get_support(p_normal);
return;
Vector3 n = p_normal;
real_t h = n.y * Math::sqrt(0.25 * height * height + radius * radius);
if (Math::abs(h) > 1.0) {
// Top or bottom surface.
n.y = (n.y > 0.0) ? height * 0.5 : -height * 0.5;
} else {
// Lateral surface.
n.y = height * 0.5 * h;
}
real_t s = Math::sqrt(n.x * n.x + n.z * n.z);
if (Math::is_zero_approx(s)) {
n.x = 0.0;
n.z = 0.0;
} else {
real_t scaled_radius = radius / s;
n.x = n.x * scaled_radius;
n.z = n.z * scaled_radius;
}
r_supports[0] = n;
}
}
bool CylinderShape3DSW::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_result, Vector3 &r_normal) const {
return Geometry3D::segment_intersects_cylinder(p_begin, p_end, height, radius, &r_result, &r_normal, 1);
}
bool CylinderShape3DSW::intersect_point(const Vector3 &p_point) const {
if (Math::abs(p_point.y) < height * 0.5) {
return Vector3(p_point.x, 0, p_point.z).length() < radius;
}
return false;
}
Vector3 CylinderShape3DSW::get_closest_point_to(const Vector3 &p_point) const {
if (Math::absf(p_point.y) > height * 0.5) {
// Project point to top disk.
real_t dir = p_point.y > 0.0 ? 1.0 : -1.0;
Vector3 circle_pos(0.0, dir * height * 0.5, 0.0);
Plane circle_plane(circle_pos, Vector3(0.0, dir, 0.0));
Vector3 proj_point = circle_plane.project(p_point);
// Clip position.
Vector3 delta_point_1 = proj_point - circle_pos;
real_t dist_point_1 = delta_point_1.length_squared();
if (!Math::is_zero_approx(dist_point_1)) {
dist_point_1 = Math::sqrt(dist_point_1);
proj_point = circle_pos + delta_point_1 * MIN(dist_point_1, radius) / dist_point_1;
}
return proj_point;
} else {
Vector3 s[2] = {
Vector3(0, -height * 0.5, 0),
Vector3(0, height * 0.5, 0),
};
Vector3 p = Geometry3D::get_closest_point_to_segment(p_point, s);
if (p.distance_to(p_point) < radius) {
return p_point;
}
return p + (p_point - p).normalized() * radius;
}
}
Vector3 CylinderShape3DSW::get_moment_of_inertia(real_t p_mass) const {
// use bad AABB approximation
Vector3 extents = get_aabb().size * 0.5;
return Vector3(
(p_mass / 3.0) * (extents.y * extents.y + extents.z * extents.z),
(p_mass / 3.0) * (extents.x * extents.x + extents.z * extents.z),
(p_mass / 3.0) * (extents.x * extents.x + extents.y * extents.y));
}
void CylinderShape3DSW::_setup(real_t p_height, real_t p_radius) {
height = p_height;
radius = p_radius;
configure(AABB(Vector3(-radius, -height * 0.5, -radius), Vector3(radius * 2.0, height, radius * 2.0)));
}
void CylinderShape3DSW::set_data(const Variant &p_data) {
Dictionary d = p_data;
ERR_FAIL_COND(!d.has("radius"));
ERR_FAIL_COND(!d.has("height"));
_setup(d["height"], d["radius"]);
}
Variant CylinderShape3DSW::get_data() const {
Dictionary d;
d["radius"] = radius;
d["height"] = height;
return d;
}
CylinderShape3DSW::CylinderShape3DSW() {
height = radius = 0;
}
/********** CONVEX POLYGON *************/
void ConvexPolygonShape3DSW::project_range(const Vector3 &p_normal, const Transform &p_transform, real_t &r_min, real_t &r_max) const {
int vertex_count = mesh.vertices.size();
if (vertex_count == 0) {
return;
}
const Vector3 *vrts = &mesh.vertices[0];
for (int i = 0; i < vertex_count; i++) {
real_t d = p_normal.dot(p_transform.xform(vrts[i]));
if (i == 0 || d > r_max) {
r_max = d;
}
if (i == 0 || d < r_min) {
r_min = d;
}
}
}
Vector3 ConvexPolygonShape3DSW::get_support(const Vector3 &p_normal) const {
Vector3 n = p_normal;
int vert_support_idx = -1;
real_t support_max = 0;
int vertex_count = mesh.vertices.size();
if (vertex_count == 0) {
return Vector3();
}
const Vector3 *vrts = &mesh.vertices[0];
for (int i = 0; i < vertex_count; i++) {
real_t d = n.dot(vrts[i]);
if (i == 0 || d > support_max) {
support_max = d;
vert_support_idx = i;
}
}
return vrts[vert_support_idx];
}
void ConvexPolygonShape3DSW::get_supports(const Vector3 &p_normal, int p_max, Vector3 *r_supports, int &r_amount, FeatureType &r_type) const {
const Geometry3D::MeshData::Face *faces = mesh.faces.ptr();
int fc = mesh.faces.size();
const Geometry3D::MeshData::Edge *edges = mesh.edges.ptr();
int ec = mesh.edges.size();
const Vector3 *vertices = mesh.vertices.ptr();
int vc = mesh.vertices.size();
//find vertex first
real_t max = 0;
int vtx = 0;
for (int i = 0; i < vc; i++) {
real_t d = p_normal.dot(vertices[i]);
if (i == 0 || d > max) {
max = d;
vtx = i;
}
}
for (int i = 0; i < fc; i++) {
if (faces[i].plane.normal.dot(p_normal) > _FACE_IS_VALID_SUPPORT_THRESHOLD) {
int ic = faces[i].indices.size();
const int *ind = faces[i].indices.ptr();
bool valid = false;
for (int j = 0; j < ic; j++) {
if (ind[j] == vtx) {
valid = true;
break;
}
}
if (!valid) {
continue;
}
int m = MIN(p_max, ic);
for (int j = 0; j < m; j++) {
r_supports[j] = vertices[ind[j]];
}
r_amount = m;
r_type = FEATURE_FACE;
return;
}
}
for (int i = 0; i < ec; i++) {
real_t dot = (vertices[edges[i].a] - vertices[edges[i].b]).normalized().dot(p_normal);
dot = ABS(dot);
if (dot < _EDGE_IS_VALID_SUPPORT_THRESHOLD && (edges[i].a == vtx || edges[i].b == vtx)) {
r_amount = 2;
r_type = FEATURE_EDGE;
r_supports[0] = vertices[edges[i].a];
r_supports[1] = vertices[edges[i].b];
return;
}
}
r_supports[0] = vertices[vtx];
r_amount = 1;
r_type = FEATURE_POINT;
}
bool ConvexPolygonShape3DSW::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_result, Vector3 &r_normal) const {
const Geometry3D::MeshData::Face *faces = mesh.faces.ptr();
int fc = mesh.faces.size();
const Vector3 *vertices = mesh.vertices.ptr();
Vector3 n = p_end - p_begin;
real_t min = 1e20;
bool col = false;
for (int i = 0; i < fc; i++) {
if (faces[i].plane.normal.dot(n) > 0) {
continue; //opposing face
}
int ic = faces[i].indices.size();
const int *ind = faces[i].indices.ptr();
for (int j = 1; j < ic - 1; j++) {
Face3 f(vertices[ind[0]], vertices[ind[j]], vertices[ind[j + 1]]);
Vector3 result;
if (f.intersects_segment(p_begin, p_end, &result)) {
real_t d = n.dot(result);
if (d < min) {
min = d;
r_result = result;
r_normal = faces[i].plane.normal;
col = true;
}
break;
}
}
}
return col;
}
bool ConvexPolygonShape3DSW::intersect_point(const Vector3 &p_point) const {
const Geometry3D::MeshData::Face *faces = mesh.faces.ptr();
int fc = mesh.faces.size();
for (int i = 0; i < fc; i++) {
if (faces[i].plane.distance_to(p_point) >= 0) {
return false;
}
}
return true;
}
Vector3 ConvexPolygonShape3DSW::get_closest_point_to(const Vector3 &p_point) const {
const Geometry3D::MeshData::Face *faces = mesh.faces.ptr();
int fc = mesh.faces.size();
const Vector3 *vertices = mesh.vertices.ptr();
bool all_inside = true;
for (int i = 0; i < fc; i++) {
if (!faces[i].plane.is_point_over(p_point)) {
continue;
}
all_inside = false;
bool is_inside = true;
int ic = faces[i].indices.size();
const int *indices = faces[i].indices.ptr();
for (int j = 0; j < ic; j++) {
Vector3 a = vertices[indices[j]];
Vector3 b = vertices[indices[(j + 1) % ic]];
Vector3 n = (a - b).cross(faces[i].plane.normal).normalized();
if (Plane(a, n).is_point_over(p_point)) {
is_inside = false;
break;
}
}
if (is_inside) {
return faces[i].plane.project(p_point);
}
}
if (all_inside) {
return p_point;
}
real_t min_distance = 1e20;
Vector3 min_point;
//check edges
const Geometry3D::MeshData::Edge *edges = mesh.edges.ptr();
int ec = mesh.edges.size();
for (int i = 0; i < ec; i++) {
Vector3 s[2] = {
vertices[edges[i].a],
vertices[edges[i].b]
};
Vector3 closest = Geometry3D::get_closest_point_to_segment(p_point, s);
real_t d = closest.distance_to(p_point);
if (d < min_distance) {
min_distance = d;
min_point = closest;
}
}
return min_point;
}
Vector3 ConvexPolygonShape3DSW::get_moment_of_inertia(real_t p_mass) const {
// use bad AABB approximation
Vector3 extents = get_aabb().size * 0.5;
return Vector3(
(p_mass / 3.0) * (extents.y * extents.y + extents.z * extents.z),
(p_mass / 3.0) * (extents.x * extents.x + extents.z * extents.z),
(p_mass / 3.0) * (extents.x * extents.x + extents.y * extents.y));
}
void ConvexPolygonShape3DSW::_setup(const Vector<Vector3> &p_vertices) {
Error err = QuickHull::build(p_vertices, mesh);
if (err != OK) {
ERR_PRINT("Failed to build QuickHull");
}
AABB _aabb;
for (int i = 0; i < mesh.vertices.size(); i++) {
if (i == 0) {
_aabb.position = mesh.vertices[i];
} else {
_aabb.expand_to(mesh.vertices[i]);
}
}
configure(_aabb);
}
void ConvexPolygonShape3DSW::set_data(const Variant &p_data) {
_setup(p_data);
}
Variant ConvexPolygonShape3DSW::get_data() const {
return mesh.vertices;
}
ConvexPolygonShape3DSW::ConvexPolygonShape3DSW() {
}
/********** FACE POLYGON *************/
void FaceShape3DSW::project_range(const Vector3 &p_normal, const Transform &p_transform, real_t &r_min, real_t &r_max) const {
for (int i = 0; i < 3; i++) {
Vector3 v = p_transform.xform(vertex[i]);
real_t d = p_normal.dot(v);
if (i == 0 || d > r_max) {
r_max = d;
}
if (i == 0 || d < r_min) {
r_min = d;
}
}
}
Vector3 FaceShape3DSW::get_support(const Vector3 &p_normal) const {
int vert_support_idx = -1;
real_t support_max = 0;
for (int i = 0; i < 3; i++) {
real_t d = p_normal.dot(vertex[i]);
if (i == 0 || d > support_max) {
support_max = d;
vert_support_idx = i;
}
}
return vertex[vert_support_idx];
}
void FaceShape3DSW::get_supports(const Vector3 &p_normal, int p_max, Vector3 *r_supports, int &r_amount, FeatureType &r_type) const {
Vector3 n = p_normal;
/** TEST FACE AS SUPPORT **/
if (Math::abs(normal.dot(n)) > _FACE_IS_VALID_SUPPORT_THRESHOLD) {
r_amount = 3;
r_type = FEATURE_FACE;
for (int i = 0; i < 3; i++) {
r_supports[i] = vertex[i];
}
return;
}
/** FIND SUPPORT VERTEX **/
int vert_support_idx = -1;
real_t support_max = 0;
for (int i = 0; i < 3; i++) {
real_t d = n.dot(vertex[i]);
if (i == 0 || d > support_max) {
support_max = d;
vert_support_idx = i;
}
}
/** TEST EDGES AS SUPPORT **/
for (int i = 0; i < 3; i++) {
int nx = (i + 1) % 3;
if (i != vert_support_idx && nx != vert_support_idx) {
continue;
}
// check if edge is valid as a support
real_t dot = (vertex[i] - vertex[nx]).normalized().dot(n);
dot = ABS(dot);
if (dot < _EDGE_IS_VALID_SUPPORT_THRESHOLD) {
r_amount = 2;
r_type = FEATURE_EDGE;
r_supports[0] = vertex[i];
r_supports[1] = vertex[nx];
return;
}
}
r_amount = 1;
r_type = FEATURE_POINT;
r_supports[0] = vertex[vert_support_idx];
}
bool FaceShape3DSW::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_result, Vector3 &r_normal) const {
bool c = Geometry3D::segment_intersects_triangle(p_begin, p_end, vertex[0], vertex[1], vertex[2], &r_result);
if (c) {
r_normal = Plane(vertex[0], vertex[1], vertex[2]).normal;
if (r_normal.dot(p_end - p_begin) > 0) {
if (backface_collision) {
r_normal = -r_normal;
} else {
c = false;
}
}
}
return c;
}
bool FaceShape3DSW::intersect_point(const Vector3 &p_point) const {
return false; //face is flat
}
Vector3 FaceShape3DSW::get_closest_point_to(const Vector3 &p_point) const {
return Face3(vertex[0], vertex[1], vertex[2]).get_closest_point_to(p_point);
}
Vector3 FaceShape3DSW::get_moment_of_inertia(real_t p_mass) const {
return Vector3(); // Sorry, but i don't think anyone cares, FaceShape!
}
FaceShape3DSW::FaceShape3DSW() {
configure(AABB());
}
Vector<Vector3> ConcavePolygonShape3DSW::get_faces() const {
Vector<Vector3> rfaces;
rfaces.resize(faces.size() * 3);
for (int i = 0; i < faces.size(); i++) {
Face f = faces.get(i);
for (int j = 0; j < 3; j++) {
rfaces.set(i * 3 + j, vertices.get(f.indices[j]));
}
}
return rfaces;
}
void ConcavePolygonShape3DSW::project_range(const Vector3 &p_normal, const Transform &p_transform, real_t &r_min, real_t &r_max) const {
int count = vertices.size();
if (count == 0) {
r_min = 0;
r_max = 0;
return;
}
const Vector3 *vptr = vertices.ptr();
for (int i = 0; i < count; i++) {
real_t d = p_normal.dot(p_transform.xform(vptr[i]));
if (i == 0 || d > r_max) {
r_max = d;
}
if (i == 0 || d < r_min) {
r_min = d;
}
}
}
Vector3 ConcavePolygonShape3DSW::get_support(const Vector3 &p_normal) const {
int count = vertices.size();
if (count == 0) {
return Vector3();
}
const Vector3 *vptr = vertices.ptr();
Vector3 n = p_normal;
int vert_support_idx = -1;
real_t support_max = 0;
for (int i = 0; i < count; i++) {
real_t d = n.dot(vptr[i]);
if (i == 0 || d > support_max) {
support_max = d;
vert_support_idx = i;
}
}
return vptr[vert_support_idx];
}
void ConcavePolygonShape3DSW::_cull_segment(int p_idx, _SegmentCullParams *p_params) const {
const BVH *bvh = &p_params->bvh[p_idx];
/*
if (p_params->dir.dot(bvh->aabb.get_support(-p_params->dir))>p_params->min_d)
return; //test against whole AABB, which isn't very costly
*/
//printf("addr: %p\n",bvh);
if (!bvh->aabb.intersects_segment(p_params->from, p_params->to)) {
return;
}
if (bvh->face_index >= 0) {
const Face *f = &p_params->faces[bvh->face_index];
FaceShape3DSW *face = p_params->face;
face->normal = f->normal;
face->vertex[0] = p_params->vertices[f->indices[0]];
face->vertex[1] = p_params->vertices[f->indices[1]];
face->vertex[2] = p_params->vertices[f->indices[2]];
Vector3 res;
Vector3 normal;
if (face->intersect_segment(p_params->from, p_params->to, res, normal)) {
real_t d = p_params->dir.dot(res) - p_params->dir.dot(p_params->from);
if ((d > 0) && (d < p_params->min_d)) {
p_params->min_d = d;
p_params->result = res;
p_params->normal = normal;
p_params->collisions++;
}
}
} else {
if (bvh->left >= 0) {
_cull_segment(bvh->left, p_params);
}
if (bvh->right >= 0) {
_cull_segment(bvh->right, p_params);
}
}
}
bool ConcavePolygonShape3DSW::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_result, Vector3 &r_normal) const {
if (faces.size() == 0) {
return false;
}
// unlock data
const Face *fr = faces.ptr();
const Vector3 *vr = vertices.ptr();
const BVH *br = bvh.ptr();
FaceShape3DSW face;
face.backface_collision = backface_collision;
_SegmentCullParams params;
params.from = p_begin;
params.to = p_end;
params.dir = (p_end - p_begin).normalized();
params.faces = fr;
params.vertices = vr;
params.bvh = br;
params.face = &face;
// cull
_cull_segment(0, &params);
if (params.collisions > 0) {
r_result = params.result;
r_normal = params.normal;
return true;
} else {
return false;
}
}
bool ConcavePolygonShape3DSW::intersect_point(const Vector3 &p_point) const {
return false; //face is flat
}
Vector3 ConcavePolygonShape3DSW::get_closest_point_to(const Vector3 &p_point) const {
return Vector3();
}
void ConcavePolygonShape3DSW::_cull(int p_idx, _CullParams *p_params) const {
const BVH *bvh = &p_params->bvh[p_idx];
if (!p_params->aabb.intersects(bvh->aabb)) {
return;
}
if (bvh->face_index >= 0) {
const Face *f = &p_params->faces[bvh->face_index];
FaceShape3DSW *face = p_params->face;
face->normal = f->normal;
face->vertex[0] = p_params->vertices[f->indices[0]];
face->vertex[1] = p_params->vertices[f->indices[1]];
face->vertex[2] = p_params->vertices[f->indices[2]];
p_params->callback(p_params->userdata, face);
} else {
if (bvh->left >= 0) {
_cull(bvh->left, p_params);
}
if (bvh->right >= 0) {
_cull(bvh->right, p_params);
}
}
}
void ConcavePolygonShape3DSW::cull(const AABB &p_local_aabb, Callback p_callback, void *p_userdata) const {
// make matrix local to concave
if (faces.size() == 0) {
return;
}
AABB local_aabb = p_local_aabb;
// unlock data
const Face *fr = faces.ptr();
const Vector3 *vr = vertices.ptr();
const BVH *br = bvh.ptr();
FaceShape3DSW face; // use this to send in the callback
face.backface_collision = backface_collision;
_CullParams params;
params.aabb = local_aabb;
params.face = &face;
params.faces = fr;
params.vertices = vr;
params.bvh = br;
params.callback = p_callback;
params.userdata = p_userdata;
// cull
_cull(0, &params);
}
Vector3 ConcavePolygonShape3DSW::get_moment_of_inertia(real_t p_mass) const {
// use bad AABB approximation
Vector3 extents = get_aabb().size * 0.5;
return Vector3(
(p_mass / 3.0) * (extents.y * extents.y + extents.z * extents.z),
(p_mass / 3.0) * (extents.x * extents.x + extents.z * extents.z),
(p_mass / 3.0) * (extents.x * extents.x + extents.y * extents.y));
}
struct _VolumeSW_BVH_Element {
AABB aabb;
Vector3 center;
int face_index;
};
struct _VolumeSW_BVH_CompareX {
_FORCE_INLINE_ bool operator()(const _VolumeSW_BVH_Element &a, const _VolumeSW_BVH_Element &b) const {
return a.center.x < b.center.x;
}
};
struct _VolumeSW_BVH_CompareY {
_FORCE_INLINE_ bool operator()(const _VolumeSW_BVH_Element &a, const _VolumeSW_BVH_Element &b) const {
return a.center.y < b.center.y;
}
};
struct _VolumeSW_BVH_CompareZ {
_FORCE_INLINE_ bool operator()(const _VolumeSW_BVH_Element &a, const _VolumeSW_BVH_Element &b) const {
return a.center.z < b.center.z;
}
};
struct _VolumeSW_BVH {
AABB aabb;
_VolumeSW_BVH *left;
_VolumeSW_BVH *right;
int face_index;
};
_VolumeSW_BVH *_volume_sw_build_bvh(_VolumeSW_BVH_Element *p_elements, int p_size, int &count) {
_VolumeSW_BVH *bvh = memnew(_VolumeSW_BVH);
if (p_size == 1) {
//leaf
bvh->aabb = p_elements[0].aabb;
bvh->left = nullptr;
bvh->right = nullptr;
bvh->face_index = p_elements->face_index;
count++;
return bvh;
} else {
bvh->face_index = -1;
}
AABB aabb;
for (int i = 0; i < p_size; i++) {
if (i == 0) {
aabb = p_elements[i].aabb;
} else {
aabb.merge_with(p_elements[i].aabb);
}
}
bvh->aabb = aabb;
switch (aabb.get_longest_axis_index()) {
case 0: {
SortArray<_VolumeSW_BVH_Element, _VolumeSW_BVH_CompareX> sort_x;
sort_x.sort(p_elements, p_size);
} break;
case 1: {
SortArray<_VolumeSW_BVH_Element, _VolumeSW_BVH_CompareY> sort_y;
sort_y.sort(p_elements, p_size);
} break;
case 2: {
SortArray<_VolumeSW_BVH_Element, _VolumeSW_BVH_CompareZ> sort_z;
sort_z.sort(p_elements, p_size);
} break;
}
int split = p_size / 2;
bvh->left = _volume_sw_build_bvh(p_elements, split, count);
bvh->right = _volume_sw_build_bvh(&p_elements[split], p_size - split, count);
//printf("branch at %p - %i: %i\n",bvh,count,bvh->face_index);
count++;
return bvh;
}
void ConcavePolygonShape3DSW::_fill_bvh(_VolumeSW_BVH *p_bvh_tree, BVH *p_bvh_array, int &p_idx) {
int idx = p_idx;
p_bvh_array[idx].aabb = p_bvh_tree->aabb;
p_bvh_array[idx].face_index = p_bvh_tree->face_index;
//printf("%p - %i: %i(%p) -- %p:%p\n",%p_bvh_array[idx],p_idx,p_bvh_array[i]->face_index,&p_bvh_tree->face_index,p_bvh_tree->left,p_bvh_tree->right);
if (p_bvh_tree->left) {
p_bvh_array[idx].left = ++p_idx;
_fill_bvh(p_bvh_tree->left, p_bvh_array, p_idx);
} else {
p_bvh_array[p_idx].left = -1;
}
if (p_bvh_tree->right) {
p_bvh_array[idx].right = ++p_idx;
_fill_bvh(p_bvh_tree->right, p_bvh_array, p_idx);
} else {
p_bvh_array[p_idx].right = -1;
}
memdelete(p_bvh_tree);
}
void ConcavePolygonShape3DSW::_setup(const Vector<Vector3> &p_faces, bool p_backface_collision) {
int src_face_count = p_faces.size();
if (src_face_count == 0) {
configure(AABB());
return;
}
ERR_FAIL_COND(src_face_count % 3);
src_face_count /= 3;
const Vector3 *facesr = p_faces.ptr();
Vector<_VolumeSW_BVH_Element> bvh_array;
bvh_array.resize(src_face_count);
_VolumeSW_BVH_Element *bvh_arrayw = bvh_array.ptrw();
faces.resize(src_face_count);
Face *facesw = faces.ptrw();
vertices.resize(src_face_count * 3);
Vector3 *verticesw = vertices.ptrw();
AABB _aabb;
for (int i = 0; i < src_face_count; i++) {
Face3 face(facesr[i * 3 + 0], facesr[i * 3 + 1], facesr[i * 3 + 2]);
bvh_arrayw[i].aabb = face.get_aabb();
bvh_arrayw[i].center = bvh_arrayw[i].aabb.position + bvh_arrayw[i].aabb.size * 0.5;
bvh_arrayw[i].face_index = i;
facesw[i].indices[0] = i * 3 + 0;
facesw[i].indices[1] = i * 3 + 1;
facesw[i].indices[2] = i * 3 + 2;
facesw[i].normal = face.get_plane().normal;
verticesw[i * 3 + 0] = face.vertex[0];
verticesw[i * 3 + 1] = face.vertex[1];
verticesw[i * 3 + 2] = face.vertex[2];
if (i == 0) {
_aabb = bvh_arrayw[i].aabb;
} else {
_aabb.merge_with(bvh_arrayw[i].aabb);
}
}
int count = 0;
_VolumeSW_BVH *bvh_tree = _volume_sw_build_bvh(bvh_arrayw, src_face_count, count);
bvh.resize(count + 1);
BVH *bvh_arrayw2 = bvh.ptrw();
int idx = 0;
_fill_bvh(bvh_tree, bvh_arrayw2, idx);
backface_collision = p_backface_collision;
configure(_aabb); // this type of shape has no margin
}
void ConcavePolygonShape3DSW::set_data(const Variant &p_data) {
Dictionary d = p_data;
ERR_FAIL_COND(!d.has("faces"));
_setup(d["faces"], d["backface_collision"]);
}
Variant ConcavePolygonShape3DSW::get_data() const {
Dictionary d;
d["faces"] = get_faces();
d["backface_collision"] = backface_collision;
return d;
}
ConcavePolygonShape3DSW::ConcavePolygonShape3DSW() {
}
/* HEIGHT MAP SHAPE */
Vector<real_t> HeightMapShape3DSW::get_heights() const {
return heights;
}
int HeightMapShape3DSW::get_width() const {
return width;
}
int HeightMapShape3DSW::get_depth() const {
return depth;
}
real_t HeightMapShape3DSW::get_cell_size() const {
return cell_size;
}
void HeightMapShape3DSW::project_range(const Vector3 &p_normal, const Transform &p_transform, real_t &r_min, real_t &r_max) const {
//not very useful, but not very used either
p_transform.xform(get_aabb()).project_range_in_plane(Plane(p_normal, 0), r_min, r_max);
}
Vector3 HeightMapShape3DSW::get_support(const Vector3 &p_normal) const {
//not very useful, but not very used either
return get_aabb().get_support(p_normal);
}
bool HeightMapShape3DSW::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_point, Vector3 &r_normal) const {
return false;
}
bool HeightMapShape3DSW::intersect_point(const Vector3 &p_point) const {
return false;
}
Vector3 HeightMapShape3DSW::get_closest_point_to(const Vector3 &p_point) const {
return Vector3();
}
void HeightMapShape3DSW::cull(const AABB &p_local_aabb, Callback p_callback, void *p_userdata) const {
}
Vector3 HeightMapShape3DSW::get_moment_of_inertia(real_t p_mass) const {
// use bad AABB approximation
Vector3 extents = get_aabb().size * 0.5;
return Vector3(
(p_mass / 3.0) * (extents.y * extents.y + extents.z * extents.z),
(p_mass / 3.0) * (extents.x * extents.x + extents.z * extents.z),
(p_mass / 3.0) * (extents.x * extents.x + extents.y * extents.y));
}
void HeightMapShape3DSW::_setup(Vector<real_t> p_heights, int p_width, int p_depth, real_t p_cell_size) {
heights = p_heights;
width = p_width;
depth = p_depth;
cell_size = p_cell_size;
const real_t *r = heights.ptr();
AABB aabb;
for (int i = 0; i < depth; i++) {
for (int j = 0; j < width; j++) {
real_t h = r[i * width + j];
Vector3 pos(j * cell_size, h, i * cell_size);
if (i == 0 || j == 0) {
aabb.position = pos;
} else {
aabb.expand_to(pos);
}
}
}
configure(aabb);
}
void HeightMapShape3DSW::set_data(const Variant &p_data) {
ERR_FAIL_COND(p_data.get_type() != Variant::DICTIONARY);
Dictionary d = p_data;
ERR_FAIL_COND(!d.has("width"));
ERR_FAIL_COND(!d.has("depth"));
ERR_FAIL_COND(!d.has("cell_size"));
ERR_FAIL_COND(!d.has("heights"));
int width = d["width"];
int depth = d["depth"];
real_t cell_size = d["cell_size"];
Vector<real_t> heights = d["heights"];
ERR_FAIL_COND(width <= 0);
ERR_FAIL_COND(depth <= 0);
ERR_FAIL_COND(cell_size <= CMP_EPSILON);
ERR_FAIL_COND(heights.size() != (width * depth));
_setup(heights, width, depth, cell_size);
}
Variant HeightMapShape3DSW::get_data() const {
ERR_FAIL_V(Variant());
}
HeightMapShape3DSW::HeightMapShape3DSW() {
width = 0;
depth = 0;
cell_size = 0;
}