1077 lines
34 KiB
C++
1077 lines
34 KiB
C++
/*************************************************************************/
|
|
/* rigid_body_bullet.cpp */
|
|
/*************************************************************************/
|
|
/* This file is part of: */
|
|
/* GODOT ENGINE */
|
|
/* https://godotengine.org */
|
|
/*************************************************************************/
|
|
/* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */
|
|
/* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/*************************************************************************/
|
|
|
|
#include "rigid_body_bullet.h"
|
|
|
|
#include "btRayShape.h"
|
|
#include "bullet_physics_server.h"
|
|
#include "bullet_types_converter.h"
|
|
#include "bullet_utilities.h"
|
|
#include "godot_motion_state.h"
|
|
#include "joint_bullet.h"
|
|
|
|
#include <BulletCollision/CollisionDispatch/btGhostObject.h>
|
|
#include <BulletCollision/CollisionShapes/btConvexPointCloudShape.h>
|
|
#include <BulletDynamics/Dynamics/btRigidBody.h>
|
|
#include <btBulletCollisionCommon.h>
|
|
|
|
#include <assert.h>
|
|
|
|
/**
|
|
@author AndreaCatania
|
|
*/
|
|
|
|
BulletPhysicsDirectBodyState *BulletPhysicsDirectBodyState::singleton = NULL;
|
|
|
|
Vector3 BulletPhysicsDirectBodyState::get_total_gravity() const {
|
|
Vector3 gVec;
|
|
B_TO_G(body->btBody->getGravity(), gVec);
|
|
return gVec;
|
|
}
|
|
|
|
float BulletPhysicsDirectBodyState::get_total_angular_damp() const {
|
|
return body->btBody->getAngularDamping();
|
|
}
|
|
|
|
float BulletPhysicsDirectBodyState::get_total_linear_damp() const {
|
|
return body->btBody->getLinearDamping();
|
|
}
|
|
|
|
Vector3 BulletPhysicsDirectBodyState::get_center_of_mass() const {
|
|
Vector3 gVec;
|
|
B_TO_G(body->btBody->getCenterOfMassPosition(), gVec);
|
|
return gVec;
|
|
}
|
|
|
|
Basis BulletPhysicsDirectBodyState::get_principal_inertia_axes() const {
|
|
return Basis();
|
|
}
|
|
|
|
float BulletPhysicsDirectBodyState::get_inverse_mass() const {
|
|
return body->btBody->getInvMass();
|
|
}
|
|
|
|
Vector3 BulletPhysicsDirectBodyState::get_inverse_inertia() const {
|
|
Vector3 gVec;
|
|
B_TO_G(body->btBody->getInvInertiaDiagLocal(), gVec);
|
|
return gVec;
|
|
}
|
|
|
|
Basis BulletPhysicsDirectBodyState::get_inverse_inertia_tensor() const {
|
|
Basis gInertia;
|
|
B_TO_G(body->btBody->getInvInertiaTensorWorld(), gInertia);
|
|
return gInertia;
|
|
}
|
|
|
|
void BulletPhysicsDirectBodyState::set_linear_velocity(const Vector3 &p_velocity) {
|
|
body->set_linear_velocity(p_velocity);
|
|
}
|
|
|
|
Vector3 BulletPhysicsDirectBodyState::get_linear_velocity() const {
|
|
return body->get_linear_velocity();
|
|
}
|
|
|
|
void BulletPhysicsDirectBodyState::set_angular_velocity(const Vector3 &p_velocity) {
|
|
body->set_angular_velocity(p_velocity);
|
|
}
|
|
|
|
Vector3 BulletPhysicsDirectBodyState::get_angular_velocity() const {
|
|
return body->get_angular_velocity();
|
|
}
|
|
|
|
void BulletPhysicsDirectBodyState::set_transform(const Transform &p_transform) {
|
|
body->set_transform(p_transform);
|
|
}
|
|
|
|
Transform BulletPhysicsDirectBodyState::get_transform() const {
|
|
return body->get_transform();
|
|
}
|
|
|
|
void BulletPhysicsDirectBodyState::add_central_force(const Vector3 &p_force) {
|
|
body->apply_central_force(p_force);
|
|
}
|
|
|
|
void BulletPhysicsDirectBodyState::add_force(const Vector3 &p_force, const Vector3 &p_pos) {
|
|
body->apply_force(p_force, p_pos);
|
|
}
|
|
|
|
void BulletPhysicsDirectBodyState::add_torque(const Vector3 &p_torque) {
|
|
body->apply_torque(p_torque);
|
|
}
|
|
|
|
void BulletPhysicsDirectBodyState::apply_central_impulse(const Vector3 &p_impulse) {
|
|
body->apply_central_impulse(p_impulse);
|
|
}
|
|
|
|
void BulletPhysicsDirectBodyState::apply_impulse(const Vector3 &p_pos, const Vector3 &p_impulse) {
|
|
body->apply_impulse(p_pos, p_impulse);
|
|
}
|
|
|
|
void BulletPhysicsDirectBodyState::apply_torque_impulse(const Vector3 &p_impulse) {
|
|
body->apply_torque_impulse(p_impulse);
|
|
}
|
|
|
|
void BulletPhysicsDirectBodyState::set_sleep_state(bool p_enable) {
|
|
body->set_activation_state(p_enable);
|
|
}
|
|
|
|
bool BulletPhysicsDirectBodyState::is_sleeping() const {
|
|
return !body->is_active();
|
|
}
|
|
|
|
int BulletPhysicsDirectBodyState::get_contact_count() const {
|
|
return body->collisionsCount;
|
|
}
|
|
|
|
Vector3 BulletPhysicsDirectBodyState::get_contact_local_position(int p_contact_idx) const {
|
|
return body->collisions[p_contact_idx].hitLocalLocation;
|
|
}
|
|
|
|
Vector3 BulletPhysicsDirectBodyState::get_contact_local_normal(int p_contact_idx) const {
|
|
return body->collisions[p_contact_idx].hitNormal;
|
|
}
|
|
|
|
float BulletPhysicsDirectBodyState::get_contact_impulse(int p_contact_idx) const {
|
|
return body->collisions[p_contact_idx].appliedImpulse;
|
|
}
|
|
|
|
int BulletPhysicsDirectBodyState::get_contact_local_shape(int p_contact_idx) const {
|
|
return body->collisions[p_contact_idx].local_shape;
|
|
}
|
|
|
|
RID BulletPhysicsDirectBodyState::get_contact_collider(int p_contact_idx) const {
|
|
return body->collisions[p_contact_idx].otherObject->get_self();
|
|
}
|
|
|
|
Vector3 BulletPhysicsDirectBodyState::get_contact_collider_position(int p_contact_idx) const {
|
|
return body->collisions[p_contact_idx].hitWorldLocation;
|
|
}
|
|
|
|
ObjectID BulletPhysicsDirectBodyState::get_contact_collider_id(int p_contact_idx) const {
|
|
return body->collisions[p_contact_idx].otherObject->get_instance_id();
|
|
}
|
|
|
|
int BulletPhysicsDirectBodyState::get_contact_collider_shape(int p_contact_idx) const {
|
|
return body->collisions[p_contact_idx].other_object_shape;
|
|
}
|
|
|
|
Vector3 BulletPhysicsDirectBodyState::get_contact_collider_velocity_at_position(int p_contact_idx) const {
|
|
RigidBodyBullet::CollisionData &colDat = body->collisions.write[p_contact_idx];
|
|
|
|
btVector3 hitLocation;
|
|
G_TO_B(colDat.hitLocalLocation, hitLocation);
|
|
|
|
Vector3 velocityAtPoint;
|
|
B_TO_G(colDat.otherObject->get_bt_rigid_body()->getVelocityInLocalPoint(hitLocation), velocityAtPoint);
|
|
|
|
return velocityAtPoint;
|
|
}
|
|
|
|
PhysicsDirectSpaceState *BulletPhysicsDirectBodyState::get_space_state() {
|
|
return body->get_space()->get_direct_state();
|
|
}
|
|
|
|
RigidBodyBullet::KinematicUtilities::KinematicUtilities(RigidBodyBullet *p_owner) :
|
|
owner(p_owner),
|
|
safe_margin(0.001) {
|
|
}
|
|
|
|
RigidBodyBullet::KinematicUtilities::~KinematicUtilities() {
|
|
just_delete_shapes(shapes.size()); // don't need to resize
|
|
}
|
|
|
|
void RigidBodyBullet::KinematicUtilities::setSafeMargin(btScalar p_margin) {
|
|
safe_margin = p_margin;
|
|
copyAllOwnerShapes();
|
|
}
|
|
|
|
void RigidBodyBullet::KinematicUtilities::copyAllOwnerShapes() {
|
|
const Vector<CollisionObjectBullet::ShapeWrapper> &shapes_wrappers(owner->get_shapes_wrappers());
|
|
const int shapes_count = shapes_wrappers.size();
|
|
|
|
just_delete_shapes(shapes_count);
|
|
|
|
const CollisionObjectBullet::ShapeWrapper *shape_wrapper;
|
|
|
|
btVector3 owner_scale(owner->get_bt_body_scale());
|
|
|
|
for (int i = shapes_count - 1; 0 <= i; --i) {
|
|
shape_wrapper = &shapes_wrappers[i];
|
|
if (!shape_wrapper->active) {
|
|
continue;
|
|
}
|
|
|
|
shapes.write[i].transform = shape_wrapper->transform;
|
|
shapes.write[i].transform.getOrigin() *= owner_scale;
|
|
switch (shape_wrapper->shape->get_type()) {
|
|
case PhysicsServer::SHAPE_SPHERE:
|
|
case PhysicsServer::SHAPE_BOX:
|
|
case PhysicsServer::SHAPE_CAPSULE:
|
|
case PhysicsServer::SHAPE_CYLINDER:
|
|
case PhysicsServer::SHAPE_CONVEX_POLYGON:
|
|
case PhysicsServer::SHAPE_RAY: {
|
|
shapes.write[i].shape = static_cast<btConvexShape *>(shape_wrapper->shape->create_bt_shape(owner_scale * shape_wrapper->scale, safe_margin));
|
|
} break;
|
|
default:
|
|
WARN_PRINT("This shape is not supported for kinematic collision.");
|
|
shapes.write[i].shape = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
void RigidBodyBullet::KinematicUtilities::just_delete_shapes(int new_size) {
|
|
for (int i = shapes.size() - 1; 0 <= i; --i) {
|
|
if (shapes[i].shape) {
|
|
bulletdelete(shapes.write[i].shape);
|
|
}
|
|
}
|
|
shapes.resize(new_size);
|
|
}
|
|
|
|
RigidBodyBullet::RigidBodyBullet() :
|
|
RigidCollisionObjectBullet(CollisionObjectBullet::TYPE_RIGID_BODY),
|
|
kinematic_utilities(NULL),
|
|
locked_axis(0),
|
|
mass(1),
|
|
gravity_scale(1),
|
|
linearDamp(0),
|
|
angularDamp(0),
|
|
can_sleep(true),
|
|
omit_forces_integration(false),
|
|
can_integrate_forces(false),
|
|
maxCollisionsDetection(0),
|
|
collisionsCount(0),
|
|
prev_collision_count(0),
|
|
maxAreasWhereIam(10),
|
|
areaWhereIamCount(0),
|
|
countGravityPointSpaces(0),
|
|
isScratchedSpaceOverrideModificator(false),
|
|
previousActiveState(true),
|
|
force_integration_callback(NULL) {
|
|
|
|
godotMotionState = bulletnew(GodotMotionState(this));
|
|
|
|
// Initial properties
|
|
const btVector3 localInertia(0, 0, 0);
|
|
btRigidBody::btRigidBodyConstructionInfo cInfo(mass, godotMotionState, NULL, localInertia);
|
|
|
|
btBody = bulletnew(btRigidBody(cInfo));
|
|
reload_shapes();
|
|
setupBulletCollisionObject(btBody);
|
|
|
|
set_mode(PhysicsServer::BODY_MODE_RIGID);
|
|
reload_axis_lock();
|
|
|
|
areasWhereIam.resize(maxAreasWhereIam);
|
|
for (int i = areasWhereIam.size() - 1; 0 <= i; --i) {
|
|
areasWhereIam.write[i] = NULL;
|
|
}
|
|
btBody->setSleepingThresholds(0.2, 0.2);
|
|
|
|
prev_collision_traces = &collision_traces_1;
|
|
curr_collision_traces = &collision_traces_2;
|
|
}
|
|
|
|
RigidBodyBullet::~RigidBodyBullet() {
|
|
bulletdelete(godotMotionState);
|
|
|
|
if (force_integration_callback)
|
|
memdelete(force_integration_callback);
|
|
|
|
destroy_kinematic_utilities();
|
|
}
|
|
|
|
void RigidBodyBullet::init_kinematic_utilities() {
|
|
kinematic_utilities = memnew(KinematicUtilities(this));
|
|
}
|
|
|
|
void RigidBodyBullet::destroy_kinematic_utilities() {
|
|
if (kinematic_utilities) {
|
|
memdelete(kinematic_utilities);
|
|
kinematic_utilities = NULL;
|
|
}
|
|
}
|
|
|
|
void RigidBodyBullet::main_shape_changed() {
|
|
CRASH_COND(!get_main_shape());
|
|
btBody->setCollisionShape(get_main_shape());
|
|
set_continuous_collision_detection(is_continuous_collision_detection_enabled()); // Reset
|
|
}
|
|
|
|
void RigidBodyBullet::reload_body() {
|
|
if (space) {
|
|
space->remove_rigid_body(this);
|
|
if (get_main_shape())
|
|
space->add_rigid_body(this);
|
|
}
|
|
}
|
|
|
|
void RigidBodyBullet::set_space(SpaceBullet *p_space) {
|
|
// Clear the old space if there is one
|
|
if (space) {
|
|
can_integrate_forces = false;
|
|
|
|
// Remove all eventual constraints
|
|
assert_no_constraints();
|
|
|
|
// Remove this object form the physics world
|
|
space->remove_rigid_body(this);
|
|
}
|
|
|
|
space = p_space;
|
|
|
|
if (space) {
|
|
space->add_rigid_body(this);
|
|
}
|
|
}
|
|
|
|
void RigidBodyBullet::dispatch_callbacks() {
|
|
/// The check isFirstTransformChanged is necessary in order to call integrated forces only when the first transform is sent
|
|
if ((btBody->isKinematicObject() || btBody->isActive() || previousActiveState != btBody->isActive()) && force_integration_callback && can_integrate_forces) {
|
|
|
|
if (omit_forces_integration)
|
|
btBody->clearForces();
|
|
|
|
BulletPhysicsDirectBodyState *bodyDirect = BulletPhysicsDirectBodyState::get_singleton(this);
|
|
|
|
Variant variantBodyDirect = bodyDirect;
|
|
|
|
Object *obj = ObjectDB::get_instance(force_integration_callback->id);
|
|
if (!obj) {
|
|
// Remove integration callback
|
|
set_force_integration_callback(ObjectID(), StringName());
|
|
} else {
|
|
const Variant *vp[2] = { &variantBodyDirect, &force_integration_callback->udata };
|
|
|
|
Callable::CallError responseCallError;
|
|
int argc = (force_integration_callback->udata.get_type() == Variant::NIL) ? 1 : 2;
|
|
obj->call(force_integration_callback->method, vp, argc, responseCallError);
|
|
}
|
|
}
|
|
|
|
if (isScratchedSpaceOverrideModificator || 0 < countGravityPointSpaces) {
|
|
isScratchedSpaceOverrideModificator = false;
|
|
reload_space_override_modificator();
|
|
}
|
|
|
|
/// Lock axis
|
|
btBody->setLinearVelocity(btBody->getLinearVelocity() * btBody->getLinearFactor());
|
|
btBody->setAngularVelocity(btBody->getAngularVelocity() * btBody->getAngularFactor());
|
|
|
|
previousActiveState = btBody->isActive();
|
|
}
|
|
|
|
void RigidBodyBullet::set_force_integration_callback(ObjectID p_id, const StringName &p_method, const Variant &p_udata) {
|
|
|
|
if (force_integration_callback) {
|
|
memdelete(force_integration_callback);
|
|
force_integration_callback = NULL;
|
|
}
|
|
|
|
if (p_id.is_valid()) {
|
|
force_integration_callback = memnew(ForceIntegrationCallback);
|
|
force_integration_callback->id = p_id;
|
|
force_integration_callback->method = p_method;
|
|
force_integration_callback->udata = p_udata;
|
|
}
|
|
}
|
|
|
|
void RigidBodyBullet::scratch_space_override_modificator() {
|
|
isScratchedSpaceOverrideModificator = true;
|
|
}
|
|
|
|
void RigidBodyBullet::on_collision_filters_change() {
|
|
if (space) {
|
|
space->reload_collision_filters(this);
|
|
}
|
|
|
|
set_activation_state(true);
|
|
}
|
|
|
|
void RigidBodyBullet::on_collision_checker_start() {
|
|
|
|
prev_collision_count = collisionsCount;
|
|
collisionsCount = 0;
|
|
|
|
// Swap array
|
|
Vector<RigidBodyBullet *> *s = prev_collision_traces;
|
|
prev_collision_traces = curr_collision_traces;
|
|
curr_collision_traces = s;
|
|
}
|
|
|
|
void RigidBodyBullet::on_collision_checker_end() {
|
|
// Always true if active and not a static or kinematic body
|
|
isTransformChanged = btBody->isActive() && !btBody->isStaticOrKinematicObject();
|
|
}
|
|
|
|
bool RigidBodyBullet::add_collision_object(RigidBodyBullet *p_otherObject, const Vector3 &p_hitWorldLocation, const Vector3 &p_hitLocalLocation, const Vector3 &p_hitNormal, const float &p_appliedImpulse, int p_other_shape_index, int p_local_shape_index) {
|
|
|
|
if (collisionsCount >= maxCollisionsDetection) {
|
|
return false;
|
|
}
|
|
|
|
CollisionData &cd = collisions.write[collisionsCount];
|
|
cd.hitLocalLocation = p_hitLocalLocation;
|
|
cd.otherObject = p_otherObject;
|
|
cd.hitWorldLocation = p_hitWorldLocation;
|
|
cd.hitNormal = p_hitNormal;
|
|
cd.appliedImpulse = p_appliedImpulse;
|
|
cd.other_object_shape = p_other_shape_index;
|
|
cd.local_shape = p_local_shape_index;
|
|
|
|
curr_collision_traces->write[collisionsCount] = p_otherObject;
|
|
|
|
++collisionsCount;
|
|
return true;
|
|
}
|
|
|
|
bool RigidBodyBullet::was_colliding(RigidBodyBullet *p_other_object) {
|
|
for (int i = prev_collision_count - 1; 0 <= i; --i) {
|
|
if ((*prev_collision_traces)[i] == p_other_object)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void RigidBodyBullet::assert_no_constraints() {
|
|
if (btBody->getNumConstraintRefs()) {
|
|
WARN_PRINT("A body with a joints is destroyed. Please check the implementation in order to destroy the joint before the body.");
|
|
}
|
|
/*for(int i = btBody->getNumConstraintRefs()-1; 0<=i; --i){
|
|
btTypedConstraint* btConst = btBody->getConstraintRef(i);
|
|
JointBullet* joint = static_cast<JointBullet*>( btConst->getUserConstraintPtr() );
|
|
space->removeConstraint(joint);
|
|
}*/
|
|
}
|
|
|
|
void RigidBodyBullet::set_activation_state(bool p_active) {
|
|
if (p_active) {
|
|
btBody->activate();
|
|
} else {
|
|
btBody->setActivationState(WANTS_DEACTIVATION);
|
|
}
|
|
}
|
|
|
|
bool RigidBodyBullet::is_active() const {
|
|
return btBody->isActive();
|
|
}
|
|
|
|
void RigidBodyBullet::set_omit_forces_integration(bool p_omit) {
|
|
omit_forces_integration = p_omit;
|
|
}
|
|
|
|
void RigidBodyBullet::set_param(PhysicsServer::BodyParameter p_param, real_t p_value) {
|
|
switch (p_param) {
|
|
case PhysicsServer::BODY_PARAM_BOUNCE:
|
|
btBody->setRestitution(p_value);
|
|
break;
|
|
case PhysicsServer::BODY_PARAM_FRICTION:
|
|
btBody->setFriction(p_value);
|
|
break;
|
|
case PhysicsServer::BODY_PARAM_MASS: {
|
|
ERR_FAIL_COND(p_value < 0);
|
|
mass = p_value;
|
|
_internal_set_mass(p_value);
|
|
break;
|
|
}
|
|
case PhysicsServer::BODY_PARAM_LINEAR_DAMP:
|
|
linearDamp = p_value;
|
|
btBody->setDamping(linearDamp, angularDamp);
|
|
break;
|
|
case PhysicsServer::BODY_PARAM_ANGULAR_DAMP:
|
|
angularDamp = p_value;
|
|
btBody->setDamping(linearDamp, angularDamp);
|
|
break;
|
|
case PhysicsServer::BODY_PARAM_GRAVITY_SCALE:
|
|
gravity_scale = p_value;
|
|
/// The Bullet gravity will be is set by reload_space_override_modificator
|
|
scratch_space_override_modificator();
|
|
break;
|
|
default:
|
|
WARN_PRINT("Parameter " + itos(p_param) + " not supported by bullet. Value: " + itos(p_value));
|
|
}
|
|
}
|
|
|
|
real_t RigidBodyBullet::get_param(PhysicsServer::BodyParameter p_param) const {
|
|
switch (p_param) {
|
|
case PhysicsServer::BODY_PARAM_BOUNCE:
|
|
return btBody->getRestitution();
|
|
case PhysicsServer::BODY_PARAM_FRICTION:
|
|
return btBody->getFriction();
|
|
case PhysicsServer::BODY_PARAM_MASS: {
|
|
const btScalar invMass = btBody->getInvMass();
|
|
return 0 == invMass ? 0 : 1 / invMass;
|
|
}
|
|
case PhysicsServer::BODY_PARAM_LINEAR_DAMP:
|
|
return linearDamp;
|
|
case PhysicsServer::BODY_PARAM_ANGULAR_DAMP:
|
|
return angularDamp;
|
|
case PhysicsServer::BODY_PARAM_GRAVITY_SCALE:
|
|
return gravity_scale;
|
|
default:
|
|
WARN_PRINT("Parameter " + itos(p_param) + " not supported by bullet");
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
void RigidBodyBullet::set_mode(PhysicsServer::BodyMode p_mode) {
|
|
// This is necessary to block force_integration untile next move
|
|
can_integrate_forces = false;
|
|
destroy_kinematic_utilities();
|
|
// The mode change is relevant to its mass
|
|
switch (p_mode) {
|
|
case PhysicsServer::BODY_MODE_KINEMATIC:
|
|
mode = PhysicsServer::BODY_MODE_KINEMATIC;
|
|
reload_axis_lock();
|
|
_internal_set_mass(0);
|
|
init_kinematic_utilities();
|
|
break;
|
|
case PhysicsServer::BODY_MODE_STATIC:
|
|
mode = PhysicsServer::BODY_MODE_STATIC;
|
|
reload_axis_lock();
|
|
_internal_set_mass(0);
|
|
break;
|
|
case PhysicsServer::BODY_MODE_RIGID:
|
|
mode = PhysicsServer::BODY_MODE_RIGID;
|
|
reload_axis_lock();
|
|
_internal_set_mass(0 == mass ? 1 : mass);
|
|
scratch_space_override_modificator();
|
|
break;
|
|
case PhysicsServer::BODY_MODE_CHARACTER:
|
|
mode = PhysicsServer::BODY_MODE_CHARACTER;
|
|
reload_axis_lock();
|
|
_internal_set_mass(0 == mass ? 1 : mass);
|
|
scratch_space_override_modificator();
|
|
break;
|
|
}
|
|
|
|
btBody->setAngularVelocity(btVector3(0, 0, 0));
|
|
btBody->setLinearVelocity(btVector3(0, 0, 0));
|
|
}
|
|
PhysicsServer::BodyMode RigidBodyBullet::get_mode() const {
|
|
return mode;
|
|
}
|
|
|
|
void RigidBodyBullet::set_state(PhysicsServer::BodyState p_state, const Variant &p_variant) {
|
|
|
|
switch (p_state) {
|
|
case PhysicsServer::BODY_STATE_TRANSFORM:
|
|
set_transform(p_variant);
|
|
break;
|
|
case PhysicsServer::BODY_STATE_LINEAR_VELOCITY:
|
|
set_linear_velocity(p_variant);
|
|
break;
|
|
case PhysicsServer::BODY_STATE_ANGULAR_VELOCITY:
|
|
set_angular_velocity(p_variant);
|
|
break;
|
|
case PhysicsServer::BODY_STATE_SLEEPING:
|
|
set_activation_state(!bool(p_variant));
|
|
break;
|
|
case PhysicsServer::BODY_STATE_CAN_SLEEP:
|
|
can_sleep = bool(p_variant);
|
|
if (!can_sleep) {
|
|
// Can't sleep
|
|
btBody->forceActivationState(DISABLE_DEACTIVATION);
|
|
} else {
|
|
btBody->forceActivationState(ACTIVE_TAG);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
Variant RigidBodyBullet::get_state(PhysicsServer::BodyState p_state) const {
|
|
switch (p_state) {
|
|
case PhysicsServer::BODY_STATE_TRANSFORM:
|
|
return get_transform();
|
|
case PhysicsServer::BODY_STATE_LINEAR_VELOCITY:
|
|
return get_linear_velocity();
|
|
case PhysicsServer::BODY_STATE_ANGULAR_VELOCITY:
|
|
return get_angular_velocity();
|
|
case PhysicsServer::BODY_STATE_SLEEPING:
|
|
return !is_active();
|
|
case PhysicsServer::BODY_STATE_CAN_SLEEP:
|
|
return can_sleep;
|
|
default:
|
|
WARN_PRINT("This state " + itos(p_state) + " is not supported by Bullet");
|
|
return Variant();
|
|
}
|
|
}
|
|
|
|
void RigidBodyBullet::apply_central_impulse(const Vector3 &p_impulse) {
|
|
btVector3 btImpu;
|
|
G_TO_B(p_impulse, btImpu);
|
|
if (Vector3() != p_impulse)
|
|
btBody->activate();
|
|
btBody->applyCentralImpulse(btImpu);
|
|
}
|
|
|
|
void RigidBodyBullet::apply_impulse(const Vector3 &p_pos, const Vector3 &p_impulse) {
|
|
btVector3 btImpu;
|
|
btVector3 btPos;
|
|
G_TO_B(p_impulse, btImpu);
|
|
G_TO_B(p_pos, btPos);
|
|
if (Vector3() != p_impulse)
|
|
btBody->activate();
|
|
btBody->applyImpulse(btImpu, btPos);
|
|
}
|
|
|
|
void RigidBodyBullet::apply_torque_impulse(const Vector3 &p_impulse) {
|
|
btVector3 btImp;
|
|
G_TO_B(p_impulse, btImp);
|
|
if (Vector3() != p_impulse)
|
|
btBody->activate();
|
|
btBody->applyTorqueImpulse(btImp);
|
|
}
|
|
|
|
void RigidBodyBullet::apply_force(const Vector3 &p_force, const Vector3 &p_pos) {
|
|
btVector3 btForce;
|
|
btVector3 btPos;
|
|
G_TO_B(p_force, btForce);
|
|
G_TO_B(p_pos, btPos);
|
|
if (Vector3() != p_force)
|
|
btBody->activate();
|
|
btBody->applyForce(btForce, btPos);
|
|
}
|
|
|
|
void RigidBodyBullet::apply_central_force(const Vector3 &p_force) {
|
|
btVector3 btForce;
|
|
G_TO_B(p_force, btForce);
|
|
if (Vector3() != p_force)
|
|
btBody->activate();
|
|
btBody->applyCentralForce(btForce);
|
|
}
|
|
|
|
void RigidBodyBullet::apply_torque(const Vector3 &p_torque) {
|
|
btVector3 btTorq;
|
|
G_TO_B(p_torque, btTorq);
|
|
if (Vector3() != p_torque)
|
|
btBody->activate();
|
|
btBody->applyTorque(btTorq);
|
|
}
|
|
|
|
void RigidBodyBullet::set_applied_force(const Vector3 &p_force) {
|
|
btVector3 btVec = btBody->getTotalTorque();
|
|
|
|
if (Vector3() != p_force)
|
|
btBody->activate();
|
|
|
|
btBody->clearForces();
|
|
btBody->applyTorque(btVec);
|
|
|
|
G_TO_B(p_force, btVec);
|
|
btBody->applyCentralForce(btVec);
|
|
}
|
|
|
|
Vector3 RigidBodyBullet::get_applied_force() const {
|
|
Vector3 gTotForc;
|
|
B_TO_G(btBody->getTotalForce(), gTotForc);
|
|
return gTotForc;
|
|
}
|
|
|
|
void RigidBodyBullet::set_applied_torque(const Vector3 &p_torque) {
|
|
btVector3 btVec = btBody->getTotalForce();
|
|
|
|
if (Vector3() != p_torque)
|
|
btBody->activate();
|
|
|
|
btBody->clearForces();
|
|
btBody->applyCentralForce(btVec);
|
|
|
|
G_TO_B(p_torque, btVec);
|
|
btBody->applyTorque(btVec);
|
|
}
|
|
|
|
Vector3 RigidBodyBullet::get_applied_torque() const {
|
|
Vector3 gTotTorq;
|
|
B_TO_G(btBody->getTotalTorque(), gTotTorq);
|
|
return gTotTorq;
|
|
}
|
|
|
|
void RigidBodyBullet::set_axis_lock(PhysicsServer::BodyAxis p_axis, bool lock) {
|
|
if (lock) {
|
|
locked_axis |= p_axis;
|
|
} else {
|
|
locked_axis &= ~p_axis;
|
|
}
|
|
|
|
reload_axis_lock();
|
|
}
|
|
|
|
bool RigidBodyBullet::is_axis_locked(PhysicsServer::BodyAxis p_axis) const {
|
|
return locked_axis & p_axis;
|
|
}
|
|
|
|
void RigidBodyBullet::reload_axis_lock() {
|
|
|
|
btBody->setLinearFactor(btVector3(float(!is_axis_locked(PhysicsServer::BODY_AXIS_LINEAR_X)), float(!is_axis_locked(PhysicsServer::BODY_AXIS_LINEAR_Y)), float(!is_axis_locked(PhysicsServer::BODY_AXIS_LINEAR_Z))));
|
|
if (PhysicsServer::BODY_MODE_CHARACTER == mode) {
|
|
/// When character angular is always locked
|
|
btBody->setAngularFactor(btVector3(0., 0., 0.));
|
|
} else {
|
|
btBody->setAngularFactor(btVector3(float(!is_axis_locked(PhysicsServer::BODY_AXIS_ANGULAR_X)), float(!is_axis_locked(PhysicsServer::BODY_AXIS_ANGULAR_Y)), float(!is_axis_locked(PhysicsServer::BODY_AXIS_ANGULAR_Z))));
|
|
}
|
|
}
|
|
|
|
void RigidBodyBullet::set_continuous_collision_detection(bool p_enable) {
|
|
if (p_enable) {
|
|
// This threshold enable CCD if the object moves more than
|
|
// 1 meter in one simulation frame
|
|
btBody->setCcdMotionThreshold(1e-7);
|
|
|
|
/// Calculate using the rule writte below the CCD swept sphere radius
|
|
/// CCD works on an embedded sphere of radius, make sure this radius
|
|
/// is embedded inside the convex objects, preferably smaller:
|
|
/// for an object of dimensions 1 meter, try 0.2
|
|
btScalar radius(1.0);
|
|
if (btBody->getCollisionShape()) {
|
|
btVector3 center;
|
|
btBody->getCollisionShape()->getBoundingSphere(center, radius);
|
|
}
|
|
btBody->setCcdSweptSphereRadius(radius * 0.2);
|
|
} else {
|
|
btBody->setCcdMotionThreshold(10000.0);
|
|
btBody->setCcdSweptSphereRadius(0.);
|
|
}
|
|
}
|
|
|
|
bool RigidBodyBullet::is_continuous_collision_detection_enabled() const {
|
|
return 0. < btBody->getCcdMotionThreshold();
|
|
}
|
|
|
|
void RigidBodyBullet::set_linear_velocity(const Vector3 &p_velocity) {
|
|
btVector3 btVec;
|
|
G_TO_B(p_velocity, btVec);
|
|
if (Vector3() != p_velocity)
|
|
btBody->activate();
|
|
btBody->setLinearVelocity(btVec);
|
|
}
|
|
|
|
Vector3 RigidBodyBullet::get_linear_velocity() const {
|
|
Vector3 gVec;
|
|
B_TO_G(btBody->getLinearVelocity(), gVec);
|
|
return gVec;
|
|
}
|
|
|
|
void RigidBodyBullet::set_angular_velocity(const Vector3 &p_velocity) {
|
|
btVector3 btVec;
|
|
G_TO_B(p_velocity, btVec);
|
|
if (Vector3() != p_velocity)
|
|
btBody->activate();
|
|
btBody->setAngularVelocity(btVec);
|
|
}
|
|
|
|
Vector3 RigidBodyBullet::get_angular_velocity() const {
|
|
Vector3 gVec;
|
|
B_TO_G(btBody->getAngularVelocity(), gVec);
|
|
return gVec;
|
|
}
|
|
|
|
void RigidBodyBullet::set_transform__bullet(const btTransform &p_global_transform) {
|
|
if (mode == PhysicsServer::BODY_MODE_KINEMATIC) {
|
|
if (space && space->get_delta_time() != 0)
|
|
btBody->setLinearVelocity((p_global_transform.getOrigin() - btBody->getWorldTransform().getOrigin()) / space->get_delta_time());
|
|
// The kinematic use MotionState class
|
|
godotMotionState->moveBody(p_global_transform);
|
|
} else {
|
|
// Is necessary to avoid wrong location on the rendering side on the next frame
|
|
godotMotionState->setWorldTransform(p_global_transform);
|
|
}
|
|
CollisionObjectBullet::set_transform__bullet(p_global_transform);
|
|
}
|
|
|
|
const btTransform &RigidBodyBullet::get_transform__bullet() const {
|
|
if (is_static()) {
|
|
|
|
return RigidCollisionObjectBullet::get_transform__bullet();
|
|
} else {
|
|
|
|
return godotMotionState->getCurrentWorldTransform();
|
|
}
|
|
}
|
|
|
|
void RigidBodyBullet::reload_shapes() {
|
|
RigidCollisionObjectBullet::reload_shapes();
|
|
|
|
const btScalar invMass = btBody->getInvMass();
|
|
const btScalar mass = invMass == 0 ? 0 : 1 / invMass;
|
|
|
|
if (mainShape) {
|
|
// inertia initialised zero here because some of bullet's collision
|
|
// shapes incorrectly do not set the vector in calculateLocalIntertia.
|
|
// Arbitrary zero is preferable to undefined behaviour.
|
|
btVector3 inertia(0, 0, 0);
|
|
if (EMPTY_SHAPE_PROXYTYPE != mainShape->getShapeType()) // Necessary to avoid assertion of the empty shape
|
|
mainShape->calculateLocalInertia(mass, inertia);
|
|
btBody->setMassProps(mass, inertia);
|
|
}
|
|
btBody->updateInertiaTensor();
|
|
|
|
reload_kinematic_shapes();
|
|
set_continuous_collision_detection(btBody->getCcdMotionThreshold() < 9998.0);
|
|
reload_body();
|
|
}
|
|
|
|
void RigidBodyBullet::on_enter_area(AreaBullet *p_area) {
|
|
/// Add this area to the array in an ordered way
|
|
++areaWhereIamCount;
|
|
if (areaWhereIamCount >= maxAreasWhereIam) {
|
|
--areaWhereIamCount;
|
|
return;
|
|
}
|
|
for (int i = 0; i < areaWhereIamCount; ++i) {
|
|
|
|
if (NULL == areasWhereIam[i]) {
|
|
// This area has the highest priority
|
|
areasWhereIam.write[i] = p_area;
|
|
break;
|
|
} else {
|
|
if (areasWhereIam[i]->get_spOv_priority() > p_area->get_spOv_priority()) {
|
|
// The position was found, just shift all elements
|
|
for (int j = i; j < areaWhereIamCount; ++j) {
|
|
areasWhereIam.write[j + 1] = areasWhereIam[j];
|
|
}
|
|
areasWhereIam.write[i] = p_area;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (PhysicsServer::AREA_SPACE_OVERRIDE_DISABLED != p_area->get_spOv_mode()) {
|
|
scratch_space_override_modificator();
|
|
}
|
|
|
|
if (p_area->is_spOv_gravityPoint()) {
|
|
++countGravityPointSpaces;
|
|
ERR_FAIL_COND(countGravityPointSpaces <= 0);
|
|
}
|
|
}
|
|
|
|
void RigidBodyBullet::on_exit_area(AreaBullet *p_area) {
|
|
RigidCollisionObjectBullet::on_exit_area(p_area);
|
|
/// Remove this area and keep the order
|
|
/// N.B. Since I don't want resize the array I can't use the "erase" function
|
|
bool wasTheAreaFound = false;
|
|
for (int i = 0; i < areaWhereIamCount; ++i) {
|
|
if (p_area == areasWhereIam[i]) {
|
|
// The area was found, just shift down all elements
|
|
for (int j = i; j < areaWhereIamCount; ++j) {
|
|
areasWhereIam.write[j] = areasWhereIam[j + 1];
|
|
}
|
|
wasTheAreaFound = true;
|
|
break;
|
|
}
|
|
}
|
|
if (wasTheAreaFound) {
|
|
if (p_area->is_spOv_gravityPoint()) {
|
|
--countGravityPointSpaces;
|
|
ERR_FAIL_COND(countGravityPointSpaces < 0);
|
|
}
|
|
|
|
--areaWhereIamCount;
|
|
areasWhereIam.write[areaWhereIamCount] = NULL; // Even if this is not required, I clear the last element to be safe
|
|
if (PhysicsServer::AREA_SPACE_OVERRIDE_DISABLED != p_area->get_spOv_mode()) {
|
|
scratch_space_override_modificator();
|
|
}
|
|
}
|
|
}
|
|
|
|
void RigidBodyBullet::reload_space_override_modificator() {
|
|
|
|
// Make sure that kinematic bodies have their total gravity calculated
|
|
if (!is_active() && PhysicsServer::BODY_MODE_KINEMATIC != mode)
|
|
return;
|
|
|
|
Vector3 newGravity(space->get_gravity_direction() * space->get_gravity_magnitude());
|
|
real_t newLinearDamp(linearDamp);
|
|
real_t newAngularDamp(angularDamp);
|
|
|
|
AreaBullet *currentArea;
|
|
// Variable used to calculate new gravity for gravity point areas, it is pointed by currentGravity pointer
|
|
Vector3 support_gravity(0, 0, 0);
|
|
|
|
int countCombined(0);
|
|
for (int i = areaWhereIamCount - 1; 0 <= i; --i) {
|
|
|
|
currentArea = areasWhereIam[i];
|
|
|
|
if (!currentArea || PhysicsServer::AREA_SPACE_OVERRIDE_DISABLED == currentArea->get_spOv_mode()) {
|
|
continue;
|
|
}
|
|
|
|
/// Here is calculated the gravity
|
|
if (currentArea->is_spOv_gravityPoint()) {
|
|
|
|
/// It calculates the direction of new gravity
|
|
support_gravity = currentArea->get_transform().xform(currentArea->get_spOv_gravityVec()) - get_transform().get_origin();
|
|
real_t distanceMag = support_gravity.length();
|
|
// Normalized in this way to avoid the double call of function "length()"
|
|
if (distanceMag == 0) {
|
|
support_gravity.x = 0;
|
|
support_gravity.y = 0;
|
|
support_gravity.z = 0;
|
|
} else {
|
|
support_gravity.x /= distanceMag;
|
|
support_gravity.y /= distanceMag;
|
|
support_gravity.z /= distanceMag;
|
|
}
|
|
|
|
/// Here is calculated the final gravity
|
|
if (currentArea->get_spOv_gravityPointDistanceScale() > 0) {
|
|
// Scaled gravity by distance
|
|
support_gravity *= currentArea->get_spOv_gravityMag() / Math::pow(distanceMag * currentArea->get_spOv_gravityPointDistanceScale() + 1, 2);
|
|
} else {
|
|
// Unscaled gravity
|
|
support_gravity *= currentArea->get_spOv_gravityMag();
|
|
}
|
|
} else {
|
|
support_gravity = currentArea->get_spOv_gravityVec() * currentArea->get_spOv_gravityMag();
|
|
}
|
|
|
|
switch (currentArea->get_spOv_mode()) {
|
|
case PhysicsServer::AREA_SPACE_OVERRIDE_DISABLED:
|
|
/// This area does not affect gravity/damp. These are generally areas
|
|
/// that exist only to detect collisions, and objects entering or exiting them.
|
|
break;
|
|
case PhysicsServer::AREA_SPACE_OVERRIDE_COMBINE:
|
|
/// This area adds its gravity/damp values to whatever has been
|
|
/// calculated so far. This way, many overlapping areas can combine
|
|
/// their physics to make interesting
|
|
newGravity += support_gravity;
|
|
newLinearDamp += currentArea->get_spOv_linearDamp();
|
|
newAngularDamp += currentArea->get_spOv_angularDamp();
|
|
++countCombined;
|
|
break;
|
|
case PhysicsServer::AREA_SPACE_OVERRIDE_COMBINE_REPLACE:
|
|
/// This area adds its gravity/damp values to whatever has been calculated
|
|
/// so far. Then stops taking into account the rest of the areas, even the
|
|
/// default one.
|
|
newGravity += support_gravity;
|
|
newLinearDamp += currentArea->get_spOv_linearDamp();
|
|
newAngularDamp += currentArea->get_spOv_angularDamp();
|
|
++countCombined;
|
|
goto endAreasCycle;
|
|
case PhysicsServer::AREA_SPACE_OVERRIDE_REPLACE:
|
|
/// This area replaces any gravity/damp, even the default one, and
|
|
/// stops taking into account the rest of the areas.
|
|
newGravity = support_gravity;
|
|
newLinearDamp = currentArea->get_spOv_linearDamp();
|
|
newAngularDamp = currentArea->get_spOv_angularDamp();
|
|
countCombined = 1;
|
|
goto endAreasCycle;
|
|
case PhysicsServer::AREA_SPACE_OVERRIDE_REPLACE_COMBINE:
|
|
/// This area replaces any gravity/damp calculated so far, but keeps
|
|
/// calculating the rest of the areas, down to the default one.
|
|
newGravity = support_gravity;
|
|
newLinearDamp = currentArea->get_spOv_linearDamp();
|
|
newAngularDamp = currentArea->get_spOv_angularDamp();
|
|
countCombined = 1;
|
|
break;
|
|
}
|
|
}
|
|
endAreasCycle:
|
|
|
|
if (1 < countCombined) {
|
|
newGravity /= countCombined;
|
|
newLinearDamp /= countCombined;
|
|
newAngularDamp /= countCombined;
|
|
}
|
|
|
|
btVector3 newBtGravity;
|
|
G_TO_B(newGravity * gravity_scale, newBtGravity);
|
|
|
|
btBody->setGravity(newBtGravity);
|
|
btBody->setDamping(newLinearDamp, newAngularDamp);
|
|
}
|
|
|
|
void RigidBodyBullet::reload_kinematic_shapes() {
|
|
if (!kinematic_utilities) {
|
|
return;
|
|
}
|
|
kinematic_utilities->copyAllOwnerShapes();
|
|
}
|
|
|
|
void RigidBodyBullet::notify_transform_changed() {
|
|
RigidCollisionObjectBullet::notify_transform_changed();
|
|
can_integrate_forces = true;
|
|
}
|
|
|
|
void RigidBodyBullet::_internal_set_mass(real_t p_mass) {
|
|
|
|
btVector3 localInertia(0, 0, 0);
|
|
|
|
int clearedCurrentFlags = btBody->getCollisionFlags();
|
|
clearedCurrentFlags &= ~(btCollisionObject::CF_KINEMATIC_OBJECT | btCollisionObject::CF_STATIC_OBJECT | btCollisionObject::CF_CHARACTER_OBJECT);
|
|
|
|
// Rigidbody is dynamic if and only if mass is non Zero, otherwise static
|
|
const bool isDynamic = p_mass != 0.f;
|
|
if (isDynamic) {
|
|
|
|
if (PhysicsServer::BODY_MODE_RIGID != mode && PhysicsServer::BODY_MODE_CHARACTER != mode)
|
|
return;
|
|
|
|
m_isStatic = false;
|
|
if (mainShape)
|
|
mainShape->calculateLocalInertia(p_mass, localInertia);
|
|
|
|
if (PhysicsServer::BODY_MODE_RIGID == mode) {
|
|
|
|
btBody->setCollisionFlags(clearedCurrentFlags); // Just set the flags without Kin and Static
|
|
} else {
|
|
|
|
btBody->setCollisionFlags(clearedCurrentFlags | btCollisionObject::CF_CHARACTER_OBJECT);
|
|
}
|
|
|
|
if (can_sleep) {
|
|
btBody->forceActivationState(ACTIVE_TAG); // ACTIVE_TAG 1
|
|
} else {
|
|
btBody->forceActivationState(DISABLE_DEACTIVATION); // DISABLE_DEACTIVATION 4
|
|
}
|
|
} else {
|
|
|
|
if (PhysicsServer::BODY_MODE_STATIC != mode && PhysicsServer::BODY_MODE_KINEMATIC != mode)
|
|
return;
|
|
|
|
m_isStatic = true;
|
|
if (PhysicsServer::BODY_MODE_STATIC == mode) {
|
|
|
|
btBody->setCollisionFlags(clearedCurrentFlags | btCollisionObject::CF_STATIC_OBJECT);
|
|
} else {
|
|
|
|
btBody->setCollisionFlags(clearedCurrentFlags | btCollisionObject::CF_KINEMATIC_OBJECT);
|
|
set_transform__bullet(btBody->getWorldTransform()); // Set current Transform using kinematic method
|
|
}
|
|
btBody->forceActivationState(DISABLE_SIMULATION); // DISABLE_SIMULATION 5
|
|
}
|
|
|
|
btBody->setMassProps(p_mass, localInertia);
|
|
btBody->updateInertiaTensor();
|
|
|
|
reload_body();
|
|
}
|