godot/core/math/geometry.cpp
Rémi Verschelde d8223ffa75 Welcome in 2017, dear changelog reader!
That year should bring the long-awaited OpenGL ES 3.0 compatible renderer
with state-of-the-art rendering techniques tuned to work as low as middle
end handheld devices - without compromising with the possibilities given
for higher end desktop games of course. Great times ahead for the Godot
community and the gamers that will play our games!

(cherry picked from commit c7bc44d5ad)
2017-01-12 19:15:30 +01:00

1138 lines
24 KiB
C++

/*************************************************************************/
/* geometry.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* http://www.godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "geometry.h"
#include "print_string.h"
void Geometry::MeshData::optimize_vertices() {
Map<int,int> vtx_remap;
for(int i=0;i<faces.size();i++) {
for(int j=0;j<faces[i].indices.size();j++) {
int idx = faces[i].indices[j];
if (!vtx_remap.has(idx)) {
int ni = vtx_remap.size();
vtx_remap[idx]=ni;
}
faces[i].indices[j]=vtx_remap[idx];
}
}
for(int i=0;i<edges.size();i++) {
int a = edges[i].a;
int b = edges[i].b;
if (!vtx_remap.has(a)) {
int ni = vtx_remap.size();
vtx_remap[a]=ni;
}
if (!vtx_remap.has(b)) {
int ni = vtx_remap.size();
vtx_remap[b]=ni;
}
edges[i].a=vtx_remap[a];
edges[i].b=vtx_remap[b];
}
Vector<Vector3> new_vertices;
new_vertices.resize(vtx_remap.size());
for(int i=0;i<vertices.size();i++) {
if (vtx_remap.has(i))
new_vertices[vtx_remap[i]]=vertices[i];
}
vertices=new_vertices;
}
Vector< Vector<Vector2> > (*Geometry::_decompose_func)(const Vector<Vector2>& p_polygon)=NULL;
struct _FaceClassify {
struct _Link {
int face;
int edge;
void clear() { face=-1; edge=-1; }
_Link() { face=-1; edge=-1; }
};
bool valid;
int group;
_Link links[3];
Face3 face;
_FaceClassify() {
group=-1;
valid=false;
};
};
static bool _connect_faces(_FaceClassify *p_faces, int len, int p_group) {
/* connect faces, error will occur if an edge is shared between more than 2 faces */
/* clear connections */
bool error=false;
for (int i=0;i<len;i++) {
for (int j=0;j<3;j++) {
p_faces[i].links[j].clear();
}
}
for (int i=0;i<len;i++) {
if (p_faces[i].group!=p_group)
continue;
for (int j=i+1;j<len;j++) {
if (p_faces[j].group!=p_group)
continue;
for (int k=0;k<3;k++) {
Vector3 vi1=p_faces[i].face.vertex[k];
Vector3 vi2=p_faces[i].face.vertex[(k+1)%3];
for (int l=0;l<3;l++) {
Vector3 vj2=p_faces[j].face.vertex[l];
Vector3 vj1=p_faces[j].face.vertex[(l+1)%3];
if (vi1.distance_to(vj1)<0.00001 &&
vi2.distance_to(vj2)<0.00001
) {
if (p_faces[i].links[k].face!=-1) {
ERR_PRINT("already linked\n");
error=true;
break;
}
if (p_faces[j].links[l].face!=-1) {
ERR_PRINT("already linked\n");
error=true;
break;
}
p_faces[i].links[k].face=j;
p_faces[i].links[k].edge=l;
p_faces[j].links[l].face=i;
p_faces[j].links[l].edge=k;
}
}
if (error)
break;
}
if (error)
break;
}
if (error)
break;
}
for (int i=0;i<len;i++) {
p_faces[i].valid=true;
for (int j=0;j<3;j++) {
if (p_faces[i].links[j].face==-1)
p_faces[i].valid=false;
}
/*printf("face %i is valid: %i, group %i. connected to %i:%i,%i:%i,%i:%i\n",i,p_faces[i].valid,p_faces[i].group,
p_faces[i].links[0].face,
p_faces[i].links[0].edge,
p_faces[i].links[1].face,
p_faces[i].links[1].edge,
p_faces[i].links[2].face,
p_faces[i].links[2].edge);*/
}
return error;
}
static bool _group_face(_FaceClassify *p_faces, int len, int p_index,int p_group) {
if (p_faces[p_index].group>=0)
return false;
p_faces[p_index].group=p_group;
for (int i=0;i<3;i++) {
ERR_FAIL_INDEX_V(p_faces[p_index].links[i].face,len,true);
_group_face(p_faces,len,p_faces[p_index].links[i].face,p_group);
}
return true;
}
DVector< DVector< Face3 > > Geometry::separate_objects( DVector< Face3 > p_array ) {
DVector< DVector< Face3 > > objects;
int len = p_array.size();
DVector<Face3>::Read r=p_array.read();
const Face3* arrayptr = r.ptr();
DVector< _FaceClassify> fc;
fc.resize( len );
DVector< _FaceClassify >::Write fcw=fc.write();
_FaceClassify * _fcptr = fcw.ptr();
for (int i=0;i<len;i++) {
_fcptr[i].face=arrayptr[i];
}
bool error=_connect_faces(_fcptr,len,-1);
if (error) {
ERR_FAIL_COND_V(error, DVector< DVector< Face3 > >() ); // invalid geometry
}
/* group connected faces in separate objects */
int group=0;
for (int i=0;i<len;i++) {
if (!_fcptr[i].valid)
continue;
if (_group_face(_fcptr,len,i,group)) {
group++;
}
}
/* group connected faces in separate objects */
for (int i=0;i<len;i++) {
_fcptr[i].face=arrayptr[i];
}
if (group>=0) {
objects.resize(group);
DVector< DVector<Face3> >::Write obw=objects.write();
DVector< Face3 > *group_faces = obw.ptr();
for (int i=0;i<len;i++) {
if (!_fcptr[i].valid)
continue;
if (_fcptr[i].group>=0 && _fcptr[i].group<group) {
group_faces[_fcptr[i].group].push_back( _fcptr[i].face );
}
}
}
return objects;
}
/*** GEOMETRY WRAPPER ***/
enum _CellFlags {
_CELL_SOLID=1,
_CELL_EXTERIOR=2,
_CELL_STEP_MASK=0x1C,
_CELL_STEP_NONE=0<<2,
_CELL_STEP_Y_POS=1<<2,
_CELL_STEP_Y_NEG=2<<2,
_CELL_STEP_X_POS=3<<2,
_CELL_STEP_X_NEG=4<<2,
_CELL_STEP_Z_POS=5<<2,
_CELL_STEP_Z_NEG=6<<2,
_CELL_STEP_DONE=7<<2,
_CELL_PREV_MASK=0xE0,
_CELL_PREV_NONE=0<<5,
_CELL_PREV_Y_POS=1<<5,
_CELL_PREV_Y_NEG=2<<5,
_CELL_PREV_X_POS=3<<5,
_CELL_PREV_X_NEG=4<<5,
_CELL_PREV_Z_POS=5<<5,
_CELL_PREV_Z_NEG=6<<5,
_CELL_PREV_FIRST=7<<5,
};
static inline void _plot_face(uint8_t*** p_cell_status,int x,int y,int z,int len_x,int len_y,int len_z,const Vector3& voxelsize,const Face3& p_face) {
AABB aabb( Vector3(x,y,z),Vector3(len_x,len_y,len_z));
aabb.pos=aabb.pos*voxelsize;
aabb.size=aabb.size*voxelsize;
if (!p_face.intersects_aabb(aabb))
return;
if (len_x==1 && len_y==1 && len_z==1) {
p_cell_status[x][y][z]=_CELL_SOLID;
return;
}
int div_x=len_x>1?2:1;
int div_y=len_y>1?2:1;
int div_z=len_z>1?2:1;
#define _SPLIT(m_i,m_div,m_v,m_len_v,m_new_v,m_new_len_v)\
if (m_div==1) {\
m_new_v=m_v;\
m_new_len_v=1; \
} else if (m_i==0) {\
m_new_v=m_v;\
m_new_len_v=m_len_v/2;\
} else {\
m_new_v=m_v+m_len_v/2;\
m_new_len_v=m_len_v-m_len_v/2; \
}
int new_x;
int new_len_x;
int new_y;
int new_len_y;
int new_z;
int new_len_z;
for (int i=0;i<div_x;i++) {
_SPLIT(i,div_x,x,len_x,new_x,new_len_x);
for (int j=0;j<div_y;j++) {
_SPLIT(j,div_y,y,len_y,new_y,new_len_y);
for (int k=0;k<div_z;k++) {
_SPLIT(k,div_z,z,len_z,new_z,new_len_z);
_plot_face(p_cell_status,new_x,new_y,new_z,new_len_x,new_len_y,new_len_z,voxelsize,p_face);
}
}
}
}
static inline void _mark_outside(uint8_t*** p_cell_status,int x,int y,int z,int len_x,int len_y,int len_z) {
if (p_cell_status[x][y][z]&3)
return; // nothing to do, already used and/or visited
p_cell_status[x][y][z]=_CELL_PREV_FIRST;
while(true) {
uint8_t &c = p_cell_status[x][y][z];
//printf("at %i,%i,%i\n",x,y,z);
if ( (c&_CELL_STEP_MASK)==_CELL_STEP_NONE) {
/* Haven't been in here, mark as outside */
p_cell_status[x][y][z]|=_CELL_EXTERIOR;
//printf("not marked as anything, marking exterior\n");
}
//printf("cell step is %i\n",(c&_CELL_STEP_MASK));
if ( (c&_CELL_STEP_MASK)!=_CELL_STEP_DONE) {
/* if not done, increase step */
c+=1<<2;
//printf("incrementing cell step\n");
}
if ( (c&_CELL_STEP_MASK)==_CELL_STEP_DONE) {
/* Go back */
//printf("done, going back a cell\n");
switch(c&_CELL_PREV_MASK) {
case _CELL_PREV_FIRST: {
//printf("at end, finished marking\n");
return;
} break;
case _CELL_PREV_Y_POS: {
y++;
ERR_FAIL_COND(y>=len_y);
} break;
case _CELL_PREV_Y_NEG: {
y--;
ERR_FAIL_COND(y<0);
} break;
case _CELL_PREV_X_POS: {
x++;
ERR_FAIL_COND(x>=len_x);
} break;
case _CELL_PREV_X_NEG: {
x--;
ERR_FAIL_COND(x<0);
} break;
case _CELL_PREV_Z_POS: {
z++;
ERR_FAIL_COND(z>=len_z);
} break;
case _CELL_PREV_Z_NEG: {
z--;
ERR_FAIL_COND(z<0);
} break;
default: {
ERR_FAIL();
}
}
continue;
}
//printf("attempting new cell!\n");
int next_x=x,next_y=y,next_z=z;
uint8_t prev=0;
switch(c&_CELL_STEP_MASK) {
case _CELL_STEP_Y_POS: {
next_y++;
prev=_CELL_PREV_Y_NEG;
} break;
case _CELL_STEP_Y_NEG: {
next_y--;
prev=_CELL_PREV_Y_POS;
} break;
case _CELL_STEP_X_POS: {
next_x++;
prev=_CELL_PREV_X_NEG;
} break;
case _CELL_STEP_X_NEG: {
next_x--;
prev=_CELL_PREV_X_POS;
} break;
case _CELL_STEP_Z_POS: {
next_z++;
prev=_CELL_PREV_Z_NEG;
} break;
case _CELL_STEP_Z_NEG: {
next_z--;
prev=_CELL_PREV_Z_POS;
} break;
default: ERR_FAIL();
}
//printf("testing if new cell will be ok...!\n");
if (next_x<0 || next_x>=len_x)
continue;
if (next_y<0 || next_y>=len_y)
continue;
if (next_z<0 || next_z>=len_z)
continue;
//printf("testing if new cell is traversable\n");
if (p_cell_status[next_x][next_y][next_z]&3)
continue;
//printf("move to it\n");
x=next_x;
y=next_y;
z=next_z;
p_cell_status[x][y][z]|=prev;
}
}
static inline void _build_faces(uint8_t*** p_cell_status,int x,int y,int z,int len_x,int len_y,int len_z,DVector<Face3>& p_faces) {
ERR_FAIL_INDEX(x,len_x);
ERR_FAIL_INDEX(y,len_y);
ERR_FAIL_INDEX(z,len_z);
if (p_cell_status[x][y][z]&_CELL_EXTERIOR)
return;
/* static const Vector3 vertices[8]={
Vector3(0,0,0),
Vector3(0,0,1),
Vector3(0,1,0),
Vector3(0,1,1),
Vector3(1,0,0),
Vector3(1,0,1),
Vector3(1,1,0),
Vector3(1,1,1),
};
*/
#define vert(m_idx) Vector3( (m_idx&4)>>2, (m_idx&2)>>1, m_idx&1 )
static const uint8_t indices[6][4]={
{7,6,4,5},
{7,3,2,6},
{7,5,1,3},
{0,2,3,1},
{0,1,5,4},
{0,4,6,2},
};
/*
{0,1,2,3},
{0,1,4,5},
{0,2,4,6},
{4,5,6,7},
{2,3,7,6},
{1,3,5,7},
{0,2,3,1},
{0,1,5,4},
{0,4,6,2},
{7,6,4,5},
{7,3,2,6},
{7,5,1,3},
*/
for (int i=0;i<6;i++) {
Vector3 face_points[4];
int disp_x=x+((i%3)==0?((i<3)?1:-1):0);
int disp_y=y+(((i-1)%3)==0?((i<3)?1:-1):0);
int disp_z=z+(((i-2)%3)==0?((i<3)?1:-1):0);
bool plot=false;
if (disp_x<0 || disp_x>=len_x)
plot=true;
if (disp_y<0 || disp_y>=len_y)
plot=true;
if (disp_z<0 || disp_z>=len_z)
plot=true;
if (!plot && (p_cell_status[disp_x][disp_y][disp_z]&_CELL_EXTERIOR))
plot=true;
if (!plot)
continue;
for (int j=0;j<4;j++)
face_points[j]=vert( indices[i][j] ) + Vector3(x,y,z);
p_faces.push_back(
Face3(
face_points[0],
face_points[1],
face_points[2]
)
);
p_faces.push_back(
Face3(
face_points[2],
face_points[3],
face_points[0]
)
);
}
}
DVector< Face3 > Geometry::wrap_geometry( DVector< Face3 > p_array,float *p_error ) {
#define _MIN_SIZE 1.0
#define _MAX_LENGTH 20
int face_count=p_array.size();
DVector<Face3>::Read facesr=p_array.read();
const Face3 *faces = facesr.ptr();
AABB global_aabb;
for(int i=0;i<face_count;i++) {
if (i==0) {
global_aabb=faces[i].get_aabb();
} else {
global_aabb.merge_with( faces[i].get_aabb() );
}
}
global_aabb.grow_by(0.01); // avoid numerical error
// determine amount of cells in grid axis
int div_x,div_y,div_z;
if (global_aabb.size.x/_MIN_SIZE<_MAX_LENGTH)
div_x=(int)(global_aabb.size.x/_MIN_SIZE)+1;
else
div_x=_MAX_LENGTH;
if (global_aabb.size.y/_MIN_SIZE<_MAX_LENGTH)
div_y=(int)(global_aabb.size.y/_MIN_SIZE)+1;
else
div_y=_MAX_LENGTH;
if (global_aabb.size.z/_MIN_SIZE<_MAX_LENGTH)
div_z=(int)(global_aabb.size.z/_MIN_SIZE)+1;
else
div_z=_MAX_LENGTH;
Vector3 voxelsize=global_aabb.size;
voxelsize.x/=div_x;
voxelsize.y/=div_y;
voxelsize.z/=div_z;
// create and initialize cells to zero
//print_line("Wrapper: Initializing Cells");
uint8_t ***cell_status=memnew_arr(uint8_t**,div_x);
for(int i=0;i<div_x;i++) {
cell_status[i]=memnew_arr(uint8_t*,div_y);
for(int j=0;j<div_y;j++) {
cell_status[i][j]=memnew_arr(uint8_t,div_z);
for(int k=0;k<div_z;k++) {
cell_status[i][j][k]=0;
}
}
}
// plot faces into cells
//print_line("Wrapper (1/6): Plotting Faces");
for (int i=0;i<face_count;i++) {
Face3 f=faces[i];
for (int j=0;j<3;j++) {
f.vertex[j]-=global_aabb.pos;
}
_plot_face(cell_status,0,0,0,div_x,div_y,div_z,voxelsize,f);
}
// determine which cells connect to the outside by traversing the outside and recursively flood-fill marking
//print_line("Wrapper (2/6): Flood Filling");
for (int i=0;i<div_x;i++) {
for (int j=0;j<div_y;j++) {
_mark_outside(cell_status,i,j,0,div_x,div_y,div_z);
_mark_outside(cell_status,i,j,div_z-1,div_x,div_y,div_z);
}
}
for (int i=0;i<div_z;i++) {
for (int j=0;j<div_y;j++) {
_mark_outside(cell_status,0,j,i,div_x,div_y,div_z);
_mark_outside(cell_status,div_x-1,j,i,div_x,div_y,div_z);
}
}
for (int i=0;i<div_x;i++) {
for (int j=0;j<div_z;j++) {
_mark_outside(cell_status,i,0,j,div_x,div_y,div_z);
_mark_outside(cell_status,i,div_y-1,j,div_x,div_y,div_z);
}
}
// build faces for the inside-outside cell divisors
//print_line("Wrapper (3/6): Building Faces");
DVector<Face3> wrapped_faces;
for (int i=0;i<div_x;i++) {
for (int j=0;j<div_y;j++) {
for (int k=0;k<div_z;k++) {
_build_faces(cell_status,i,j,k,div_x,div_y,div_z,wrapped_faces);
}
}
}
//print_line("Wrapper (4/6): Transforming Back Vertices");
// transform face vertices to global coords
int wrapped_faces_count=wrapped_faces.size();
DVector<Face3>::Write wrapped_facesw=wrapped_faces.write();
Face3* wrapped_faces_ptr=wrapped_facesw.ptr();
for(int i=0;i<wrapped_faces_count;i++) {
for(int j=0;j<3;j++) {
Vector3& v = wrapped_faces_ptr[i].vertex[j];
v=v*voxelsize;
v+=global_aabb.pos;
}
}
// clean up grid
//print_line("Wrapper (5/6): Grid Cleanup");
for(int i=0;i<div_x;i++) {
for(int j=0;j<div_y;j++) {
memdelete_arr( cell_status[i][j] );
}
memdelete_arr( cell_status[i] );
}
memdelete_arr(cell_status);
if (p_error)
*p_error=voxelsize.length();
//print_line("Wrapper (6/6): Finished.");
return wrapped_faces;
}
Geometry::MeshData Geometry::build_convex_mesh(const DVector<Plane> &p_planes) {
MeshData mesh;
#define SUBPLANE_SIZE 1024.0
float subplane_size = 1024.0; // should compute this from the actual plane
for (int i=0;i<p_planes.size();i++) {
Plane p =p_planes[i];
Vector3 ref=Vector3(0.0,1.0,0.0);
if (ABS(p.normal.dot(ref))>0.95)
ref=Vector3(0.0,0.0,1.0); // change axis
Vector3 right = p.normal.cross(ref).normalized();
Vector3 up = p.normal.cross( right ).normalized();
Vector< Vector3 > vertices;
Vector3 center = p.get_any_point();
// make a quad clockwise
vertices.push_back( center - up * subplane_size + right * subplane_size );
vertices.push_back( center - up * subplane_size - right * subplane_size );
vertices.push_back( center + up * subplane_size - right * subplane_size );
vertices.push_back( center + up * subplane_size + right * subplane_size );
for (int j=0;j<p_planes.size();j++) {
if (j==i)
continue;
Vector< Vector3 > new_vertices;
Plane clip=p_planes[j];
if (clip.normal.dot(p.normal)>0.95)
continue;
if (vertices.size()<3)
break;
for(int k=0;k<vertices.size();k++) {
int k_n=(k+1)%vertices.size();
Vector3 edge0_A=vertices[k];
Vector3 edge1_A=vertices[k_n];
real_t dist0 = clip.distance_to(edge0_A);
real_t dist1 = clip.distance_to(edge1_A);
if ( dist0 <= 0 ) { // behind plane
new_vertices.push_back(vertices[k]);
}
// check for different sides and non coplanar
if ( (dist0*dist1) < 0) {
// calculate intersection
Vector3 rel = edge1_A - edge0_A;
real_t den=clip.normal.dot( rel );
if (Math::abs(den)<CMP_EPSILON)
continue; // point too short
real_t dist=-(clip.normal.dot( edge0_A )-clip.d)/den;
Vector3 inters = edge0_A+rel*dist;
new_vertices.push_back(inters);
}
}
vertices=new_vertices;
}
if (vertices.size()<3)
continue;
//result is a clockwise face
MeshData::Face face;
// add face indices
for (int j=0;j<vertices.size();j++) {
int idx=-1;
for (int k=0;k<mesh.vertices.size();k++) {
if (mesh.vertices[k].distance_to(vertices[j])<0.001) {
idx=k;
break;
}
}
if (idx==-1) {
idx=mesh.vertices.size();
mesh.vertices.push_back(vertices[j]);
}
face.indices.push_back(idx);
}
face.plane=p;
mesh.faces.push_back(face);
//add edge
for(int j=0;j<face.indices.size();j++) {
int a=face.indices[j];
int b=face.indices[(j+1)%face.indices.size()];
bool found=false;
for(int k=0;k<mesh.edges.size();k++) {
if (mesh.edges[k].a==a && mesh.edges[k].b==b) {
found=true;
break;
}
if (mesh.edges[k].b==a && mesh.edges[k].a==b) {
found=true;
break;
}
}
if (found)
continue;
MeshData::Edge edge;
edge.a=a;
edge.b=b;
mesh.edges.push_back(edge);
}
}
return mesh;
}
DVector<Plane> Geometry::build_box_planes(const Vector3& p_extents) {
DVector<Plane> planes;
planes.push_back( Plane( Vector3(1,0,0), p_extents.x ) );
planes.push_back( Plane( Vector3(-1,0,0), p_extents.x ) );
planes.push_back( Plane( Vector3(0,1,0), p_extents.y ) );
planes.push_back( Plane( Vector3(0,-1,0), p_extents.y ) );
planes.push_back( Plane( Vector3(0,0,1), p_extents.z ) );
planes.push_back( Plane( Vector3(0,0,-1), p_extents.z ) );
return planes;
}
DVector<Plane> Geometry::build_cylinder_planes(float p_radius, float p_height, int p_sides, Vector3::Axis p_axis) {
DVector<Plane> planes;
for (int i=0;i<p_sides;i++) {
Vector3 normal;
normal[(p_axis+1)%3]=Math::cos(i*(2.0*Math_PI)/p_sides);
normal[(p_axis+2)%3]=Math::sin(i*(2.0*Math_PI)/p_sides);
planes.push_back( Plane( normal, p_radius ) );
}
Vector3 axis;
axis[p_axis]=1.0;
planes.push_back( Plane( axis, p_height*0.5 ) );
planes.push_back( Plane( -axis, p_height*0.5 ) );
return planes;
}
DVector<Plane> Geometry::build_sphere_planes(float p_radius, int p_lats,int p_lons, Vector3::Axis p_axis) {
DVector<Plane> planes;
Vector3 axis;
axis[p_axis]=1.0;
Vector3 axis_neg;
axis_neg[(p_axis+1)%3]=1.0;
axis_neg[(p_axis+2)%3]=1.0;
axis_neg[p_axis]=-1.0;
for (int i=0;i<p_lons;i++) {
Vector3 normal;
normal[(p_axis+1)%3]=Math::cos(i*(2.0*Math_PI)/p_lons);
normal[(p_axis+2)%3]=Math::sin(i*(2.0*Math_PI)/p_lons);
planes.push_back( Plane( normal, p_radius ) );
for (int j=1;j<=p_lats;j++) {
//todo this is stupid, fix
Vector3 angle = normal.linear_interpolate(axis,j/(float)p_lats).normalized();
Vector3 pos = angle*p_radius;
planes.push_back( Plane( pos, angle ) );
planes.push_back( Plane( pos * axis_neg, angle * axis_neg) );
}
}
return planes;
}
DVector<Plane> Geometry::build_capsule_planes(float p_radius, float p_height, int p_sides, int p_lats, Vector3::Axis p_axis) {
DVector<Plane> planes;
Vector3 axis;
axis[p_axis]=1.0;
Vector3 axis_neg;
axis_neg[(p_axis+1)%3]=1.0;
axis_neg[(p_axis+2)%3]=1.0;
axis_neg[p_axis]=-1.0;
for (int i=0;i<p_sides;i++) {
Vector3 normal;
normal[(p_axis+1)%3]=Math::cos(i*(2.0*Math_PI)/p_sides);
normal[(p_axis+2)%3]=Math::sin(i*(2.0*Math_PI)/p_sides);
planes.push_back( Plane( normal, p_radius ) );
for (int j=1;j<=p_lats;j++) {
Vector3 angle = normal.linear_interpolate(axis,j/(float)p_lats).normalized();
Vector3 pos = axis*p_height*0.5 + angle*p_radius;
planes.push_back( Plane( pos, angle ) );
planes.push_back( Plane( pos * axis_neg, angle * axis_neg) );
}
}
return planes;
}
struct _AtlasWorkRect {
Size2i s;
Point2i p;
int idx;
_FORCE_INLINE_ bool operator<(const _AtlasWorkRect& p_r) const { return s.width > p_r.s.width; };
};
struct _AtlasWorkRectResult {
Vector<_AtlasWorkRect> result;
int max_w;
int max_h;
};
void Geometry::make_atlas(const Vector<Size2i>& p_rects,Vector<Point2i>& r_result, Size2i& r_size) {
//super simple, almost brute force scanline stacking fitter
//it's pretty basic for now, but it tries to make sure that the aspect ratio of the
//resulting atlas is somehow square. This is necesary because video cards have limits
//on texture size (usually 2048 or 4096), so the more square a texture, the more chances
//it will work in every hardware.
// for example, it will prioritize a 1024x1024 atlas (works everywhere) instead of a
// 256x8192 atlas (won't work anywhere).
ERR_FAIL_COND(p_rects.size()==0);
Vector<_AtlasWorkRect> wrects;
wrects.resize(p_rects.size());
for(int i=0;i<p_rects.size();i++) {
wrects[i].s=p_rects[i];
wrects[i].idx=i;
}
wrects.sort();
int widest = wrects[0].s.width;
Vector<_AtlasWorkRectResult> results;
for(int i=0;i<=12;i++) {
int w = 1<<i;
int max_h=0;
int max_w=0;
if ( w < widest )
continue;
Vector<int> hmax;
hmax.resize(w);
for(int j=0;j<w;j++)
hmax[j]=0;
//place them
int ofs=0;
int limit_h=0;
for(int j=0;j<wrects.size();j++) {
if (ofs+wrects[j].s.width > w) {
ofs=0;
}
int from_y=0;
for(int k=0;k<wrects[j].s.width;k++) {
if (hmax[ofs+k] > from_y)
from_y=hmax[ofs+k];
}
wrects[j].p.x=ofs;
wrects[j].p.y=from_y;
int end_h = from_y+wrects[j].s.height;
int end_w = ofs+wrects[j].s.width;
if (ofs==0)
limit_h=end_h;
for(int k=0;k<wrects[j].s.width;k++) {
hmax[ofs+k]=end_h;
}
if (end_h > max_h)
max_h=end_h;
if (end_w > max_w)
max_w=end_w;
if (ofs==0 || end_h>limit_h ) //while h limit not reched, keep stacking
ofs+=wrects[j].s.width;
}
_AtlasWorkRectResult result;
result.result=wrects;
result.max_h=max_h;
result.max_w=max_w;
results.push_back(result);
}
//find the result with the best aspect ratio
int best=-1;
float best_aspect=1e20;
for(int i=0;i<results.size();i++) {
float h = nearest_power_of_2(results[i].max_h);
float w = nearest_power_of_2(results[i].max_w);
float aspect = h>w ? h/w : w/h;
if (aspect < best_aspect) {
best=i;
best_aspect=aspect;
}
}
r_result.resize(p_rects.size());
for(int i=0;i<p_rects.size();i++) {
r_result[ results[best].result[i].idx ]=results[best].result[i].p;
}
r_size=Size2(results[best].max_w,results[best].max_h );
}