godot/thirdparty/thekla_atlas/nvmesh/weld/Weld.h
Hein-Pieter van Braam bf05309af7 Import thekla_atlas
As requested by reduz, an import of thekla_atlas into thirdparty/
2017-12-08 15:47:15 +01:00

172 lines
4.0 KiB
C++

// This code is in the public domain -- castanyo@yahoo.es
#ifndef NV_MESH_WELD_H
#define NV_MESH_WELD_H
#include "nvcore/Array.h"
#include "nvcore/Hash.h"
#include "nvcore/Utils.h" // nextPowerOfTwo
#include <string.h> // for memset, memcmp, memcpy
// Weld function to remove array duplicates in linear time using hashing.
namespace nv
{
/// Generic welding routine. This function welds the elements of the array p
/// and returns the cross references in the xrefs array. To compare the elements
/// it uses the given hash and equal functors.
///
/// This code is based on the ideas of Ville Miettinen and Pierre Terdiman.
template <class T, class H=Hash<T>, class E=Equal<T> >
struct Weld
{
// xrefs maps old elements to new elements
uint operator()(Array<T> & p, Array<uint> & xrefs)
{
const uint N = p.size(); // # of input vertices.
uint outputCount = 0; // # of output vertices
uint hashSize = nextPowerOfTwo(N); // size of the hash table
uint * hashTable = new uint[hashSize + N]; // hash table + linked list
uint * next = hashTable + hashSize; // use bottom part as linked list
xrefs.resize(N);
memset( hashTable, NIL, hashSize*sizeof(uint) ); // init hash table (NIL = 0xFFFFFFFF so memset works)
H hash;
E equal;
for (uint i = 0; i < N; i++)
{
const T & e = p[i];
uint32 hashValue = hash(e) & (hashSize-1);
uint offset = hashTable[hashValue];
// traverse linked list
while( offset != NIL && !equal(p[offset], e) )
{
offset = next[offset];
}
xrefs[i] = offset;
// no match found - copy vertex & add to hash
if( offset == NIL )
{
// save xref
xrefs[i] = outputCount;
// copy element
p[outputCount] = e;
// link to hash table
next[outputCount] = hashTable[hashValue];
// update hash heads and increase output counter
hashTable[hashValue] = outputCount++;
}
}
// cleanup
delete [] hashTable;
p.resize(outputCount);
// number of output vertices
return outputCount;
}
};
/// Reorder the given array accoding to the indices given in xrefs.
template <class T>
void reorderArray(Array<T> & array, const Array<uint> & xrefs)
{
const uint count = xrefs.count();
Array<T> new_array;
new_array.resize(count);
for(uint i = 0; i < count; i++) {
new_array[i] = array[xrefs[i]];
}
swap(array, new_array);
}
/// Reverse the given array so that new indices point to old indices.
inline void reverseXRefs(Array<uint> & xrefs, uint count)
{
Array<uint> new_xrefs;
new_xrefs.resize(count);
for(uint i = 0; i < xrefs.count(); i++) {
new_xrefs[xrefs[i]] = i;
}
swap(xrefs, new_xrefs);
}
//
struct WeldN
{
uint vertexSize;
WeldN(uint n) : vertexSize(n) {}
// xrefs maps old elements to new elements
uint operator()(uint8 * ptr, uint N, Array<uint> & xrefs)
{
uint outputCount = 0; // # of output vertices
uint hashSize = nextPowerOfTwo(N); // size of the hash table
uint * hashTable = new uint[hashSize + N]; // hash table + linked list
uint * next = hashTable + hashSize; // use bottom part as linked list
xrefs.resize(N);
memset( hashTable, NIL, hashSize*sizeof(uint) ); // init hash table (NIL = 0xFFFFFFFF so memset works)
for (uint i = 0; i < N; i++)
{
const uint8 * vertex = ptr + i * vertexSize;
uint32 hashValue = sdbmHash(vertex, vertexSize) & (hashSize-1);
uint offset = hashTable[hashValue];
// traverse linked list
while (offset != NIL && memcmp(ptr + offset * vertexSize, vertex, vertexSize) != 0)
{
offset = next[offset];
}
xrefs[i] = offset;
// no match found - copy vertex & add to hash
if (offset == NIL)
{
// save xref
xrefs[i] = outputCount;
// copy element
memcpy(ptr + outputCount * vertexSize, vertex, vertexSize);
// link to hash table
next[outputCount] = hashTable[hashValue];
// update hash heads and increase output counter
hashTable[hashValue] = outputCount++;
}
}
// cleanup
delete [] hashTable;
// number of output vertices
return outputCount;
}
};
} // nv namespace
#endif // NV_MESH_WELD_H