godot/core/math/transform.cpp
Rémi Verschelde b50a9114b1 Update copyright statements to 2018
Happy new year to the wonderful Godot community!
2018-01-01 14:40:47 +01:00

215 lines
6.1 KiB
C++

/*************************************************************************/
/* transform.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2018 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2018 Godot Engine contributors (cf. AUTHORS.md) */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "transform.h"
#include "math_funcs.h"
#include "os/copymem.h"
#include "print_string.h"
void Transform::affine_invert() {
basis.invert();
origin = basis.xform(-origin);
}
Transform Transform::affine_inverse() const {
Transform ret = *this;
ret.affine_invert();
return ret;
}
void Transform::invert() {
basis.transpose();
origin = basis.xform(-origin);
}
Transform Transform::inverse() const {
// FIXME: this function assumes the basis is a rotation matrix, with no scaling.
// Transform::affine_inverse can handle matrices with scaling, so GDScript should eventually use that.
Transform ret = *this;
ret.invert();
return ret;
}
void Transform::rotate(const Vector3 &p_axis, real_t p_phi) {
*this = rotated(p_axis, p_phi);
}
Transform Transform::rotated(const Vector3 &p_axis, real_t p_phi) const {
return Transform(Basis(p_axis, p_phi), Vector3()) * (*this);
}
void Transform::rotate_basis(const Vector3 &p_axis, real_t p_phi) {
basis.rotate(p_axis, p_phi);
}
Transform Transform::looking_at(const Vector3 &p_target, const Vector3 &p_up) const {
Transform t = *this;
t.set_look_at(origin, p_target, p_up);
return t;
}
void Transform::set_look_at(const Vector3 &p_eye, const Vector3 &p_target, const Vector3 &p_up) {
#ifdef MATH_CHECKS
ERR_FAIL_COND(p_eye == p_target);
ERR_FAIL_COND(p_up.length() == 0);
#endif
// Reference: MESA source code
Vector3 v_x, v_y, v_z;
/* Make rotation matrix */
/* Z vector */
v_z = p_eye - p_target;
v_z.normalize();
v_y = p_up;
v_x = v_y.cross(v_z);
#ifdef MATH_CHECKS
ERR_FAIL_COND(v_x.length() == 0);
#endif
/* Recompute Y = Z cross X */
v_y = v_z.cross(v_x);
v_x.normalize();
v_y.normalize();
basis.set(v_x, v_y, v_z);
origin = p_eye;
}
Transform Transform::interpolate_with(const Transform &p_transform, real_t p_c) const {
/* not sure if very "efficient" but good enough? */
Vector3 src_scale = basis.get_signed_scale();
Quat src_rot = basis.orthonormalized();
Vector3 src_loc = origin;
Vector3 dst_scale = p_transform.basis.get_signed_scale();
Quat dst_rot = p_transform.basis;
Vector3 dst_loc = p_transform.origin;
Transform dst; //this could be made faster by using a single function in Basis..
dst.basis = src_rot.slerp(dst_rot, p_c).normalized();
dst.basis.set_scale(src_scale.linear_interpolate(dst_scale, p_c));
dst.origin = src_loc.linear_interpolate(dst_loc, p_c);
return dst;
}
void Transform::scale(const Vector3 &p_scale) {
basis.scale(p_scale);
origin *= p_scale;
}
Transform Transform::scaled(const Vector3 &p_scale) const {
Transform t = *this;
t.scale(p_scale);
return t;
}
void Transform::scale_basis(const Vector3 &p_scale) {
basis.scale(p_scale);
}
void Transform::translate(real_t p_tx, real_t p_ty, real_t p_tz) {
translate(Vector3(p_tx, p_ty, p_tz));
}
void Transform::translate(const Vector3 &p_translation) {
for (int i = 0; i < 3; i++) {
origin[i] += basis[i].dot(p_translation);
}
}
Transform Transform::translated(const Vector3 &p_translation) const {
Transform t = *this;
t.translate(p_translation);
return t;
}
void Transform::orthonormalize() {
basis.orthonormalize();
}
Transform Transform::orthonormalized() const {
Transform _copy = *this;
_copy.orthonormalize();
return _copy;
}
bool Transform::operator==(const Transform &p_transform) const {
return (basis == p_transform.basis && origin == p_transform.origin);
}
bool Transform::operator!=(const Transform &p_transform) const {
return (basis != p_transform.basis || origin != p_transform.origin);
}
void Transform::operator*=(const Transform &p_transform) {
origin = xform(p_transform.origin);
basis *= p_transform.basis;
}
Transform Transform::operator*(const Transform &p_transform) const {
Transform t = *this;
t *= p_transform;
return t;
}
Transform::operator String() const {
return basis.operator String() + " - " + origin.operator String();
}
Transform::Transform(const Basis &p_basis, const Vector3 &p_origin) :
basis(p_basis),
origin(p_origin) {
}