godot/thirdparty/bullet/BulletDynamics/Vehicle/btRaycastVehicle.cpp
Rémi Verschelde 305d7bd49e
bullet: Sync with upstream 3.21
Remove upstreamed patches. Add a new patch to fix a new warning.
2022-01-06 23:51:45 +01:00

709 lines
21 KiB
C++

/*
* Copyright (c) 2005 Erwin Coumans https://bulletphysics.org
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies.
* Erwin Coumans makes no representations about the suitability
* of this software for any purpose.
* It is provided "as is" without express or implied warranty.
*/
#include "LinearMath/btVector3.h"
#include "btRaycastVehicle.h"
#include "BulletDynamics/ConstraintSolver/btSolve2LinearConstraint.h"
#include "BulletDynamics/ConstraintSolver/btJacobianEntry.h"
#include "LinearMath/btQuaternion.h"
#include "BulletDynamics/Dynamics/btDynamicsWorld.h"
#include "btVehicleRaycaster.h"
#include "btWheelInfo.h"
#include "LinearMath/btMinMax.h"
#include "LinearMath/btIDebugDraw.h"
#include "BulletDynamics/ConstraintSolver/btContactConstraint.h"
#define ROLLING_INFLUENCE_FIX
btRigidBody& btActionInterface::getFixedBody()
{
static btRigidBody s_fixed(0, 0, 0);
s_fixed.setMassProps(btScalar(0.), btVector3(btScalar(0.), btScalar(0.), btScalar(0.)));
return s_fixed;
}
btRaycastVehicle::btRaycastVehicle(const btVehicleTuning& tuning, btRigidBody* chassis, btVehicleRaycaster* raycaster)
: m_vehicleRaycaster(raycaster),
m_pitchControl(btScalar(0.))
{
m_chassisBody = chassis;
m_indexRightAxis = 0;
m_indexUpAxis = 2;
m_indexForwardAxis = 1;
defaultInit(tuning);
}
void btRaycastVehicle::defaultInit(const btVehicleTuning& tuning)
{
(void)tuning;
m_currentVehicleSpeedKmHour = btScalar(0.);
m_steeringValue = btScalar(0.);
}
btRaycastVehicle::~btRaycastVehicle()
{
}
//
// basically most of the code is general for 2 or 4 wheel vehicles, but some of it needs to be reviewed
//
btWheelInfo& btRaycastVehicle::addWheel(const btVector3& connectionPointCS, const btVector3& wheelDirectionCS0, const btVector3& wheelAxleCS, btScalar suspensionRestLength, btScalar wheelRadius, const btVehicleTuning& tuning, bool isFrontWheel)
{
btWheelInfoConstructionInfo ci;
ci.m_chassisConnectionCS = connectionPointCS;
ci.m_wheelDirectionCS = wheelDirectionCS0;
ci.m_wheelAxleCS = wheelAxleCS;
ci.m_suspensionRestLength = suspensionRestLength;
ci.m_wheelRadius = wheelRadius;
ci.m_suspensionStiffness = tuning.m_suspensionStiffness;
ci.m_wheelsDampingCompression = tuning.m_suspensionCompression;
ci.m_wheelsDampingRelaxation = tuning.m_suspensionDamping;
ci.m_frictionSlip = tuning.m_frictionSlip;
ci.m_bIsFrontWheel = isFrontWheel;
ci.m_maxSuspensionTravelCm = tuning.m_maxSuspensionTravelCm;
ci.m_maxSuspensionForce = tuning.m_maxSuspensionForce;
m_wheelInfo.push_back(btWheelInfo(ci));
btWheelInfo& wheel = m_wheelInfo[getNumWheels() - 1];
updateWheelTransformsWS(wheel, false);
updateWheelTransform(getNumWheels() - 1, false);
return wheel;
}
const btTransform& btRaycastVehicle::getWheelTransformWS(int wheelIndex) const
{
btAssert(wheelIndex < getNumWheels());
const btWheelInfo& wheel = m_wheelInfo[wheelIndex];
return wheel.m_worldTransform;
}
void btRaycastVehicle::updateWheelTransform(int wheelIndex, bool interpolatedTransform)
{
btWheelInfo& wheel = m_wheelInfo[wheelIndex];
updateWheelTransformsWS(wheel, interpolatedTransform);
btVector3 up = -wheel.m_raycastInfo.m_wheelDirectionWS;
const btVector3& right = wheel.m_raycastInfo.m_wheelAxleWS;
btVector3 fwd = up.cross(right);
fwd = fwd.normalize();
// up = right.cross(fwd);
// up.normalize();
//rotate around steering over de wheelAxleWS
btScalar steering = wheel.m_steering;
btQuaternion steeringOrn(up, steering); //wheel.m_steering);
btMatrix3x3 steeringMat(steeringOrn);
btQuaternion rotatingOrn(right, -wheel.m_rotation);
btMatrix3x3 rotatingMat(rotatingOrn);
btMatrix3x3 basis2;
basis2[0][m_indexRightAxis] = -right[0];
basis2[1][m_indexRightAxis] = -right[1];
basis2[2][m_indexRightAxis] = -right[2];
basis2[0][m_indexUpAxis] = up[0];
basis2[1][m_indexUpAxis] = up[1];
basis2[2][m_indexUpAxis] = up[2];
basis2[0][m_indexForwardAxis] = fwd[0];
basis2[1][m_indexForwardAxis] = fwd[1];
basis2[2][m_indexForwardAxis] = fwd[2];
wheel.m_worldTransform.setBasis(steeringMat * rotatingMat * basis2);
wheel.m_worldTransform.setOrigin(
wheel.m_raycastInfo.m_hardPointWS + wheel.m_raycastInfo.m_wheelDirectionWS * wheel.m_raycastInfo.m_suspensionLength);
}
void btRaycastVehicle::resetSuspension()
{
int i;
for (i = 0; i < m_wheelInfo.size(); i++)
{
btWheelInfo& wheel = m_wheelInfo[i];
wheel.m_raycastInfo.m_suspensionLength = wheel.getSuspensionRestLength();
wheel.m_suspensionRelativeVelocity = btScalar(0.0);
wheel.m_raycastInfo.m_contactNormalWS = -wheel.m_raycastInfo.m_wheelDirectionWS;
//wheel_info.setContactFriction(btScalar(0.0));
wheel.m_clippedInvContactDotSuspension = btScalar(1.0);
}
}
void btRaycastVehicle::updateWheelTransformsWS(btWheelInfo& wheel, bool interpolatedTransform)
{
wheel.m_raycastInfo.m_isInContact = false;
btTransform chassisTrans = getChassisWorldTransform();
if (interpolatedTransform && (getRigidBody()->getMotionState()))
{
getRigidBody()->getMotionState()->getWorldTransform(chassisTrans);
}
wheel.m_raycastInfo.m_hardPointWS = chassisTrans(wheel.m_chassisConnectionPointCS);
wheel.m_raycastInfo.m_wheelDirectionWS = chassisTrans.getBasis() * wheel.m_wheelDirectionCS;
wheel.m_raycastInfo.m_wheelAxleWS = chassisTrans.getBasis() * wheel.m_wheelAxleCS;
}
btScalar btRaycastVehicle::rayCast(btWheelInfo& wheel)
{
updateWheelTransformsWS(wheel, false);
btScalar depth = -1;
btScalar raylen = wheel.getSuspensionRestLength() + wheel.m_wheelsRadius;
btVector3 rayvector = wheel.m_raycastInfo.m_wheelDirectionWS * (raylen);
const btVector3& source = wheel.m_raycastInfo.m_hardPointWS;
wheel.m_raycastInfo.m_contactPointWS = source + rayvector;
const btVector3& target = wheel.m_raycastInfo.m_contactPointWS;
btScalar param = btScalar(0.);
btVehicleRaycaster::btVehicleRaycasterResult rayResults;
btAssert(m_vehicleRaycaster);
void* object = m_vehicleRaycaster->castRay(source, target, rayResults);
wheel.m_raycastInfo.m_groundObject = 0;
if (object)
{
param = rayResults.m_distFraction;
depth = raylen * rayResults.m_distFraction;
wheel.m_raycastInfo.m_contactNormalWS = rayResults.m_hitNormalInWorld;
wheel.m_raycastInfo.m_isInContact = true;
wheel.m_raycastInfo.m_groundObject = &getFixedBody(); ///@todo for driving on dynamic/movable objects!;
//wheel.m_raycastInfo.m_groundObject = object;
btScalar hitDistance = param * raylen;
wheel.m_raycastInfo.m_suspensionLength = hitDistance - wheel.m_wheelsRadius;
//clamp on max suspension travel
btScalar minSuspensionLength = wheel.getSuspensionRestLength() - wheel.m_maxSuspensionTravelCm * btScalar(0.01);
btScalar maxSuspensionLength = wheel.getSuspensionRestLength() + wheel.m_maxSuspensionTravelCm * btScalar(0.01);
if (wheel.m_raycastInfo.m_suspensionLength < minSuspensionLength)
{
wheel.m_raycastInfo.m_suspensionLength = minSuspensionLength;
}
if (wheel.m_raycastInfo.m_suspensionLength > maxSuspensionLength)
{
wheel.m_raycastInfo.m_suspensionLength = maxSuspensionLength;
}
wheel.m_raycastInfo.m_contactPointWS = rayResults.m_hitPointInWorld;
btScalar denominator = wheel.m_raycastInfo.m_contactNormalWS.dot(wheel.m_raycastInfo.m_wheelDirectionWS);
btVector3 chassis_velocity_at_contactPoint;
btVector3 relpos = wheel.m_raycastInfo.m_contactPointWS - getRigidBody()->getCenterOfMassPosition();
chassis_velocity_at_contactPoint = getRigidBody()->getVelocityInLocalPoint(relpos);
btScalar projVel = wheel.m_raycastInfo.m_contactNormalWS.dot(chassis_velocity_at_contactPoint);
if (denominator >= btScalar(-0.1))
{
wheel.m_suspensionRelativeVelocity = btScalar(0.0);
wheel.m_clippedInvContactDotSuspension = btScalar(1.0) / btScalar(0.1);
}
else
{
btScalar inv = btScalar(-1.) / denominator;
wheel.m_suspensionRelativeVelocity = projVel * inv;
wheel.m_clippedInvContactDotSuspension = inv;
}
}
else
{
//put wheel info as in rest position
wheel.m_raycastInfo.m_suspensionLength = wheel.getSuspensionRestLength();
wheel.m_suspensionRelativeVelocity = btScalar(0.0);
wheel.m_raycastInfo.m_contactNormalWS = -wheel.m_raycastInfo.m_wheelDirectionWS;
wheel.m_clippedInvContactDotSuspension = btScalar(1.0);
}
return depth;
}
const btTransform& btRaycastVehicle::getChassisWorldTransform() const
{
/*if (getRigidBody()->getMotionState())
{
btTransform chassisWorldTrans;
getRigidBody()->getMotionState()->getWorldTransform(chassisWorldTrans);
return chassisWorldTrans;
}
*/
return getRigidBody()->getCenterOfMassTransform();
}
void btRaycastVehicle::updateVehicle(btScalar step)
{
{
for (int i = 0; i < getNumWheels(); i++)
{
updateWheelTransform(i, false);
}
}
m_currentVehicleSpeedKmHour = btScalar(3.6) * getRigidBody()->getLinearVelocity().length();
const btTransform& chassisTrans = getChassisWorldTransform();
btVector3 forwardW(
chassisTrans.getBasis()[0][m_indexForwardAxis],
chassisTrans.getBasis()[1][m_indexForwardAxis],
chassisTrans.getBasis()[2][m_indexForwardAxis]);
if (forwardW.dot(getRigidBody()->getLinearVelocity()) < btScalar(0.))
{
m_currentVehicleSpeedKmHour *= btScalar(-1.);
}
//
// simulate suspension
//
int i = 0;
for (i = 0; i < m_wheelInfo.size(); i++)
{
//btScalar depth;
//depth =
rayCast(m_wheelInfo[i]);
}
updateSuspension(step);
for (i = 0; i < m_wheelInfo.size(); i++)
{
//apply suspension force
btWheelInfo& wheel = m_wheelInfo[i];
btScalar suspensionForce = wheel.m_wheelsSuspensionForce;
if (suspensionForce > wheel.m_maxSuspensionForce)
{
suspensionForce = wheel.m_maxSuspensionForce;
}
btVector3 impulse = wheel.m_raycastInfo.m_contactNormalWS * suspensionForce * step;
btVector3 relpos = wheel.m_raycastInfo.m_contactPointWS - getRigidBody()->getCenterOfMassPosition();
getRigidBody()->applyImpulse(impulse, relpos);
}
updateFriction(step);
for (i = 0; i < m_wheelInfo.size(); i++)
{
btWheelInfo& wheel = m_wheelInfo[i];
btVector3 relpos = wheel.m_raycastInfo.m_hardPointWS - getRigidBody()->getCenterOfMassPosition();
btVector3 vel = getRigidBody()->getVelocityInLocalPoint(relpos);
if (wheel.m_raycastInfo.m_isInContact)
{
const btTransform& chassisWorldTransform = getChassisWorldTransform();
btVector3 fwd(
chassisWorldTransform.getBasis()[0][m_indexForwardAxis],
chassisWorldTransform.getBasis()[1][m_indexForwardAxis],
chassisWorldTransform.getBasis()[2][m_indexForwardAxis]);
btScalar proj = fwd.dot(wheel.m_raycastInfo.m_contactNormalWS);
fwd -= wheel.m_raycastInfo.m_contactNormalWS * proj;
btScalar proj2 = fwd.dot(vel);
wheel.m_deltaRotation = (proj2 * step) / (wheel.m_wheelsRadius);
wheel.m_rotation += wheel.m_deltaRotation;
}
else
{
wheel.m_rotation += wheel.m_deltaRotation;
}
wheel.m_deltaRotation *= btScalar(0.99); //damping of rotation when not in contact
}
}
void btRaycastVehicle::setSteeringValue(btScalar steering, int wheel)
{
btAssert(wheel >= 0 && wheel < getNumWheels());
btWheelInfo& wheelInfo = getWheelInfo(wheel);
wheelInfo.m_steering = steering;
}
btScalar btRaycastVehicle::getSteeringValue(int wheel) const
{
return getWheelInfo(wheel).m_steering;
}
void btRaycastVehicle::applyEngineForce(btScalar force, int wheel)
{
btAssert(wheel >= 0 && wheel < getNumWheels());
btWheelInfo& wheelInfo = getWheelInfo(wheel);
wheelInfo.m_engineForce = force;
}
const btWheelInfo& btRaycastVehicle::getWheelInfo(int index) const
{
btAssert((index >= 0) && (index < getNumWheels()));
return m_wheelInfo[index];
}
btWheelInfo& btRaycastVehicle::getWheelInfo(int index)
{
btAssert((index >= 0) && (index < getNumWheels()));
return m_wheelInfo[index];
}
void btRaycastVehicle::setBrake(btScalar brake, int wheelIndex)
{
btAssert((wheelIndex >= 0) && (wheelIndex < getNumWheels()));
getWheelInfo(wheelIndex).m_brake = brake;
}
void btRaycastVehicle::updateSuspension(btScalar deltaTime)
{
(void)deltaTime;
btScalar chassisMass = btScalar(1.) / m_chassisBody->getInvMass();
for (int w_it = 0; w_it < getNumWheels(); w_it++)
{
btWheelInfo& wheel_info = m_wheelInfo[w_it];
if (wheel_info.m_raycastInfo.m_isInContact)
{
btScalar force;
// Spring
{
btScalar susp_length = wheel_info.getSuspensionRestLength();
btScalar current_length = wheel_info.m_raycastInfo.m_suspensionLength;
btScalar length_diff = (susp_length - current_length);
force = wheel_info.m_suspensionStiffness * length_diff * wheel_info.m_clippedInvContactDotSuspension;
}
// Damper
{
btScalar projected_rel_vel = wheel_info.m_suspensionRelativeVelocity;
{
btScalar susp_damping;
if (projected_rel_vel < btScalar(0.0))
{
susp_damping = wheel_info.m_wheelsDampingCompression;
}
else
{
susp_damping = wheel_info.m_wheelsDampingRelaxation;
}
force -= susp_damping * projected_rel_vel;
}
}
// RESULT
wheel_info.m_wheelsSuspensionForce = force * chassisMass;
if (wheel_info.m_wheelsSuspensionForce < btScalar(0.))
{
wheel_info.m_wheelsSuspensionForce = btScalar(0.);
}
}
else
{
wheel_info.m_wheelsSuspensionForce = btScalar(0.0);
}
}
}
struct btWheelContactPoint
{
btRigidBody* m_body0;
btRigidBody* m_body1;
btVector3 m_frictionPositionWorld;
btVector3 m_frictionDirectionWorld;
btScalar m_jacDiagABInv;
btScalar m_maxImpulse;
btWheelContactPoint(btRigidBody* body0, btRigidBody* body1, const btVector3& frictionPosWorld, const btVector3& frictionDirectionWorld, btScalar maxImpulse)
: m_body0(body0),
m_body1(body1),
m_frictionPositionWorld(frictionPosWorld),
m_frictionDirectionWorld(frictionDirectionWorld),
m_maxImpulse(maxImpulse)
{
btScalar denom0 = body0->computeImpulseDenominator(frictionPosWorld, frictionDirectionWorld);
btScalar denom1 = body1->computeImpulseDenominator(frictionPosWorld, frictionDirectionWorld);
btScalar relaxation = 1.f;
m_jacDiagABInv = relaxation / (denom0 + denom1);
}
};
btScalar calcRollingFriction(btWheelContactPoint& contactPoint, int numWheelsOnGround);
btScalar calcRollingFriction(btWheelContactPoint& contactPoint, int numWheelsOnGround)
{
btScalar j1 = 0.f;
const btVector3& contactPosWorld = contactPoint.m_frictionPositionWorld;
btVector3 rel_pos1 = contactPosWorld - contactPoint.m_body0->getCenterOfMassPosition();
btVector3 rel_pos2 = contactPosWorld - contactPoint.m_body1->getCenterOfMassPosition();
btScalar maxImpulse = contactPoint.m_maxImpulse;
btVector3 vel1 = contactPoint.m_body0->getVelocityInLocalPoint(rel_pos1);
btVector3 vel2 = contactPoint.m_body1->getVelocityInLocalPoint(rel_pos2);
btVector3 vel = vel1 - vel2;
btScalar vrel = contactPoint.m_frictionDirectionWorld.dot(vel);
// calculate j that moves us to zero relative velocity
j1 = -vrel * contactPoint.m_jacDiagABInv / btScalar(numWheelsOnGround);
btSetMin(j1, maxImpulse);
btSetMax(j1, -maxImpulse);
return j1;
}
btScalar sideFrictionStiffness2 = btScalar(1.0);
void btRaycastVehicle::updateFriction(btScalar timeStep)
{
//calculate the impulse, so that the wheels don't move sidewards
int numWheel = getNumWheels();
if (!numWheel)
return;
m_forwardWS.resize(numWheel);
m_axle.resize(numWheel);
m_forwardImpulse.resize(numWheel);
m_sideImpulse.resize(numWheel);
int numWheelsOnGround = 0;
//collapse all those loops into one!
for (int i = 0; i < getNumWheels(); i++)
{
btWheelInfo& wheelInfo = m_wheelInfo[i];
class btRigidBody* groundObject = (class btRigidBody*)wheelInfo.m_raycastInfo.m_groundObject;
if (groundObject)
numWheelsOnGround++;
m_sideImpulse[i] = btScalar(0.);
m_forwardImpulse[i] = btScalar(0.);
}
{
for (int i = 0; i < getNumWheels(); i++)
{
btWheelInfo& wheelInfo = m_wheelInfo[i];
class btRigidBody* groundObject = (class btRigidBody*)wheelInfo.m_raycastInfo.m_groundObject;
if (groundObject)
{
const btTransform& wheelTrans = getWheelTransformWS(i);
btMatrix3x3 wheelBasis0 = wheelTrans.getBasis();
m_axle[i] = -btVector3(
wheelBasis0[0][m_indexRightAxis],
wheelBasis0[1][m_indexRightAxis],
wheelBasis0[2][m_indexRightAxis]);
const btVector3& surfNormalWS = wheelInfo.m_raycastInfo.m_contactNormalWS;
btScalar proj = m_axle[i].dot(surfNormalWS);
m_axle[i] -= surfNormalWS * proj;
m_axle[i] = m_axle[i].normalize();
m_forwardWS[i] = surfNormalWS.cross(m_axle[i]);
m_forwardWS[i].normalize();
resolveSingleBilateral(*m_chassisBody, wheelInfo.m_raycastInfo.m_contactPointWS,
*groundObject, wheelInfo.m_raycastInfo.m_contactPointWS,
btScalar(0.), m_axle[i], m_sideImpulse[i], timeStep);
m_sideImpulse[i] *= sideFrictionStiffness2;
}
}
}
btScalar sideFactor = btScalar(1.);
btScalar fwdFactor = 0.5;
bool sliding = false;
{
for (int wheel = 0; wheel < getNumWheels(); wheel++)
{
btWheelInfo& wheelInfo = m_wheelInfo[wheel];
class btRigidBody* groundObject = (class btRigidBody*)wheelInfo.m_raycastInfo.m_groundObject;
btScalar rollingFriction = 0.f;
if (groundObject)
{
if (wheelInfo.m_engineForce != 0.f)
{
rollingFriction = wheelInfo.m_engineForce * timeStep;
}
else
{
btScalar defaultRollingFrictionImpulse = 0.f;
btScalar maxImpulse = wheelInfo.m_brake ? wheelInfo.m_brake : defaultRollingFrictionImpulse;
btWheelContactPoint contactPt(m_chassisBody, groundObject, wheelInfo.m_raycastInfo.m_contactPointWS, m_forwardWS[wheel], maxImpulse);
btAssert(numWheelsOnGround > 0);
rollingFriction = calcRollingFriction(contactPt, numWheelsOnGround);
}
}
//switch between active rolling (throttle), braking and non-active rolling friction (no throttle/break)
m_forwardImpulse[wheel] = btScalar(0.);
m_wheelInfo[wheel].m_skidInfo = btScalar(1.);
if (groundObject)
{
m_wheelInfo[wheel].m_skidInfo = btScalar(1.);
btScalar maximp = wheelInfo.m_wheelsSuspensionForce * timeStep * wheelInfo.m_frictionSlip;
btScalar maximpSide = maximp;
btScalar maximpSquared = maximp * maximpSide;
m_forwardImpulse[wheel] = rollingFriction; //wheelInfo.m_engineForce* timeStep;
btScalar x = (m_forwardImpulse[wheel]) * fwdFactor;
btScalar y = (m_sideImpulse[wheel]) * sideFactor;
btScalar impulseSquared = (x * x + y * y);
if (impulseSquared > maximpSquared)
{
sliding = true;
btScalar factor = maximp / btSqrt(impulseSquared);
m_wheelInfo[wheel].m_skidInfo *= factor;
}
}
}
}
if (sliding)
{
for (int wheel = 0; wheel < getNumWheels(); wheel++)
{
if (m_sideImpulse[wheel] != btScalar(0.))
{
if (m_wheelInfo[wheel].m_skidInfo < btScalar(1.))
{
m_forwardImpulse[wheel] *= m_wheelInfo[wheel].m_skidInfo;
m_sideImpulse[wheel] *= m_wheelInfo[wheel].m_skidInfo;
}
}
}
}
// apply the impulses
{
for (int wheel = 0; wheel < getNumWheels(); wheel++)
{
btWheelInfo& wheelInfo = m_wheelInfo[wheel];
btVector3 rel_pos = wheelInfo.m_raycastInfo.m_contactPointWS -
m_chassisBody->getCenterOfMassPosition();
if (m_forwardImpulse[wheel] != btScalar(0.))
{
m_chassisBody->applyImpulse(m_forwardWS[wheel] * (m_forwardImpulse[wheel]), rel_pos);
}
if (m_sideImpulse[wheel] != btScalar(0.))
{
class btRigidBody* groundObject = (class btRigidBody*)m_wheelInfo[wheel].m_raycastInfo.m_groundObject;
btVector3 rel_pos2 = wheelInfo.m_raycastInfo.m_contactPointWS -
groundObject->getCenterOfMassPosition();
btVector3 sideImp = m_axle[wheel] * m_sideImpulse[wheel];
#if defined ROLLING_INFLUENCE_FIX // fix. It only worked if car's up was along Y - VT.
btVector3 vChassisWorldUp = getRigidBody()->getCenterOfMassTransform().getBasis().getColumn(m_indexUpAxis);
rel_pos -= vChassisWorldUp * (vChassisWorldUp.dot(rel_pos) * (1.f - wheelInfo.m_rollInfluence));
#else
rel_pos[m_indexUpAxis] *= wheelInfo.m_rollInfluence;
#endif
m_chassisBody->applyImpulse(sideImp, rel_pos);
//apply friction impulse on the ground
groundObject->applyImpulse(-sideImp, rel_pos2);
}
}
}
}
void btRaycastVehicle::debugDraw(btIDebugDraw* debugDrawer)
{
for (int v = 0; v < this->getNumWheels(); v++)
{
btVector3 wheelColor(0, 1, 1);
if (getWheelInfo(v).m_raycastInfo.m_isInContact)
{
wheelColor.setValue(0, 0, 1);
}
else
{
wheelColor.setValue(1, 0, 1);
}
btVector3 wheelPosWS = getWheelInfo(v).m_worldTransform.getOrigin();
btVector3 axle = btVector3(
getWheelInfo(v).m_worldTransform.getBasis()[0][getRightAxis()],
getWheelInfo(v).m_worldTransform.getBasis()[1][getRightAxis()],
getWheelInfo(v).m_worldTransform.getBasis()[2][getRightAxis()]);
//debug wheels (cylinders)
debugDrawer->drawLine(wheelPosWS, wheelPosWS + axle, wheelColor);
debugDrawer->drawLine(wheelPosWS, getWheelInfo(v).m_raycastInfo.m_contactPointWS, wheelColor);
}
}
void* btDefaultVehicleRaycaster::castRay(const btVector3& from, const btVector3& to, btVehicleRaycasterResult& result)
{
// RayResultCallback& resultCallback;
btCollisionWorld::ClosestRayResultCallback rayCallback(from, to);
m_dynamicsWorld->rayTest(from, to, rayCallback);
if (rayCallback.hasHit())
{
const btRigidBody* body = btRigidBody::upcast(rayCallback.m_collisionObject);
if (body && body->hasContactResponse())
{
result.m_hitPointInWorld = rayCallback.m_hitPointWorld;
result.m_hitNormalInWorld = rayCallback.m_hitNormalWorld;
result.m_hitNormalInWorld.normalize();
result.m_distFraction = rayCallback.m_closestHitFraction;
return (void*)body;
}
}
return 0;
}