godot/drivers/gles2/shaders/scene.glsl
Omar El Sheikh d274284069 Octahedral Normal/Tangent Compression
Implement Octahedral Compression for normal/tangent vectors
*Oct32 for uncompressed vectors
*Oct16 for compressed vectors

Reduces vertex size for each attribute by
*Uncompressed: 12 bytes, vec4<float32> -> vec2<unorm16>
*Compressed: 2 bytes, vec4<unorm8> -> vec2<unorm8>

Binormal sign is encoded in the y coordinate of the encoded tangent

Added conversion functions to go from octahedral mapping to cartesian
for normal and tangent vectors

sprite_3d and soft_body meshes write to their vertex buffer memory
directly and need to convert their normals and tangents to the new oct
format before writing

Created a new mesh flag to specify whether a mesh is using octahedral
compression or not
Updated documentation to discuss new flag/defaults

Created shader flags to specify whether octahedral or cartesian vectors
are being used

Updated importers to use octahedral representation as the default format
for importing meshes

Updated ShaderGLES2 to support 64 bit version codes as we hit the limit
of the 32-bit integer that was previously used as a bitset to store
enabled/disabled flags
2021-07-30 10:29:09 -04:00

2314 lines
58 KiB
GLSL

/* clang-format off */
[vertex]
#ifdef USE_GLES_OVER_GL
#define lowp
#define mediump
#define highp
#else
// Default to high precision variables for the vertex shader.
// Note that the fragment shader however may default to mediump on mobile for performance,
// and thus shared uniforms should use a specifier to be consistent in both shaders.
precision highp float;
precision highp int;
#endif
#if defined(ENSURE_CORRECT_NORMALS)
#define INVERSE_USED
#endif
/* clang-format on */
#include "stdlib.glsl"
/* clang-format off */
#define SHADER_IS_SRGB true
#define M_PI 3.14159265359
//
// attributes
//
attribute highp vec4 vertex_attrib; // attrib:0
/* clang-format on */
#ifdef ENABLE_OCTAHEDRAL_COMPRESSION
attribute vec2 normal_attrib; // attrib:1
#else
attribute vec3 normal_attrib; // attrib:1
#endif
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
#ifdef ENABLE_OCTAHEDRAL_COMPRESSION
attribute vec2 tangent_attrib; // attrib:2
#else
attribute vec4 tangent_attrib; // attrib:2
#endif
#endif
#if defined(ENABLE_COLOR_INTERP)
attribute vec4 color_attrib; // attrib:3
#endif
#if defined(ENABLE_UV_INTERP)
attribute vec2 uv_attrib; // attrib:4
#endif
#if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP)
attribute vec2 uv2_attrib; // attrib:5
#endif
#ifdef USE_SKELETON
#ifdef USE_SKELETON_SOFTWARE
attribute highp vec4 bone_transform_row_0; // attrib:13
attribute highp vec4 bone_transform_row_1; // attrib:14
attribute highp vec4 bone_transform_row_2; // attrib:15
#else
attribute vec4 bone_ids; // attrib:6
attribute highp vec4 bone_weights; // attrib:7
uniform highp sampler2D bone_transforms; // texunit:-1
uniform ivec2 skeleton_texture_size;
#endif
#endif
#ifdef USE_INSTANCING
attribute highp vec4 instance_xform_row_0; // attrib:8
attribute highp vec4 instance_xform_row_1; // attrib:9
attribute highp vec4 instance_xform_row_2; // attrib:10
attribute highp vec4 instance_color; // attrib:11
attribute highp vec4 instance_custom_data; // attrib:12
#endif
//
// uniforms
//
uniform highp mat4 camera_matrix;
uniform highp mat4 camera_inverse_matrix;
uniform highp mat4 projection_matrix;
uniform highp mat4 projection_inverse_matrix;
uniform highp mat4 world_transform;
uniform highp float time;
uniform highp vec2 viewport_size;
#ifdef RENDER_DEPTH
uniform float light_bias;
uniform float light_normal_bias;
#endif
uniform highp int view_index;
#ifdef ENABLE_OCTAHEDRAL_COMPRESSION
vec3 oct_to_vec3(vec2 e) {
vec3 v = vec3(e.xy, 1.0 - abs(e.x) - abs(e.y));
float t = max(-v.z, 0.0);
v.xy += t * -sign(v.xy);
return v;
}
#endif
//
// varyings
//
#if defined(RENDER_DEPTH) && defined(USE_RGBA_SHADOWS)
varying highp vec4 position_interp;
#endif
varying highp vec3 vertex_interp;
varying vec3 normal_interp;
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
varying vec3 tangent_interp;
varying vec3 binormal_interp;
#endif
#if defined(ENABLE_COLOR_INTERP)
varying vec4 color_interp;
#endif
#if defined(ENABLE_UV_INTERP)
varying vec2 uv_interp;
#endif
#if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP)
varying vec2 uv2_interp;
#endif
/* clang-format off */
VERTEX_SHADER_GLOBALS
/* clang-format on */
#ifdef RENDER_DEPTH_DUAL_PARABOLOID
varying highp float dp_clip;
uniform highp float shadow_dual_paraboloid_render_zfar;
uniform highp float shadow_dual_paraboloid_render_side;
#endif
#if defined(USE_SHADOW) && defined(USE_LIGHTING)
uniform highp mat4 light_shadow_matrix;
varying highp vec4 shadow_coord;
#if defined(LIGHT_USE_PSSM2) || defined(LIGHT_USE_PSSM4)
uniform highp mat4 light_shadow_matrix2;
varying highp vec4 shadow_coord2;
#endif
#if defined(LIGHT_USE_PSSM4)
uniform highp mat4 light_shadow_matrix3;
uniform highp mat4 light_shadow_matrix4;
varying highp vec4 shadow_coord3;
varying highp vec4 shadow_coord4;
#endif
#endif
#if defined(USE_VERTEX_LIGHTING) && defined(USE_LIGHTING)
varying highp vec3 diffuse_interp;
varying highp vec3 specular_interp;
// general for all lights
uniform highp vec4 light_color;
uniform highp vec4 shadow_color;
uniform highp float light_specular;
// directional
uniform highp vec3 light_direction;
// omni
uniform highp vec3 light_position;
uniform highp float light_range;
uniform highp float light_attenuation;
// spot
uniform highp float light_spot_attenuation;
uniform highp float light_spot_range;
uniform highp float light_spot_angle;
void light_compute(
vec3 N,
vec3 L,
vec3 V,
vec3 light_color,
vec3 attenuation,
float roughness) {
//this makes lights behave closer to linear, but then addition of lights looks bad
//better left disabled
//#define SRGB_APPROX(m_var) m_var = pow(m_var,0.4545454545);
/*
#define SRGB_APPROX(m_var) {\
float S1 = sqrt(m_var);\
float S2 = sqrt(S1);\
float S3 = sqrt(S2);\
m_var = 0.662002687 * S1 + 0.684122060 * S2 - 0.323583601 * S3 - 0.0225411470 * m_var;\
}
*/
#define SRGB_APPROX(m_var)
float NdotL = dot(N, L);
float cNdotL = max(NdotL, 0.0); // clamped NdotL
float NdotV = dot(N, V);
float cNdotV = max(NdotV, 0.0);
#if defined(DIFFUSE_OREN_NAYAR)
vec3 diffuse_brdf_NL;
#else
float diffuse_brdf_NL; // BRDF times N.L for calculating diffuse radiance
#endif
#if defined(DIFFUSE_LAMBERT_WRAP)
// energy conserving lambert wrap shader
diffuse_brdf_NL = max(0.0, (NdotL + roughness) / ((1.0 + roughness) * (1.0 + roughness)));
#elif defined(DIFFUSE_OREN_NAYAR)
{
// see http://mimosa-pudica.net/improved-oren-nayar.html
float LdotV = dot(L, V);
float s = LdotV - NdotL * NdotV;
float t = mix(1.0, max(NdotL, NdotV), step(0.0, s));
float sigma2 = roughness * roughness; // TODO: this needs checking
vec3 A = 1.0 + sigma2 * (-0.5 / (sigma2 + 0.33) + 0.17 * diffuse_color / (sigma2 + 0.13));
float B = 0.45 * sigma2 / (sigma2 + 0.09);
diffuse_brdf_NL = cNdotL * (A + vec3(B) * s / t) * (1.0 / M_PI);
}
#else
// lambert by default for everything else
diffuse_brdf_NL = cNdotL * (1.0 / M_PI);
#endif
SRGB_APPROX(diffuse_brdf_NL)
diffuse_interp += light_color * diffuse_brdf_NL * attenuation;
if (roughness > 0.0) {
// D
float specular_brdf_NL = 0.0;
#if !defined(SPECULAR_DISABLED)
//normalized blinn always unless disabled
vec3 H = normalize(V + L);
float cNdotH = max(dot(N, H), 0.0);
float shininess = exp2(15.0 * (1.0 - roughness) + 1.0) * 0.25;
float blinn = pow(cNdotH, shininess) * cNdotL;
blinn *= (shininess + 8.0) * (1.0 / (8.0 * M_PI));
specular_brdf_NL = blinn;
#endif
SRGB_APPROX(specular_brdf_NL)
specular_interp += specular_brdf_NL * light_color * attenuation * (1.0 / M_PI);
}
}
#endif
#ifdef USE_VERTEX_LIGHTING
#ifdef USE_REFLECTION_PROBE1
uniform highp mat4 refprobe1_local_matrix;
varying mediump vec4 refprobe1_reflection_normal_blend;
uniform highp vec3 refprobe1_box_extents;
#ifndef USE_LIGHTMAP
varying mediump vec3 refprobe1_ambient_normal;
#endif
#endif //reflection probe1
#ifdef USE_REFLECTION_PROBE2
uniform highp mat4 refprobe2_local_matrix;
varying mediump vec4 refprobe2_reflection_normal_blend;
uniform highp vec3 refprobe2_box_extents;
#ifndef USE_LIGHTMAP
varying mediump vec3 refprobe2_ambient_normal;
#endif
#endif //reflection probe2
#endif //vertex lighting for refprobes
#if defined(FOG_DEPTH_ENABLED) || defined(FOG_HEIGHT_ENABLED)
varying vec4 fog_interp;
uniform mediump vec4 fog_color_base;
#ifdef LIGHT_MODE_DIRECTIONAL
uniform mediump vec4 fog_sun_color_amount;
#endif
uniform bool fog_transmit_enabled;
uniform mediump float fog_transmit_curve;
#ifdef FOG_DEPTH_ENABLED
uniform highp float fog_depth_begin;
uniform mediump float fog_depth_curve;
uniform mediump float fog_max_distance;
#endif
#ifdef FOG_HEIGHT_ENABLED
uniform highp float fog_height_min;
uniform highp float fog_height_max;
uniform mediump float fog_height_curve;
#endif
#endif //fog
void main() {
highp vec4 vertex = vertex_attrib;
mat4 world_matrix = world_transform;
#ifdef USE_INSTANCING
{
highp mat4 m = mat4(
instance_xform_row_0,
instance_xform_row_1,
instance_xform_row_2,
vec4(0.0, 0.0, 0.0, 1.0));
world_matrix = world_matrix * transpose(m);
}
#endif
#ifdef ENABLE_OCTAHEDRAL_COMPRESSION
vec3 normal = oct_to_vec3(normal_attrib);
#else
vec3 normal = normal_attrib;
#endif
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
#ifdef ENABLE_OCTAHEDRAL_COMPRESSION
vec3 tangent = oct_to_vec3(vec2(tangent_attrib.x, abs(tangent_attrib.y) * 2.0 - 1.0));
float binormalf = sign(tangent_attrib.y);
#else
vec3 tangent = tangent_attrib.xyz;
float binormalf = tangent_attrib.a;
#endif
vec3 binormal = normalize(cross(normal, tangent) * binormalf);
#endif
#if defined(ENABLE_COLOR_INTERP)
color_interp = color_attrib;
#ifdef USE_INSTANCING
color_interp *= instance_color;
#endif
#endif
#if defined(ENABLE_UV_INTERP)
uv_interp = uv_attrib;
#endif
#if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP)
uv2_interp = uv2_attrib;
#endif
#if defined(OVERRIDE_POSITION)
highp vec4 position;
#endif
#if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED)
vertex = world_matrix * vertex;
#if defined(ENSURE_CORRECT_NORMALS)
mat3 normal_matrix = mat3(transpose(inverse(world_matrix)));
normal = normal_matrix * normal;
#else
normal = normalize((world_matrix * vec4(normal, 0.0)).xyz);
#endif
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
tangent = normalize((world_matrix * vec4(tangent, 0.0)).xyz);
binormal = normalize((world_matrix * vec4(binormal, 0.0)).xyz);
#endif
#endif
#ifdef USE_SKELETON
highp mat4 bone_transform = mat4(0.0);
#ifdef USE_SKELETON_SOFTWARE
// passing the transform as attributes
bone_transform[0] = vec4(bone_transform_row_0.x, bone_transform_row_1.x, bone_transform_row_2.x, 0.0);
bone_transform[1] = vec4(bone_transform_row_0.y, bone_transform_row_1.y, bone_transform_row_2.y, 0.0);
bone_transform[2] = vec4(bone_transform_row_0.z, bone_transform_row_1.z, bone_transform_row_2.z, 0.0);
bone_transform[3] = vec4(bone_transform_row_0.w, bone_transform_row_1.w, bone_transform_row_2.w, 1.0);
#else
// look up transform from the "pose texture"
{
for (int i = 0; i < 4; i++) {
ivec2 tex_ofs = ivec2(int(bone_ids[i]) * 3, 0);
highp mat4 b = mat4(
texel2DFetch(bone_transforms, skeleton_texture_size, tex_ofs + ivec2(0, 0)),
texel2DFetch(bone_transforms, skeleton_texture_size, tex_ofs + ivec2(1, 0)),
texel2DFetch(bone_transforms, skeleton_texture_size, tex_ofs + ivec2(2, 0)),
vec4(0.0, 0.0, 0.0, 1.0));
bone_transform += transpose(b) * bone_weights[i];
}
}
#endif
world_matrix = world_matrix * bone_transform;
#endif
#ifdef USE_INSTANCING
vec4 instance_custom = instance_custom_data;
#else
vec4 instance_custom = vec4(0.0);
#endif
mat4 local_projection_matrix = projection_matrix;
mat4 modelview = camera_inverse_matrix * world_matrix;
float roughness = 1.0;
#define projection_matrix local_projection_matrix
#define world_transform world_matrix
float point_size = 1.0;
{
/* clang-format off */
VERTEX_SHADER_CODE
/* clang-format on */
}
gl_PointSize = point_size;
vec4 outvec = vertex;
// use local coordinates
#if !defined(SKIP_TRANSFORM_USED) && !defined(VERTEX_WORLD_COORDS_USED)
vertex = modelview * vertex;
#if defined(ENSURE_CORRECT_NORMALS)
mat3 normal_matrix = mat3(transpose(inverse(modelview)));
normal = normal_matrix * normal;
#else
normal = normalize((modelview * vec4(normal, 0.0)).xyz);
#endif
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
tangent = normalize((modelview * vec4(tangent, 0.0)).xyz);
binormal = normalize((modelview * vec4(binormal, 0.0)).xyz);
#endif
#endif
#if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED)
vertex = camera_inverse_matrix * vertex;
normal = normalize((camera_inverse_matrix * vec4(normal, 0.0)).xyz);
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
tangent = normalize((camera_inverse_matrix * vec4(tangent, 0.0)).xyz);
binormal = normalize((camera_inverse_matrix * vec4(binormal, 0.0)).xyz);
#endif
#endif
vertex_interp = vertex.xyz;
normal_interp = normal;
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
tangent_interp = tangent;
binormal_interp = binormal;
#endif
#ifdef RENDER_DEPTH
#ifdef RENDER_DEPTH_DUAL_PARABOLOID
vertex_interp.z *= shadow_dual_paraboloid_render_side;
normal_interp.z *= shadow_dual_paraboloid_render_side;
dp_clip = vertex_interp.z; //this attempts to avoid noise caused by objects sent to the other parabolloid side due to bias
//for dual paraboloid shadow mapping, this is the fastest but least correct way, as it curves straight edges
highp vec3 vtx = vertex_interp + normalize(vertex_interp) * light_bias;
highp float distance = length(vtx);
vtx = normalize(vtx);
vtx.xy /= 1.0 - vtx.z;
vtx.z = (distance / shadow_dual_paraboloid_render_zfar);
vtx.z = vtx.z * 2.0 - 1.0;
vertex_interp = vtx;
#else
float z_ofs = light_bias;
z_ofs += (1.0 - abs(normal_interp.z)) * light_normal_bias;
vertex_interp.z -= z_ofs;
#endif //dual parabolloid
#endif //depth
//vertex lighting
#if defined(USE_VERTEX_LIGHTING) && defined(USE_LIGHTING)
//vertex shaded version of lighting (more limited)
vec3 L;
vec3 light_att;
#ifdef LIGHT_MODE_OMNI
vec3 light_vec = light_position - vertex_interp;
float light_length = length(light_vec);
float normalized_distance = light_length / light_range;
if (normalized_distance < 1.0) {
float omni_attenuation = pow(1.0 - normalized_distance, light_attenuation);
vec3 attenuation = vec3(omni_attenuation);
light_att = vec3(omni_attenuation);
} else {
light_att = vec3(0.0);
}
L = normalize(light_vec);
#endif
#ifdef LIGHT_MODE_SPOT
vec3 light_rel_vec = light_position - vertex_interp;
float light_length = length(light_rel_vec);
float normalized_distance = light_length / light_range;
if (normalized_distance < 1.0) {
float spot_attenuation = pow(1.0 - normalized_distance, light_attenuation);
vec3 spot_dir = light_direction;
float spot_cutoff = light_spot_angle;
float angle = dot(-normalize(light_rel_vec), spot_dir);
if (angle > spot_cutoff) {
float scos = max(angle, spot_cutoff);
float spot_rim = max(0.0001, (1.0 - scos) / (1.0 - spot_cutoff));
spot_attenuation *= 1.0 - pow(spot_rim, light_spot_attenuation);
light_att = vec3(spot_attenuation);
} else {
light_att = vec3(0.0);
}
} else {
light_att = vec3(0.0);
}
L = normalize(light_rel_vec);
#endif
#ifdef LIGHT_MODE_DIRECTIONAL
vec3 light_vec = -light_direction;
light_att = vec3(1.0); //no base attenuation
L = normalize(light_vec);
#endif
diffuse_interp = vec3(0.0);
specular_interp = vec3(0.0);
light_compute(normal_interp, L, -normalize(vertex_interp), light_color.rgb, light_att, roughness);
#endif
//shadows (for both vertex and fragment)
#if defined(USE_SHADOW) && defined(USE_LIGHTING)
vec4 vi4 = vec4(vertex_interp, 1.0);
shadow_coord = light_shadow_matrix * vi4;
#if defined(LIGHT_USE_PSSM2) || defined(LIGHT_USE_PSSM4)
shadow_coord2 = light_shadow_matrix2 * vi4;
#endif
#if defined(LIGHT_USE_PSSM4)
shadow_coord3 = light_shadow_matrix3 * vi4;
shadow_coord4 = light_shadow_matrix4 * vi4;
#endif
#endif //use shadow and use lighting
#ifdef USE_VERTEX_LIGHTING
#ifdef USE_REFLECTION_PROBE1
{
vec3 ref_normal = normalize(reflect(vertex_interp, normal_interp));
vec3 local_pos = (refprobe1_local_matrix * vec4(vertex_interp, 1.0)).xyz;
vec3 inner_pos = abs(local_pos / refprobe1_box_extents);
float blend = max(inner_pos.x, max(inner_pos.y, inner_pos.z));
{
vec3 local_ref_vec = (refprobe1_local_matrix * vec4(ref_normal, 0.0)).xyz;
refprobe1_reflection_normal_blend.xyz = local_ref_vec;
refprobe1_reflection_normal_blend.a = blend;
}
#ifndef USE_LIGHTMAP
refprobe1_ambient_normal = (refprobe1_local_matrix * vec4(normal_interp, 0.0)).xyz;
#endif
}
#endif //USE_REFLECTION_PROBE1
#ifdef USE_REFLECTION_PROBE2
{
vec3 ref_normal = normalize(reflect(vertex_interp, normal_interp));
vec3 local_pos = (refprobe2_local_matrix * vec4(vertex_interp, 1.0)).xyz;
vec3 inner_pos = abs(local_pos / refprobe2_box_extents);
float blend = max(inner_pos.x, max(inner_pos.y, inner_pos.z));
{
vec3 local_ref_vec = (refprobe2_local_matrix * vec4(ref_normal, 0.0)).xyz;
refprobe2_reflection_normal_blend.xyz = local_ref_vec;
refprobe2_reflection_normal_blend.a = blend;
}
#ifndef USE_LIGHTMAP
refprobe2_ambient_normal = (refprobe2_local_matrix * vec4(normal_interp, 0.0)).xyz;
#endif
}
#endif //USE_REFLECTION_PROBE2
#if defined(FOG_DEPTH_ENABLED) || defined(FOG_HEIGHT_ENABLED)
float fog_amount = 0.0;
#ifdef LIGHT_MODE_DIRECTIONAL
vec3 fog_color = mix(fog_color_base.rgb, fog_sun_color_amount.rgb, fog_sun_color_amount.a * pow(max(dot(normalize(vertex_interp), light_direction), 0.0), 8.0));
#else
vec3 fog_color = fog_color_base.rgb;
#endif
#ifdef FOG_DEPTH_ENABLED
{
float fog_z = smoothstep(fog_depth_begin, fog_max_distance, length(vertex));
fog_amount = pow(fog_z, fog_depth_curve) * fog_color_base.a;
}
#endif
#ifdef FOG_HEIGHT_ENABLED
{
float y = (camera_matrix * vec4(vertex_interp, 1.0)).y;
fog_amount = max(fog_amount, pow(smoothstep(fog_height_min, fog_height_max, y), fog_height_curve));
}
#endif
fog_interp = vec4(fog_color, fog_amount);
#endif //fog
#endif //use vertex lighting
#if defined(OVERRIDE_POSITION)
gl_Position = position;
#else
gl_Position = projection_matrix * vec4(vertex_interp, 1.0);
#endif
#if defined(RENDER_DEPTH) && defined(USE_RGBA_SHADOWS)
position_interp = gl_Position;
#endif
}
/* clang-format off */
[fragment]
// texture2DLodEXT and textureCubeLodEXT are fragment shader specific.
// Do not copy these defines in the vertex section.
#ifndef USE_GLES_OVER_GL
#ifdef GL_EXT_shader_texture_lod
#extension GL_EXT_shader_texture_lod : enable
#define texture2DLod(img, coord, lod) texture2DLodEXT(img, coord, lod)
#define textureCubeLod(img, coord, lod) textureCubeLodEXT(img, coord, lod)
#endif
#endif // !USE_GLES_OVER_GL
#ifdef GL_ARB_shader_texture_lod
#extension GL_ARB_shader_texture_lod : enable
#endif
#if !defined(GL_EXT_shader_texture_lod) && !defined(GL_ARB_shader_texture_lod)
#define texture2DLod(img, coord, lod) texture2D(img, coord, lod)
#define textureCubeLod(img, coord, lod) textureCube(img, coord, lod)
#endif
#ifdef USE_GLES_OVER_GL
#define lowp
#define mediump
#define highp
#else
// On mobile devices we want to default to medium precision to increase performance in the fragment shader.
#if defined(USE_HIGHP_PRECISION)
precision highp float;
precision highp int;
#else
precision mediump float;
precision mediump int;
#endif
#endif
#include "stdlib.glsl"
#define M_PI 3.14159265359
#define SHADER_IS_SRGB true
//
// uniforms
//
uniform highp mat4 camera_matrix;
/* clang-format on */
uniform highp mat4 camera_inverse_matrix;
uniform highp mat4 projection_matrix;
uniform highp mat4 projection_inverse_matrix;
uniform highp mat4 world_transform;
uniform highp float time;
uniform highp int view_index;
uniform highp vec2 viewport_size;
#if defined(SCREEN_UV_USED)
uniform vec2 screen_pixel_size;
#endif
#if defined(SCREEN_TEXTURE_USED)
uniform highp sampler2D screen_texture; //texunit:-4
#endif
#if defined(DEPTH_TEXTURE_USED)
uniform highp sampler2D depth_texture; //texunit:-4
#endif
#ifdef USE_REFLECTION_PROBE1
#ifdef USE_VERTEX_LIGHTING
varying mediump vec4 refprobe1_reflection_normal_blend;
#ifndef USE_LIGHTMAP
varying mediump vec3 refprobe1_ambient_normal;
#endif
#else
uniform bool refprobe1_use_box_project;
uniform highp vec3 refprobe1_box_extents;
uniform vec3 refprobe1_box_offset;
uniform highp mat4 refprobe1_local_matrix;
#endif //use vertex lighting
uniform bool refprobe1_exterior;
uniform highp samplerCube reflection_probe1; //texunit:-5
uniform float refprobe1_intensity;
uniform vec4 refprobe1_ambient;
#endif //USE_REFLECTION_PROBE1
#ifdef USE_REFLECTION_PROBE2
#ifdef USE_VERTEX_LIGHTING
varying mediump vec4 refprobe2_reflection_normal_blend;
#ifndef USE_LIGHTMAP
varying mediump vec3 refprobe2_ambient_normal;
#endif
#else
uniform bool refprobe2_use_box_project;
uniform highp vec3 refprobe2_box_extents;
uniform vec3 refprobe2_box_offset;
uniform highp mat4 refprobe2_local_matrix;
#endif //use vertex lighting
uniform bool refprobe2_exterior;
uniform highp samplerCube reflection_probe2; //texunit:-6
uniform float refprobe2_intensity;
uniform vec4 refprobe2_ambient;
#endif //USE_REFLECTION_PROBE2
#define RADIANCE_MAX_LOD 6.0
#if defined(USE_REFLECTION_PROBE1) || defined(USE_REFLECTION_PROBE2)
void reflection_process(samplerCube reflection_map,
#ifdef USE_VERTEX_LIGHTING
vec3 ref_normal,
#ifndef USE_LIGHTMAP
vec3 amb_normal,
#endif
float ref_blend,
#else //no vertex lighting
vec3 normal, vec3 vertex,
mat4 local_matrix,
bool use_box_project, vec3 box_extents, vec3 box_offset,
#endif //vertex lighting
bool exterior, float intensity, vec4 ref_ambient, float roughness, vec3 ambient, vec3 skybox, inout highp vec4 reflection_accum, inout highp vec4 ambient_accum) {
vec4 reflection;
#ifdef USE_VERTEX_LIGHTING
reflection.rgb = textureCubeLod(reflection_map, ref_normal, roughness * RADIANCE_MAX_LOD).rgb;
float blend = ref_blend; //crappier blend formula for vertex
blend *= blend;
blend = max(0.0, 1.0 - blend);
#else //fragment lighting
vec3 local_pos = (local_matrix * vec4(vertex, 1.0)).xyz;
if (any(greaterThan(abs(local_pos), box_extents))) { //out of the reflection box
return;
}
vec3 inner_pos = abs(local_pos / box_extents);
float blend = max(inner_pos.x, max(inner_pos.y, inner_pos.z));
blend = mix(length(inner_pos), blend, blend);
blend *= blend;
blend = max(0.0, 1.0 - blend);
//reflect and make local
vec3 ref_normal = normalize(reflect(vertex, normal));
ref_normal = (local_matrix * vec4(ref_normal, 0.0)).xyz;
if (use_box_project) { //box project
vec3 nrdir = normalize(ref_normal);
vec3 rbmax = (box_extents - local_pos) / nrdir;
vec3 rbmin = (-box_extents - local_pos) / nrdir;
vec3 rbminmax = mix(rbmin, rbmax, vec3(greaterThan(nrdir, vec3(0.0, 0.0, 0.0))));
float fa = min(min(rbminmax.x, rbminmax.y), rbminmax.z);
vec3 posonbox = local_pos + nrdir * fa;
ref_normal = posonbox - box_offset.xyz;
}
reflection.rgb = textureCubeLod(reflection_map, ref_normal, roughness * RADIANCE_MAX_LOD).rgb;
#endif
if (exterior) {
reflection.rgb = mix(skybox, reflection.rgb, blend);
}
reflection.rgb *= intensity;
reflection.a = blend;
reflection.rgb *= blend;
reflection_accum += reflection;
#ifndef USE_LIGHTMAP
vec4 ambient_out;
#ifndef USE_VERTEX_LIGHTING
vec3 amb_normal = (local_matrix * vec4(normal, 0.0)).xyz;
#endif
ambient_out.rgb = textureCubeLod(reflection_map, amb_normal, RADIANCE_MAX_LOD).rgb;
ambient_out.rgb = mix(ref_ambient.rgb, ambient_out.rgb, ref_ambient.a);
if (exterior) {
ambient_out.rgb = mix(ambient, ambient_out.rgb, blend);
}
ambient_out.a = blend;
ambient_out.rgb *= blend;
ambient_accum += ambient_out;
#endif
}
#endif //use refprobe 1 or 2
#ifdef USE_LIGHTMAP
uniform mediump sampler2D lightmap; //texunit:-4
uniform mediump float lightmap_energy;
#if defined(USE_LIGHTMAP_FILTER_BICUBIC)
uniform mediump vec2 lightmap_texture_size;
// w0, w1, w2, and w3 are the four cubic B-spline basis functions
float w0(float a) {
return (1.0 / 6.0) * (a * (a * (-a + 3.0) - 3.0) + 1.0);
}
float w1(float a) {
return (1.0 / 6.0) * (a * a * (3.0 * a - 6.0) + 4.0);
}
float w2(float a) {
return (1.0 / 6.0) * (a * (a * (-3.0 * a + 3.0) + 3.0) + 1.0);
}
float w3(float a) {
return (1.0 / 6.0) * (a * a * a);
}
// g0 and g1 are the two amplitude functions
float g0(float a) {
return w0(a) + w1(a);
}
float g1(float a) {
return w2(a) + w3(a);
}
// h0 and h1 are the two offset functions
float h0(float a) {
return -1.0 + w1(a) / (w0(a) + w1(a));
}
float h1(float a) {
return 1.0 + w3(a) / (w2(a) + w3(a));
}
vec4 texture2D_bicubic(sampler2D tex, vec2 uv) {
vec2 texel_size = vec2(1.0) / lightmap_texture_size;
uv = uv * lightmap_texture_size + vec2(0.5);
vec2 iuv = floor(uv);
vec2 fuv = fract(uv);
float g0x = g0(fuv.x);
float g1x = g1(fuv.x);
float h0x = h0(fuv.x);
float h1x = h1(fuv.x);
float h0y = h0(fuv.y);
float h1y = h1(fuv.y);
vec2 p0 = (vec2(iuv.x + h0x, iuv.y + h0y) - vec2(0.5)) * texel_size;
vec2 p1 = (vec2(iuv.x + h1x, iuv.y + h0y) - vec2(0.5)) * texel_size;
vec2 p2 = (vec2(iuv.x + h0x, iuv.y + h1y) - vec2(0.5)) * texel_size;
vec2 p3 = (vec2(iuv.x + h1x, iuv.y + h1y) - vec2(0.5)) * texel_size;
return (g0(fuv.y) * (g0x * texture2D(tex, p0) + g1x * texture2D(tex, p1))) +
(g1(fuv.y) * (g0x * texture2D(tex, p2) + g1x * texture2D(tex, p3)));
}
#endif //USE_LIGHTMAP_FILTER_BICUBIC
#endif
#ifdef USE_LIGHTMAP_CAPTURE
uniform mediump vec4 lightmap_captures[12];
#endif
#ifdef USE_RADIANCE_MAP
uniform samplerCube radiance_map; // texunit:-2
uniform mat4 radiance_inverse_xform;
#endif
uniform vec4 bg_color;
uniform float bg_energy;
uniform float ambient_sky_contribution;
uniform vec4 ambient_color;
uniform float ambient_energy;
#ifdef USE_LIGHTING
uniform highp vec4 shadow_color;
#ifdef USE_VERTEX_LIGHTING
//get from vertex
varying highp vec3 diffuse_interp;
varying highp vec3 specular_interp;
uniform highp vec3 light_direction; //may be used by fog, so leave here
#else
//done in fragment
// general for all lights
uniform highp vec4 light_color;
uniform highp float light_specular;
// directional
uniform highp vec3 light_direction;
// omni
uniform highp vec3 light_position;
uniform highp float light_attenuation;
// spot
uniform highp float light_spot_attenuation;
uniform highp float light_spot_range;
uniform highp float light_spot_angle;
#endif
//this is needed outside above if because dual paraboloid wants it
uniform highp float light_range;
#ifdef USE_SHADOW
uniform highp vec2 shadow_pixel_size;
#if defined(LIGHT_MODE_OMNI) || defined(LIGHT_MODE_SPOT)
uniform highp sampler2D light_shadow_atlas; //texunit:-3
#endif
#ifdef LIGHT_MODE_DIRECTIONAL
uniform highp sampler2D light_directional_shadow; // texunit:-3
uniform highp vec4 light_split_offsets;
#endif
varying highp vec4 shadow_coord;
#if defined(LIGHT_USE_PSSM2) || defined(LIGHT_USE_PSSM4)
varying highp vec4 shadow_coord2;
#endif
#if defined(LIGHT_USE_PSSM4)
varying highp vec4 shadow_coord3;
varying highp vec4 shadow_coord4;
#endif
uniform vec4 light_clamp;
#endif // light shadow
// directional shadow
#endif
//
// varyings
//
#if defined(RENDER_DEPTH) && defined(USE_RGBA_SHADOWS)
varying highp vec4 position_interp;
#endif
varying highp vec3 vertex_interp;
varying vec3 normal_interp;
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
varying vec3 tangent_interp;
varying vec3 binormal_interp;
#endif
#if defined(ENABLE_COLOR_INTERP)
varying vec4 color_interp;
#endif
#if defined(ENABLE_UV_INTERP)
varying vec2 uv_interp;
#endif
#if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP)
varying vec2 uv2_interp;
#endif
varying vec3 view_interp;
vec3 F0(float metallic, float specular, vec3 albedo) {
float dielectric = 0.16 * specular * specular;
// use albedo * metallic as colored specular reflectance at 0 angle for metallic materials;
// see https://google.github.io/filament/Filament.md.html
return mix(vec3(dielectric), albedo, vec3(metallic));
}
/* clang-format off */
FRAGMENT_SHADER_GLOBALS
/* clang-format on */
#ifdef RENDER_DEPTH_DUAL_PARABOLOID
varying highp float dp_clip;
#endif
#ifdef USE_LIGHTING
// This returns the G_GGX function divided by 2 cos_theta_m, where in practice cos_theta_m is either N.L or N.V.
// We're dividing this factor off because the overall term we'll end up looks like
// (see, for example, the first unnumbered equation in B. Burley, "Physically Based Shading at Disney", SIGGRAPH 2012):
//
// F(L.V) D(N.H) G(N.L) G(N.V) / (4 N.L N.V)
//
// We're basically regouping this as
//
// F(L.V) D(N.H) [G(N.L)/(2 N.L)] [G(N.V) / (2 N.V)]
//
// and thus, this function implements the [G(N.m)/(2 N.m)] part with m = L or V.
//
// The contents of the D and G (G1) functions (GGX) are taken from
// E. Heitz, "Understanding the Masking-Shadowing Function in Microfacet-Based BRDFs", J. Comp. Graph. Tech. 3 (2) (2014).
// Eqns 71-72 and 85-86 (see also Eqns 43 and 80).
/*
float G_GGX_2cos(float cos_theta_m, float alpha) {
// Schlick's approximation
// C. Schlick, "An Inexpensive BRDF Model for Physically-based Rendering", Computer Graphics Forum. 13 (3): 233 (1994)
// Eq. (19), although see Heitz (2014) the about the problems with his derivation.
// It nevertheless approximates GGX well with k = alpha/2.
float k = 0.5 * alpha;
return 0.5 / (cos_theta_m * (1.0 - k) + k);
// float cos2 = cos_theta_m * cos_theta_m;
// float sin2 = (1.0 - cos2);
// return 1.0 / (cos_theta_m + sqrt(cos2 + alpha * alpha * sin2));
}
*/
// This approximates G_GGX_2cos(cos_theta_l, alpha) * G_GGX_2cos(cos_theta_v, alpha)
// See Filament docs, Specular G section.
float V_GGX(float cos_theta_l, float cos_theta_v, float alpha) {
return 0.5 / mix(2.0 * cos_theta_l * cos_theta_v, cos_theta_l + cos_theta_v, alpha);
}
float D_GGX(float cos_theta_m, float alpha) {
float alpha2 = alpha * alpha;
float d = 1.0 + (alpha2 - 1.0) * cos_theta_m * cos_theta_m;
return alpha2 / (M_PI * d * d);
}
/*
float G_GGX_anisotropic_2cos(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi) {
float cos2 = cos_theta_m * cos_theta_m;
float sin2 = (1.0 - cos2);
float s_x = alpha_x * cos_phi;
float s_y = alpha_y * sin_phi;
return 1.0 / max(cos_theta_m + sqrt(cos2 + (s_x * s_x + s_y * s_y) * sin2), 0.001);
}
*/
// This approximates G_GGX_anisotropic_2cos(cos_theta_l, ...) * G_GGX_anisotropic_2cos(cos_theta_v, ...)
// See Filament docs, Anisotropic specular BRDF section.
float V_GGX_anisotropic(float alpha_x, float alpha_y, float TdotV, float TdotL, float BdotV, float BdotL, float NdotV, float NdotL) {
float Lambda_V = NdotL * length(vec3(alpha_x * TdotV, alpha_y * BdotV, NdotV));
float Lambda_L = NdotV * length(vec3(alpha_x * TdotL, alpha_y * BdotL, NdotL));
return 0.5 / (Lambda_V + Lambda_L);
}
float D_GGX_anisotropic(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi, float NdotH) {
float alpha2 = alpha_x * alpha_y;
highp vec3 v = vec3(alpha_y * cos_phi, alpha_x * sin_phi, alpha2 * NdotH);
highp float v2 = dot(v, v);
float w2 = alpha2 / v2;
float D = alpha2 * w2 * w2 * (1.0 / M_PI);
return D;
/* float cos2 = cos_theta_m * cos_theta_m;
float sin2 = (1.0 - cos2);
float r_x = cos_phi / alpha_x;
float r_y = sin_phi / alpha_y;
float d = cos2 + sin2 * (r_x * r_x + r_y * r_y);
return 1.0 / max(M_PI * alpha_x * alpha_y * d * d, 0.001); */
}
float SchlickFresnel(float u) {
float m = 1.0 - u;
float m2 = m * m;
return m2 * m2 * m; // pow(m,5)
}
float GTR1(float NdotH, float a) {
if (a >= 1.0)
return 1.0 / M_PI;
float a2 = a * a;
float t = 1.0 + (a2 - 1.0) * NdotH * NdotH;
return (a2 - 1.0) / (M_PI * log(a2) * t);
}
void light_compute(
vec3 N,
vec3 L,
vec3 V,
vec3 B,
vec3 T,
vec3 light_color,
vec3 attenuation,
vec3 diffuse_color,
vec3 transmission,
float specular_blob_intensity,
float roughness,
float metallic,
float specular,
float rim,
float rim_tint,
float clearcoat,
float clearcoat_gloss,
float anisotropy,
inout vec3 diffuse_light,
inout vec3 specular_light,
inout float alpha) {
//this makes lights behave closer to linear, but then addition of lights looks bad
//better left disabled
//#define SRGB_APPROX(m_var) m_var = pow(m_var,0.4545454545);
/*
#define SRGB_APPROX(m_var) {\
float S1 = sqrt(m_var);\
float S2 = sqrt(S1);\
float S3 = sqrt(S2);\
m_var = 0.662002687 * S1 + 0.684122060 * S2 - 0.323583601 * S3 - 0.0225411470 * m_var;\
}
*/
#define SRGB_APPROX(m_var)
#if defined(USE_LIGHT_SHADER_CODE)
// light is written by the light shader
vec3 normal = N;
vec3 albedo = diffuse_color;
vec3 light = L;
vec3 view = V;
/* clang-format off */
LIGHT_SHADER_CODE
/* clang-format on */
#else
float NdotL = dot(N, L);
float cNdotL = max(NdotL, 0.0); // clamped NdotL
float NdotV = dot(N, V);
float cNdotV = max(abs(NdotV), 1e-6);
#if defined(DIFFUSE_BURLEY) || defined(SPECULAR_BLINN) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_USE_CLEARCOAT)
vec3 H = normalize(V + L);
#endif
#if defined(SPECULAR_BLINN) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_USE_CLEARCOAT)
float cNdotH = max(dot(N, H), 0.0);
#endif
#if defined(DIFFUSE_BURLEY) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_USE_CLEARCOAT)
float cLdotH = max(dot(L, H), 0.0);
#endif
if (metallic < 1.0) {
#if defined(DIFFUSE_OREN_NAYAR)
vec3 diffuse_brdf_NL;
#else
float diffuse_brdf_NL; // BRDF times N.L for calculating diffuse radiance
#endif
#if defined(DIFFUSE_LAMBERT_WRAP)
// energy conserving lambert wrap shader
diffuse_brdf_NL = max(0.0, (NdotL + roughness) / ((1.0 + roughness) * (1.0 + roughness)));
#elif defined(DIFFUSE_OREN_NAYAR)
{
// see http://mimosa-pudica.net/improved-oren-nayar.html
float LdotV = dot(L, V);
float s = LdotV - NdotL * NdotV;
float t = mix(1.0, max(NdotL, NdotV), step(0.0, s));
float sigma2 = roughness * roughness; // TODO: this needs checking
vec3 A = 1.0 + sigma2 * (-0.5 / (sigma2 + 0.33) + 0.17 * diffuse_color / (sigma2 + 0.13));
float B = 0.45 * sigma2 / (sigma2 + 0.09);
diffuse_brdf_NL = cNdotL * (A + vec3(B) * s / t) * (1.0 / M_PI);
}
#elif defined(DIFFUSE_TOON)
diffuse_brdf_NL = smoothstep(-roughness, max(roughness, 0.01), NdotL);
#elif defined(DIFFUSE_BURLEY)
{
float FD90_minus_1 = 2.0 * cLdotH * cLdotH * roughness - 0.5;
float FdV = 1.0 + FD90_minus_1 * SchlickFresnel(cNdotV);
float FdL = 1.0 + FD90_minus_1 * SchlickFresnel(cNdotL);
diffuse_brdf_NL = (1.0 / M_PI) * FdV * FdL * cNdotL;
/*
float energyBias = mix(roughness, 0.0, 0.5);
float energyFactor = mix(roughness, 1.0, 1.0 / 1.51);
float fd90 = energyBias + 2.0 * VoH * VoH * roughness;
float f0 = 1.0;
float lightScatter = f0 + (fd90 - f0) * pow(1.0 - cNdotL, 5.0);
float viewScatter = f0 + (fd90 - f0) * pow(1.0 - cNdotV, 5.0);
diffuse_brdf_NL = lightScatter * viewScatter * energyFactor;
*/
}
#else
// lambert
diffuse_brdf_NL = cNdotL * (1.0 / M_PI);
#endif
SRGB_APPROX(diffuse_brdf_NL)
diffuse_light += light_color * diffuse_color * diffuse_brdf_NL * attenuation;
#if defined(TRANSMISSION_USED)
diffuse_light += light_color * diffuse_color * (vec3(1.0 / M_PI) - diffuse_brdf_NL) * transmission * attenuation;
#endif
#if defined(LIGHT_USE_RIM)
float rim_light = pow(max(0.0, 1.0 - cNdotV), max(0.0, (1.0 - roughness) * 16.0));
diffuse_light += rim_light * rim * mix(vec3(1.0), diffuse_color, rim_tint) * light_color;
#endif
}
if (roughness > 0.0) {
#if defined(SPECULAR_SCHLICK_GGX)
vec3 specular_brdf_NL = vec3(0.0);
#else
float specular_brdf_NL = 0.0;
#endif
#if defined(SPECULAR_BLINN)
//normalized blinn
float shininess = exp2(15.0 * (1.0 - roughness) + 1.0) * 0.25;
float blinn = pow(cNdotH, shininess) * cNdotL;
blinn *= (shininess + 8.0) * (1.0 / (8.0 * M_PI));
specular_brdf_NL = blinn;
#elif defined(SPECULAR_PHONG)
vec3 R = normalize(-reflect(L, N));
float cRdotV = max(0.0, dot(R, V));
float shininess = exp2(15.0 * (1.0 - roughness) + 1.0) * 0.25;
float phong = pow(cRdotV, shininess);
phong *= (shininess + 8.0) * (1.0 / (8.0 * M_PI));
specular_brdf_NL = (phong) / max(4.0 * cNdotV * cNdotL, 0.75);
#elif defined(SPECULAR_TOON)
vec3 R = normalize(-reflect(L, N));
float RdotV = dot(R, V);
float mid = 1.0 - roughness;
mid *= mid;
specular_brdf_NL = smoothstep(mid - roughness * 0.5, mid + roughness * 0.5, RdotV) * mid;
#elif defined(SPECULAR_DISABLED)
// none..
#elif defined(SPECULAR_SCHLICK_GGX)
// shlick+ggx as default
#if defined(LIGHT_USE_ANISOTROPY)
float alpha_ggx = roughness * roughness;
float aspect = sqrt(1.0 - anisotropy * 0.9);
float ax = alpha_ggx / aspect;
float ay = alpha_ggx * aspect;
float XdotH = dot(T, H);
float YdotH = dot(B, H);
float D = D_GGX_anisotropic(cNdotH, ax, ay, XdotH, YdotH, cNdotH);
//float G = G_GGX_anisotropic_2cos(cNdotL, ax, ay, XdotH, YdotH) * G_GGX_anisotropic_2cos(cNdotV, ax, ay, XdotH, YdotH);
float G = V_GGX_anisotropic(ax, ay, dot(T, V), dot(T, L), dot(B, V), dot(B, L), cNdotV, cNdotL);
#else
float alpha_ggx = roughness * roughness;
float D = D_GGX(cNdotH, alpha_ggx);
//float G = G_GGX_2cos(cNdotL, alpha_ggx) * G_GGX_2cos(cNdotV, alpha_ggx);
float G = V_GGX(cNdotL, cNdotV, alpha_ggx);
#endif
// F
vec3 f0 = F0(metallic, specular, diffuse_color);
float cLdotH5 = SchlickFresnel(cLdotH);
vec3 F = mix(vec3(cLdotH5), vec3(1.0), f0);
specular_brdf_NL = cNdotL * D * F * G;
#endif
SRGB_APPROX(specular_brdf_NL)
specular_light += specular_brdf_NL * light_color * specular_blob_intensity * attenuation;
#if defined(LIGHT_USE_CLEARCOAT)
#if !defined(SPECULAR_SCHLICK_GGX)
float cLdotH5 = SchlickFresnel(cLdotH);
#endif
float Dr = GTR1(cNdotH, mix(.1, .001, clearcoat_gloss));
float Fr = mix(.04, 1.0, cLdotH5);
//float Gr = G_GGX_2cos(cNdotL, .25) * G_GGX_2cos(cNdotV, .25);
float Gr = V_GGX(cNdotL, cNdotV, 0.25);
float clearcoat_specular_brdf_NL = 0.25 * clearcoat * Gr * Fr * Dr * cNdotL;
specular_light += clearcoat_specular_brdf_NL * light_color * specular_blob_intensity * attenuation;
#endif
}
#ifdef USE_SHADOW_TO_OPACITY
alpha = min(alpha, clamp(1.0 - length(attenuation), 0.0, 1.0));
#endif
#endif //defined(USE_LIGHT_SHADER_CODE)
}
#endif
// shadows
#ifdef USE_SHADOW
#ifdef USE_RGBA_SHADOWS
#define SHADOW_DEPTH(m_val) dot(m_val, vec4(1.0 / (255.0 * 255.0 * 255.0), 1.0 / (255.0 * 255.0), 1.0 / 255.0, 1.0))
#else
#define SHADOW_DEPTH(m_val) (m_val).r
#endif
#define SAMPLE_SHADOW_TEXEL(p_shadow, p_pos, p_depth) step(p_depth, SHADOW_DEPTH(texture2D(p_shadow, p_pos)))
#define SAMPLE_SHADOW_TEXEL_PROJ(p_shadow, p_pos) step(p_pos.z, SHADOW_DEPTH(texture2DProj(p_shadow, p_pos)))
float sample_shadow(highp sampler2D shadow, highp vec4 spos) {
#ifdef SHADOW_MODE_PCF_13
// Soft PCF filter adapted from three.js:
// https://github.com/mrdoob/three.js/blob/0c815022849389cbe6de14a93e1c2fc7e4b21c18/src/renderers/shaders/ShaderChunk/shadowmap_pars_fragment.glsl.js#L148-L182
// This method actually uses 16 shadow samples. This soft filter isn't needed in GLES3
// as we can use hardware-based linear filtering instead of emulating it in the shader
// like we're doing here.
spos.xyz /= spos.w;
vec2 pos = spos.xy;
float depth = spos.z;
vec2 f = fract(pos * (1.0 / shadow_pixel_size) + 0.5);
pos -= f * shadow_pixel_size;
return (
SAMPLE_SHADOW_TEXEL(shadow, pos, depth) +
SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(shadow_pixel_size.x, 0.0), depth) +
SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(0.0, shadow_pixel_size.y), depth) +
SAMPLE_SHADOW_TEXEL(shadow, pos + shadow_pixel_size, depth) +
mix(
SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(-shadow_pixel_size.x, 0.0), depth),
SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(2.0 * shadow_pixel_size.x, 0.0), depth),
f.x) +
mix(
SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(-shadow_pixel_size.x, shadow_pixel_size.y), depth),
SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(2.0 * shadow_pixel_size.x, shadow_pixel_size.y), depth),
f.x) +
mix(
SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(0.0, -shadow_pixel_size.y), depth),
SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(0.0, 2.0 * shadow_pixel_size.y), depth),
f.y) +
mix(
SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(shadow_pixel_size.x, -shadow_pixel_size.y), depth),
SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(shadow_pixel_size.x, 2.0 * shadow_pixel_size.y), depth),
f.y) +
mix(
mix(SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(-shadow_pixel_size.x, -shadow_pixel_size.y), depth),
SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(2.0 * shadow_pixel_size.x, -shadow_pixel_size.y), depth),
f.x),
mix(SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(-shadow_pixel_size.x, 2.0 * shadow_pixel_size.y), depth),
SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(2.0 * shadow_pixel_size.x, 2.0 * shadow_pixel_size.y), depth),
f.x),
f.y)) *
(1.0 / 9.0);
#endif
#ifdef SHADOW_MODE_PCF_5
spos.xyz /= spos.w;
vec2 pos = spos.xy;
float depth = spos.z;
float avg = SAMPLE_SHADOW_TEXEL(shadow, pos, depth);
avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(shadow_pixel_size.x, 0.0), depth);
avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(-shadow_pixel_size.x, 0.0), depth);
avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(0.0, shadow_pixel_size.y), depth);
avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(0.0, -shadow_pixel_size.y), depth);
return avg * (1.0 / 5.0);
#endif
#if !defined(SHADOW_MODE_PCF_5) || !defined(SHADOW_MODE_PCF_13)
return SAMPLE_SHADOW_TEXEL_PROJ(shadow, spos);
#endif
}
#endif
#if defined(FOG_DEPTH_ENABLED) || defined(FOG_HEIGHT_ENABLED)
#if defined(USE_VERTEX_LIGHTING)
varying vec4 fog_interp;
#else
uniform mediump vec4 fog_color_base;
#ifdef LIGHT_MODE_DIRECTIONAL
uniform mediump vec4 fog_sun_color_amount;
#endif
uniform bool fog_transmit_enabled;
uniform mediump float fog_transmit_curve;
#ifdef FOG_DEPTH_ENABLED
uniform highp float fog_depth_begin;
uniform mediump float fog_depth_curve;
uniform mediump float fog_max_distance;
#endif
#ifdef FOG_HEIGHT_ENABLED
uniform highp float fog_height_min;
uniform highp float fog_height_max;
uniform mediump float fog_height_curve;
#endif
#endif //vertex lit
#endif //fog
void main() {
#ifdef RENDER_DEPTH_DUAL_PARABOLOID
if (dp_clip > 0.0)
discard;
#endif
highp vec3 vertex = vertex_interp;
vec3 view = -normalize(vertex_interp);
vec3 albedo = vec3(1.0);
vec3 transmission = vec3(0.0);
float metallic = 0.0;
float specular = 0.5;
vec3 emission = vec3(0.0);
float roughness = 1.0;
float rim = 0.0;
float rim_tint = 0.0;
float clearcoat = 0.0;
float clearcoat_gloss = 0.0;
float anisotropy = 0.0;
vec2 anisotropy_flow = vec2(1.0, 0.0);
float sss_strength = 0.0; //unused
// gl_FragDepth is not available in GLES2, so writing to DEPTH is not converted to gl_FragDepth by Godot compiler resulting in a
// compile error because DEPTH is not a variable.
float m_DEPTH = 0.0;
float alpha = 1.0;
float side = 1.0;
float specular_blob_intensity = 1.0;
#if defined(SPECULAR_TOON)
specular_blob_intensity *= specular * 2.0;
#endif
#if defined(ENABLE_AO)
float ao = 1.0;
float ao_light_affect = 0.0;
#endif
#if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP)
vec3 binormal = normalize(binormal_interp) * side;
vec3 tangent = normalize(tangent_interp) * side;
#else
vec3 binormal = vec3(0.0);
vec3 tangent = vec3(0.0);
#endif
vec3 normal = normalize(normal_interp) * side;
#if defined(ENABLE_NORMALMAP)
vec3 normalmap = vec3(0.5);
#endif
float normaldepth = 1.0;
#if defined(ALPHA_SCISSOR_USED)
float alpha_scissor = 0.5;
#endif
#if defined(SCREEN_UV_USED)
vec2 screen_uv = gl_FragCoord.xy * screen_pixel_size;
#endif
{
/* clang-format off */
FRAGMENT_SHADER_CODE
/* clang-format on */
}
#if defined(ENABLE_NORMALMAP)
normalmap.xy = normalmap.xy * 2.0 - 1.0;
normalmap.z = sqrt(max(0.0, 1.0 - dot(normalmap.xy, normalmap.xy)));
normal = normalize(mix(normal_interp, tangent * normalmap.x + binormal * normalmap.y + normal * normalmap.z, normaldepth)) * side;
//normal = normalmap;
#endif
normal = normalize(normal);
vec3 N = normal;
vec3 specular_light = vec3(0.0, 0.0, 0.0);
vec3 diffuse_light = vec3(0.0, 0.0, 0.0);
vec3 ambient_light = vec3(0.0, 0.0, 0.0);
vec3 eye_position = view;
#if !defined(USE_SHADOW_TO_OPACITY)
#if defined(ALPHA_SCISSOR_USED)
if (alpha < alpha_scissor) {
discard;
}
#endif // ALPHA_SCISSOR_USED
#ifdef USE_DEPTH_PREPASS
if (alpha < 0.1) {
discard;
}
#endif // USE_DEPTH_PREPASS
#endif // !USE_SHADOW_TO_OPACITY
#ifdef BASE_PASS
// IBL precalculations
float ndotv = clamp(dot(normal, eye_position), 0.0, 1.0);
vec3 f0 = F0(metallic, specular, albedo);
vec3 F = f0 + (max(vec3(1.0 - roughness), f0) - f0) * pow(1.0 - ndotv, 5.0);
#ifdef AMBIENT_LIGHT_DISABLED
ambient_light = vec3(0.0, 0.0, 0.0);
#else
#ifdef USE_RADIANCE_MAP
vec3 ref_vec = reflect(-eye_position, N);
ref_vec = normalize((radiance_inverse_xform * vec4(ref_vec, 0.0)).xyz);
ref_vec.z *= -1.0;
specular_light = textureCubeLod(radiance_map, ref_vec, roughness * RADIANCE_MAX_LOD).xyz * bg_energy;
#ifndef USE_LIGHTMAP
{
vec3 ambient_dir = normalize((radiance_inverse_xform * vec4(normal, 0.0)).xyz);
vec3 env_ambient = textureCubeLod(radiance_map, ambient_dir, 4.0).xyz * bg_energy;
env_ambient *= 1.0 - F;
ambient_light = mix(ambient_color.rgb, env_ambient, ambient_sky_contribution);
}
#endif
#else
ambient_light = ambient_color.rgb;
specular_light = bg_color.rgb * bg_energy;
#endif
#endif // AMBIENT_LIGHT_DISABLED
ambient_light *= ambient_energy;
#if defined(USE_REFLECTION_PROBE1) || defined(USE_REFLECTION_PROBE2)
vec4 ambient_accum = vec4(0.0);
vec4 reflection_accum = vec4(0.0);
#ifdef USE_REFLECTION_PROBE1
reflection_process(reflection_probe1,
#ifdef USE_VERTEX_LIGHTING
refprobe1_reflection_normal_blend.rgb,
#ifndef USE_LIGHTMAP
refprobe1_ambient_normal,
#endif
refprobe1_reflection_normal_blend.a,
#else
normal, vertex_interp, refprobe1_local_matrix,
refprobe1_use_box_project, refprobe1_box_extents, refprobe1_box_offset,
#endif
refprobe1_exterior, refprobe1_intensity, refprobe1_ambient, roughness,
ambient_light, specular_light, reflection_accum, ambient_accum);
#endif // USE_REFLECTION_PROBE1
#ifdef USE_REFLECTION_PROBE2
reflection_process(reflection_probe2,
#ifdef USE_VERTEX_LIGHTING
refprobe2_reflection_normal_blend.rgb,
#ifndef USE_LIGHTMAP
refprobe2_ambient_normal,
#endif
refprobe2_reflection_normal_blend.a,
#else
normal, vertex_interp, refprobe2_local_matrix,
refprobe2_use_box_project, refprobe2_box_extents, refprobe2_box_offset,
#endif
refprobe2_exterior, refprobe2_intensity, refprobe2_ambient, roughness,
ambient_light, specular_light, reflection_accum, ambient_accum);
#endif // USE_REFLECTION_PROBE2
if (reflection_accum.a > 0.0) {
specular_light = reflection_accum.rgb / reflection_accum.a;
}
#ifndef USE_LIGHTMAP
if (ambient_accum.a > 0.0) {
ambient_light = ambient_accum.rgb / ambient_accum.a;
}
#endif
#endif // defined(USE_REFLECTION_PROBE1) || defined(USE_REFLECTION_PROBE2)
// environment BRDF approximation
{
#if defined(DIFFUSE_TOON)
//simplify for toon, as
specular_light *= specular * metallic * albedo * 2.0;
#else
// scales the specular reflections, needs to be be computed before lighting happens,
// but after environment and reflection probes are added
//TODO: this curve is not really designed for gammaspace, should be adjusted
const vec4 c0 = vec4(-1.0, -0.0275, -0.572, 0.022);
const vec4 c1 = vec4(1.0, 0.0425, 1.04, -0.04);
vec4 r = roughness * c0 + c1;
float a004 = min(r.x * r.x, exp2(-9.28 * ndotv)) * r.x + r.y;
vec2 env = vec2(-1.04, 1.04) * a004 + r.zw;
specular_light *= env.x * F + env.y;
#endif
}
#ifdef USE_LIGHTMAP
//ambient light will come entirely from lightmap is lightmap is used
#if defined(USE_LIGHTMAP_FILTER_BICUBIC)
ambient_light = texture2D_bicubic(lightmap, uv2_interp).rgb * lightmap_energy;
#else
ambient_light = texture2D(lightmap, uv2_interp).rgb * lightmap_energy;
#endif
#endif
#ifdef USE_LIGHTMAP_CAPTURE
{
vec3 cone_dirs[12];
cone_dirs[0] = vec3(0.0, 0.0, 1.0);
cone_dirs[1] = vec3(0.866025, 0.0, 0.5);
cone_dirs[2] = vec3(0.267617, 0.823639, 0.5);
cone_dirs[3] = vec3(-0.700629, 0.509037, 0.5);
cone_dirs[4] = vec3(-0.700629, -0.509037, 0.5);
cone_dirs[5] = vec3(0.267617, -0.823639, 0.5);
cone_dirs[6] = vec3(0.0, 0.0, -1.0);
cone_dirs[7] = vec3(0.866025, 0.0, -0.5);
cone_dirs[8] = vec3(0.267617, 0.823639, -0.5);
cone_dirs[9] = vec3(-0.700629, 0.509037, -0.5);
cone_dirs[10] = vec3(-0.700629, -0.509037, -0.5);
cone_dirs[11] = vec3(0.267617, -0.823639, -0.5);
vec3 local_normal = normalize(camera_matrix * vec4(normal, 0.0)).xyz;
vec4 captured = vec4(0.0);
float sum = 0.0;
for (int i = 0; i < 12; i++) {
float amount = max(0.0, dot(local_normal, cone_dirs[i])); //not correct, but creates a nice wrap around effect
captured += lightmap_captures[i] * amount;
sum += amount;
}
captured /= sum;
// Alpha channel is used to indicate if dynamic objects keep the environment lighting
if (lightmap_captures[0].a > 0.5) {
ambient_light += captured.rgb;
} else {
ambient_light = captured.rgb;
}
}
#endif
#endif //BASE PASS
//
// Lighting
//
#ifdef USE_LIGHTING
#ifndef USE_VERTEX_LIGHTING
vec3 L;
#endif
vec3 light_att = vec3(1.0);
#ifdef LIGHT_MODE_OMNI
#ifndef USE_VERTEX_LIGHTING
vec3 light_vec = light_position - vertex;
float light_length = length(light_vec);
float normalized_distance = light_length / light_range;
if (normalized_distance < 1.0) {
float omni_attenuation = pow(1.0 - normalized_distance, light_attenuation);
light_att = vec3(omni_attenuation);
} else {
light_att = vec3(0.0);
}
L = normalize(light_vec);
#endif
#if !defined(SHADOWS_DISABLED)
#ifdef USE_SHADOW
{
highp vec4 splane = shadow_coord;
float shadow_len = length(splane.xyz);
splane.xyz = normalize(splane.xyz);
vec4 clamp_rect = light_clamp;
if (splane.z >= 0.0) {
splane.z += 1.0;
clamp_rect.y += clamp_rect.w;
} else {
splane.z = 1.0 - splane.z;
}
splane.xy /= splane.z;
splane.xy = splane.xy * 0.5 + 0.5;
splane.z = shadow_len / light_range;
splane.xy = clamp_rect.xy + splane.xy * clamp_rect.zw;
splane.w = 1.0;
float shadow = sample_shadow(light_shadow_atlas, splane);
light_att *= mix(shadow_color.rgb, vec3(1.0), shadow);
}
#endif
#endif //SHADOWS_DISABLED
#endif //type omni
#ifdef LIGHT_MODE_DIRECTIONAL
#ifndef USE_VERTEX_LIGHTING
vec3 light_vec = -light_direction;
L = normalize(light_vec);
#endif
float depth_z = -vertex.z;
#if !defined(SHADOWS_DISABLED)
#ifdef USE_SHADOW
#ifdef USE_VERTEX_LIGHTING
//compute shadows in a mobile friendly way
#ifdef LIGHT_USE_PSSM4
//take advantage of prefetch
float shadow1 = sample_shadow(light_directional_shadow, shadow_coord);
float shadow2 = sample_shadow(light_directional_shadow, shadow_coord2);
float shadow3 = sample_shadow(light_directional_shadow, shadow_coord3);
float shadow4 = sample_shadow(light_directional_shadow, shadow_coord4);
if (depth_z < light_split_offsets.w) {
float pssm_fade = 0.0;
float shadow_att = 1.0;
#ifdef LIGHT_USE_PSSM_BLEND
float shadow_att2 = 1.0;
float pssm_blend = 0.0;
bool use_blend = true;
#endif
if (depth_z < light_split_offsets.y) {
if (depth_z < light_split_offsets.x) {
shadow_att = shadow1;
#ifdef LIGHT_USE_PSSM_BLEND
shadow_att2 = shadow2;
pssm_blend = smoothstep(0.0, light_split_offsets.x, depth_z);
#endif
} else {
shadow_att = shadow2;
#ifdef LIGHT_USE_PSSM_BLEND
shadow_att2 = shadow3;
pssm_blend = smoothstep(light_split_offsets.x, light_split_offsets.y, depth_z);
#endif
}
} else {
if (depth_z < light_split_offsets.z) {
shadow_att = shadow3;
#if defined(LIGHT_USE_PSSM_BLEND)
shadow_att2 = shadow4;
pssm_blend = smoothstep(light_split_offsets.y, light_split_offsets.z, depth_z);
#endif
} else {
shadow_att = shadow4;
pssm_fade = smoothstep(light_split_offsets.z, light_split_offsets.w, depth_z);
#if defined(LIGHT_USE_PSSM_BLEND)
use_blend = false;
#endif
}
}
#if defined(LIGHT_USE_PSSM_BLEND)
if (use_blend) {
shadow_att = mix(shadow_att, shadow_att2, pssm_blend);
}
#endif
light_att *= mix(shadow_color.rgb, vec3(1.0), shadow_att);
}
#endif //LIGHT_USE_PSSM4
#ifdef LIGHT_USE_PSSM2
//take advantage of prefetch
float shadow1 = sample_shadow(light_directional_shadow, shadow_coord);
float shadow2 = sample_shadow(light_directional_shadow, shadow_coord2);
if (depth_z < light_split_offsets.y) {
float shadow_att = 1.0;
float pssm_fade = 0.0;
#ifdef LIGHT_USE_PSSM_BLEND
float shadow_att2 = 1.0;
float pssm_blend = 0.0;
bool use_blend = true;
#endif
if (depth_z < light_split_offsets.x) {
float pssm_fade = 0.0;
shadow_att = shadow1;
#ifdef LIGHT_USE_PSSM_BLEND
shadow_att2 = shadow2;
pssm_blend = smoothstep(0.0, light_split_offsets.x, depth_z);
#endif
} else {
shadow_att = shadow2;
pssm_fade = smoothstep(light_split_offsets.x, light_split_offsets.y, depth_z);
#ifdef LIGHT_USE_PSSM_BLEND
use_blend = false;
#endif
}
#ifdef LIGHT_USE_PSSM_BLEND
if (use_blend) {
shadow_att = mix(shadow_att, shadow_att2, pssm_blend);
}
#endif
light_att *= mix(shadow_color.rgb, vec3(1.0), shadow_att);
}
#endif //LIGHT_USE_PSSM2
#if !defined(LIGHT_USE_PSSM4) && !defined(LIGHT_USE_PSSM2)
light_att *= mix(shadow_color.rgb, vec3(1.0), sample_shadow(light_directional_shadow, shadow_coord));
#endif //orthogonal
#else //fragment version of pssm
{
#ifdef LIGHT_USE_PSSM4
if (depth_z < light_split_offsets.w) {
#elif defined(LIGHT_USE_PSSM2)
if (depth_z < light_split_offsets.y) {
#else
if (depth_z < light_split_offsets.x) {
#endif //pssm2
highp vec4 pssm_coord;
float pssm_fade = 0.0;
#ifdef LIGHT_USE_PSSM_BLEND
float pssm_blend;
highp vec4 pssm_coord2;
bool use_blend = true;
#endif
#ifdef LIGHT_USE_PSSM4
if (depth_z < light_split_offsets.y) {
if (depth_z < light_split_offsets.x) {
pssm_coord = shadow_coord;
#ifdef LIGHT_USE_PSSM_BLEND
pssm_coord2 = shadow_coord2;
pssm_blend = smoothstep(0.0, light_split_offsets.x, depth_z);
#endif
} else {
pssm_coord = shadow_coord2;
#ifdef LIGHT_USE_PSSM_BLEND
pssm_coord2 = shadow_coord3;
pssm_blend = smoothstep(light_split_offsets.x, light_split_offsets.y, depth_z);
#endif
}
} else {
if (depth_z < light_split_offsets.z) {
pssm_coord = shadow_coord3;
#if defined(LIGHT_USE_PSSM_BLEND)
pssm_coord2 = shadow_coord4;
pssm_blend = smoothstep(light_split_offsets.y, light_split_offsets.z, depth_z);
#endif
} else {
pssm_coord = shadow_coord4;
pssm_fade = smoothstep(light_split_offsets.z, light_split_offsets.w, depth_z);
#if defined(LIGHT_USE_PSSM_BLEND)
use_blend = false;
#endif
}
}
#endif // LIGHT_USE_PSSM4
#ifdef LIGHT_USE_PSSM2
if (depth_z < light_split_offsets.x) {
pssm_coord = shadow_coord;
#ifdef LIGHT_USE_PSSM_BLEND
pssm_coord2 = shadow_coord2;
pssm_blend = smoothstep(0.0, light_split_offsets.x, depth_z);
#endif
} else {
pssm_coord = shadow_coord2;
pssm_fade = smoothstep(light_split_offsets.x, light_split_offsets.y, depth_z);
#ifdef LIGHT_USE_PSSM_BLEND
use_blend = false;
#endif
}
#endif // LIGHT_USE_PSSM2
#if !defined(LIGHT_USE_PSSM4) && !defined(LIGHT_USE_PSSM2)
{
pssm_coord = shadow_coord;
}
#endif
float shadow = sample_shadow(light_directional_shadow, pssm_coord);
#ifdef LIGHT_USE_PSSM_BLEND
if (use_blend) {
shadow = mix(shadow, sample_shadow(light_directional_shadow, pssm_coord2), pssm_blend);
}
#endif
light_att *= mix(shadow_color.rgb, vec3(1.0), shadow);
}
}
#endif //use vertex lighting
#endif //use shadow
#endif // SHADOWS_DISABLED
#endif
#ifdef LIGHT_MODE_SPOT
light_att = vec3(1.0);
#ifndef USE_VERTEX_LIGHTING
vec3 light_rel_vec = light_position - vertex;
float light_length = length(light_rel_vec);
float normalized_distance = light_length / light_range;
if (normalized_distance < 1.0) {
float spot_attenuation = pow(1.0 - normalized_distance, light_attenuation);
vec3 spot_dir = light_direction;
float spot_cutoff = light_spot_angle;
float angle = dot(-normalize(light_rel_vec), spot_dir);
if (angle > spot_cutoff) {
float scos = max(angle, spot_cutoff);
float spot_rim = max(0.0001, (1.0 - scos) / (1.0 - spot_cutoff));
spot_attenuation *= 1.0 - pow(spot_rim, light_spot_attenuation);
light_att = vec3(spot_attenuation);
} else {
light_att = vec3(0.0);
}
} else {
light_att = vec3(0.0);
}
L = normalize(light_rel_vec);
#endif
#if !defined(SHADOWS_DISABLED)
#ifdef USE_SHADOW
{
highp vec4 splane = shadow_coord;
float shadow = sample_shadow(light_shadow_atlas, splane);
light_att *= mix(shadow_color.rgb, vec3(1.0), shadow);
}
#endif
#endif // SHADOWS_DISABLED
#endif // LIGHT_MODE_SPOT
#ifdef USE_VERTEX_LIGHTING
//vertex lighting
specular_light += specular_interp * specular_blob_intensity * light_att;
diffuse_light += diffuse_interp * albedo * light_att;
#else
//fragment lighting
light_compute(
normal,
L,
eye_position,
binormal,
tangent,
light_color.xyz,
light_att,
albedo,
transmission,
specular_blob_intensity * light_specular,
roughness,
metallic,
specular,
rim,
rim_tint,
clearcoat,
clearcoat_gloss,
anisotropy,
diffuse_light,
specular_light,
alpha);
#endif //vertex lighting
#endif //USE_LIGHTING
//compute and merge
#ifdef USE_SHADOW_TO_OPACITY
alpha = min(alpha, clamp(length(ambient_light), 0.0, 1.0));
#if defined(ALPHA_SCISSOR_USED)
if (alpha < alpha_scissor) {
discard;
}
#endif // ALPHA_SCISSOR_USED
#ifdef USE_DEPTH_PREPASS
if (alpha < 0.1) {
discard;
}
#endif // USE_DEPTH_PREPASS
#endif // !USE_SHADOW_TO_OPACITY
#ifndef RENDER_DEPTH
#ifdef SHADELESS
gl_FragColor = vec4(albedo, alpha);
#else
ambient_light *= albedo;
#if defined(ENABLE_AO)
ambient_light *= ao;
ao_light_affect = mix(1.0, ao, ao_light_affect);
specular_light *= ao_light_affect;
diffuse_light *= ao_light_affect;
#endif
diffuse_light *= 1.0 - metallic;
ambient_light *= 1.0 - metallic;
gl_FragColor = vec4(ambient_light + diffuse_light + specular_light, alpha);
//add emission if in base pass
#ifdef BASE_PASS
gl_FragColor.rgb += emission;
#endif
// gl_FragColor = vec4(normal, 1.0);
//apply fog
#if defined(FOG_DEPTH_ENABLED) || defined(FOG_HEIGHT_ENABLED)
#if defined(USE_VERTEX_LIGHTING)
#if defined(BASE_PASS)
gl_FragColor.rgb = mix(gl_FragColor.rgb, fog_interp.rgb, fog_interp.a);
#else
gl_FragColor.rgb *= (1.0 - fog_interp.a);
#endif // BASE_PASS
#else //pixel based fog
float fog_amount = 0.0;
#ifdef LIGHT_MODE_DIRECTIONAL
vec3 fog_color = mix(fog_color_base.rgb, fog_sun_color_amount.rgb, fog_sun_color_amount.a * pow(max(dot(eye_position, light_direction), 0.0), 8.0));
#else
vec3 fog_color = fog_color_base.rgb;
#endif
#ifdef FOG_DEPTH_ENABLED
{
float fog_z = smoothstep(fog_depth_begin, fog_max_distance, length(vertex));
fog_amount = pow(fog_z, fog_depth_curve) * fog_color_base.a;
if (fog_transmit_enabled) {
vec3 total_light = gl_FragColor.rgb;
float transmit = pow(fog_z, fog_transmit_curve);
fog_color = mix(max(total_light, fog_color), fog_color, transmit);
}
}
#endif
#ifdef FOG_HEIGHT_ENABLED
{
float y = (camera_matrix * vec4(vertex, 1.0)).y;
fog_amount = max(fog_amount, pow(smoothstep(fog_height_min, fog_height_max, y), fog_height_curve));
}
#endif
#if defined(BASE_PASS)
gl_FragColor.rgb = mix(gl_FragColor.rgb, fog_color, fog_amount);
#else
gl_FragColor.rgb *= (1.0 - fog_amount);
#endif // BASE_PASS
#endif //use vertex lit
#endif // defined(FOG_DEPTH_ENABLED) || defined(FOG_HEIGHT_ENABLED)
#endif //unshaded
#else // not RENDER_DEPTH
//depth render
#ifdef USE_RGBA_SHADOWS
highp float depth = ((position_interp.z / position_interp.w) + 1.0) * 0.5 + 0.0; // bias
highp vec4 comp = fract(depth * vec4(255.0 * 255.0 * 255.0, 255.0 * 255.0, 255.0, 1.0));
comp -= comp.xxyz * vec4(0.0, 1.0 / 255.0, 1.0 / 255.0, 1.0 / 255.0);
gl_FragColor = comp;
#endif
#endif
}