218 lines
8.3 KiB
C++
218 lines
8.3 KiB
C++
/*
|
|
Copyright (c) 2003-2006 Gino van den Bergen / Erwin Coumans http://continuousphysics.com/Bullet/
|
|
|
|
This software is provided 'as-is', without any express or implied warranty.
|
|
In no event will the authors be held liable for any damages arising from the use of this software.
|
|
Permission is granted to anyone to use this software for any purpose,
|
|
including commercial applications, and to alter it and redistribute it freely,
|
|
subject to the following restrictions:
|
|
|
|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
|
3. This notice may not be removed or altered from any source distribution.
|
|
*/
|
|
|
|
#ifndef BT_AABB_UTIL2
|
|
#define BT_AABB_UTIL2
|
|
|
|
#include "btTransform.h"
|
|
#include "btVector3.h"
|
|
#include "btMinMax.h"
|
|
|
|
SIMD_FORCE_INLINE void AabbExpand(btVector3& aabbMin,
|
|
btVector3& aabbMax,
|
|
const btVector3& expansionMin,
|
|
const btVector3& expansionMax)
|
|
{
|
|
aabbMin = aabbMin + expansionMin;
|
|
aabbMax = aabbMax + expansionMax;
|
|
}
|
|
|
|
/// conservative test for overlap between two aabbs
|
|
SIMD_FORCE_INLINE bool TestPointAgainstAabb2(const btVector3& aabbMin1, const btVector3& aabbMax1,
|
|
const btVector3& point)
|
|
{
|
|
bool overlap = true;
|
|
overlap = (aabbMin1.getX() > point.getX() || aabbMax1.getX() < point.getX()) ? false : overlap;
|
|
overlap = (aabbMin1.getZ() > point.getZ() || aabbMax1.getZ() < point.getZ()) ? false : overlap;
|
|
overlap = (aabbMin1.getY() > point.getY() || aabbMax1.getY() < point.getY()) ? false : overlap;
|
|
return overlap;
|
|
}
|
|
|
|
/// conservative test for overlap between two aabbs
|
|
SIMD_FORCE_INLINE bool TestAabbAgainstAabb2(const btVector3& aabbMin1, const btVector3& aabbMax1,
|
|
const btVector3& aabbMin2, const btVector3& aabbMax2)
|
|
{
|
|
bool overlap = true;
|
|
overlap = (aabbMin1.getX() > aabbMax2.getX() || aabbMax1.getX() < aabbMin2.getX()) ? false : overlap;
|
|
overlap = (aabbMin1.getZ() > aabbMax2.getZ() || aabbMax1.getZ() < aabbMin2.getZ()) ? false : overlap;
|
|
overlap = (aabbMin1.getY() > aabbMax2.getY() || aabbMax1.getY() < aabbMin2.getY()) ? false : overlap;
|
|
return overlap;
|
|
}
|
|
|
|
/// conservative test for overlap between triangle and aabb
|
|
SIMD_FORCE_INLINE bool TestTriangleAgainstAabb2(const btVector3* vertices,
|
|
const btVector3& aabbMin, const btVector3& aabbMax)
|
|
{
|
|
const btVector3& p1 = vertices[0];
|
|
const btVector3& p2 = vertices[1];
|
|
const btVector3& p3 = vertices[2];
|
|
|
|
if (btMin(btMin(p1[0], p2[0]), p3[0]) > aabbMax[0]) return false;
|
|
if (btMax(btMax(p1[0], p2[0]), p3[0]) < aabbMin[0]) return false;
|
|
|
|
if (btMin(btMin(p1[2], p2[2]), p3[2]) > aabbMax[2]) return false;
|
|
if (btMax(btMax(p1[2], p2[2]), p3[2]) < aabbMin[2]) return false;
|
|
|
|
if (btMin(btMin(p1[1], p2[1]), p3[1]) > aabbMax[1]) return false;
|
|
if (btMax(btMax(p1[1], p2[1]), p3[1]) < aabbMin[1]) return false;
|
|
return true;
|
|
}
|
|
|
|
SIMD_FORCE_INLINE int btOutcode(const btVector3& p, const btVector3& halfExtent)
|
|
{
|
|
return (p.getX() < -halfExtent.getX() ? 0x01 : 0x0) |
|
|
(p.getX() > halfExtent.getX() ? 0x08 : 0x0) |
|
|
(p.getY() < -halfExtent.getY() ? 0x02 : 0x0) |
|
|
(p.getY() > halfExtent.getY() ? 0x10 : 0x0) |
|
|
(p.getZ() < -halfExtent.getZ() ? 0x4 : 0x0) |
|
|
(p.getZ() > halfExtent.getZ() ? 0x20 : 0x0);
|
|
}
|
|
|
|
SIMD_FORCE_INLINE bool btRayAabb2(const btVector3& rayFrom,
|
|
const btVector3& rayInvDirection,
|
|
const unsigned int raySign[3],
|
|
const btVector3 bounds[2],
|
|
btScalar& tmin,
|
|
btScalar lambda_min,
|
|
btScalar lambda_max)
|
|
{
|
|
btScalar tmax, tymin, tymax, tzmin, tzmax;
|
|
tmin = (bounds[raySign[0]].getX() - rayFrom.getX()) * rayInvDirection.getX();
|
|
tmax = (bounds[1 - raySign[0]].getX() - rayFrom.getX()) * rayInvDirection.getX();
|
|
tymin = (bounds[raySign[1]].getY() - rayFrom.getY()) * rayInvDirection.getY();
|
|
tymax = (bounds[1 - raySign[1]].getY() - rayFrom.getY()) * rayInvDirection.getY();
|
|
|
|
if ((tmin > tymax) || (tymin > tmax))
|
|
return false;
|
|
|
|
if (tymin > tmin)
|
|
tmin = tymin;
|
|
|
|
if (tymax < tmax)
|
|
tmax = tymax;
|
|
|
|
tzmin = (bounds[raySign[2]].getZ() - rayFrom.getZ()) * rayInvDirection.getZ();
|
|
tzmax = (bounds[1 - raySign[2]].getZ() - rayFrom.getZ()) * rayInvDirection.getZ();
|
|
|
|
if ((tmin > tzmax) || (tzmin > tmax))
|
|
return false;
|
|
if (tzmin > tmin)
|
|
tmin = tzmin;
|
|
if (tzmax < tmax)
|
|
tmax = tzmax;
|
|
return ((tmin < lambda_max) && (tmax > lambda_min));
|
|
}
|
|
|
|
SIMD_FORCE_INLINE bool btRayAabb(const btVector3& rayFrom,
|
|
const btVector3& rayTo,
|
|
const btVector3& aabbMin,
|
|
const btVector3& aabbMax,
|
|
btScalar& param, btVector3& normal)
|
|
{
|
|
btVector3 aabbHalfExtent = (aabbMax - aabbMin) * btScalar(0.5);
|
|
btVector3 aabbCenter = (aabbMax + aabbMin) * btScalar(0.5);
|
|
btVector3 source = rayFrom - aabbCenter;
|
|
btVector3 target = rayTo - aabbCenter;
|
|
int sourceOutcode = btOutcode(source, aabbHalfExtent);
|
|
int targetOutcode = btOutcode(target, aabbHalfExtent);
|
|
if ((sourceOutcode & targetOutcode) == 0x0)
|
|
{
|
|
btScalar lambda_enter = btScalar(0.0);
|
|
btScalar lambda_exit = param;
|
|
btVector3 r = target - source;
|
|
int i;
|
|
btScalar normSign = 1;
|
|
btVector3 hitNormal(0, 0, 0);
|
|
int bit = 1;
|
|
|
|
for (int j = 0; j < 2; j++)
|
|
{
|
|
for (i = 0; i != 3; ++i)
|
|
{
|
|
if (sourceOutcode & bit)
|
|
{
|
|
btScalar lambda = (-source[i] - aabbHalfExtent[i] * normSign) / r[i];
|
|
if (lambda_enter <= lambda)
|
|
{
|
|
lambda_enter = lambda;
|
|
hitNormal.setValue(0, 0, 0);
|
|
hitNormal[i] = normSign;
|
|
}
|
|
}
|
|
else if (targetOutcode & bit)
|
|
{
|
|
btScalar lambda = (-source[i] - aabbHalfExtent[i] * normSign) / r[i];
|
|
btSetMin(lambda_exit, lambda);
|
|
}
|
|
bit <<= 1;
|
|
}
|
|
normSign = btScalar(-1.);
|
|
}
|
|
if (lambda_enter <= lambda_exit)
|
|
{
|
|
param = lambda_enter;
|
|
normal = hitNormal;
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
SIMD_FORCE_INLINE void btTransformAabb(const btVector3& halfExtents, btScalar margin, const btTransform& t, btVector3& aabbMinOut, btVector3& aabbMaxOut)
|
|
{
|
|
btVector3 halfExtentsWithMargin = halfExtents + btVector3(margin, margin, margin);
|
|
btMatrix3x3 abs_b = t.getBasis().absolute();
|
|
btVector3 center = t.getOrigin();
|
|
btVector3 extent = halfExtentsWithMargin.dot3(abs_b[0], abs_b[1], abs_b[2]);
|
|
aabbMinOut = center - extent;
|
|
aabbMaxOut = center + extent;
|
|
}
|
|
|
|
SIMD_FORCE_INLINE void btTransformAabb(const btVector3& localAabbMin, const btVector3& localAabbMax, btScalar margin, const btTransform& trans, btVector3& aabbMinOut, btVector3& aabbMaxOut)
|
|
{
|
|
btAssert(localAabbMin.getX() <= localAabbMax.getX());
|
|
btAssert(localAabbMin.getY() <= localAabbMax.getY());
|
|
btAssert(localAabbMin.getZ() <= localAabbMax.getZ());
|
|
btVector3 localHalfExtents = btScalar(0.5) * (localAabbMax - localAabbMin);
|
|
localHalfExtents += btVector3(margin, margin, margin);
|
|
|
|
btVector3 localCenter = btScalar(0.5) * (localAabbMax + localAabbMin);
|
|
btMatrix3x3 abs_b = trans.getBasis().absolute();
|
|
btVector3 center = trans(localCenter);
|
|
btVector3 extent = localHalfExtents.dot3(abs_b[0], abs_b[1], abs_b[2]);
|
|
aabbMinOut = center - extent;
|
|
aabbMaxOut = center + extent;
|
|
}
|
|
|
|
#define USE_BANCHLESS 1
|
|
#ifdef USE_BANCHLESS
|
|
//This block replaces the block below and uses no branches, and replaces the 8 bit return with a 32 bit return for improved performance (~3x on XBox 360)
|
|
SIMD_FORCE_INLINE unsigned testQuantizedAabbAgainstQuantizedAabb(const unsigned short int* aabbMin1, const unsigned short int* aabbMax1, const unsigned short int* aabbMin2, const unsigned short int* aabbMax2)
|
|
{
|
|
return static_cast<unsigned int>(btSelect((unsigned)((aabbMin1[0] <= aabbMax2[0]) & (aabbMax1[0] >= aabbMin2[0]) & (aabbMin1[2] <= aabbMax2[2]) & (aabbMax1[2] >= aabbMin2[2]) & (aabbMin1[1] <= aabbMax2[1]) & (aabbMax1[1] >= aabbMin2[1])),
|
|
1, 0));
|
|
}
|
|
#else
|
|
SIMD_FORCE_INLINE bool testQuantizedAabbAgainstQuantizedAabb(const unsigned short int* aabbMin1, const unsigned short int* aabbMax1, const unsigned short int* aabbMin2, const unsigned short int* aabbMax2)
|
|
{
|
|
bool overlap = true;
|
|
overlap = (aabbMin1[0] > aabbMax2[0] || aabbMax1[0] < aabbMin2[0]) ? false : overlap;
|
|
overlap = (aabbMin1[2] > aabbMax2[2] || aabbMax1[2] < aabbMin2[2]) ? false : overlap;
|
|
overlap = (aabbMin1[1] > aabbMax2[1] || aabbMax1[1] < aabbMin2[1]) ? false : overlap;
|
|
return overlap;
|
|
}
|
|
#endif //USE_BANCHLESS
|
|
|
|
#endif //BT_AABB_UTIL2
|