godot/servers/physics/collision_solver_sat.cpp
Rémi Verschelde d8223ffa75 Welcome in 2017, dear changelog reader!
That year should bring the long-awaited OpenGL ES 3.0 compatible renderer
with state-of-the-art rendering techniques tuned to work as low as middle
end handheld devices - without compromising with the possibilities given
for higher end desktop games of course. Great times ahead for the Godot
community and the gamers that will play our games!

(cherry picked from commit c7bc44d5ad)
2017-01-12 19:15:30 +01:00

1694 lines
45 KiB
C++

/*************************************************************************/
/* collision_solver_sat.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* http://www.godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "collision_solver_sat.h"
#include "geometry.h"
#define _EDGE_IS_VALID_SUPPORT_TRESHOLD 0.02
struct _CollectorCallback {
CollisionSolverSW::CallbackResult callback;
void *userdata;
bool swap;
bool collided;
Vector3 normal;
Vector3 *prev_axis;
_FORCE_INLINE_ void call(const Vector3& p_point_A, const Vector3& p_point_B) {
//if (normal.dot(p_point_A) >= normal.dot(p_point_B))
// return;
// print_line("** A: "+p_point_A+" B: "+p_point_B+" D: "+rtos(p_point_A.distance_to(p_point_B)));
if (swap)
callback(p_point_B,p_point_A,userdata);
else
callback(p_point_A,p_point_B,userdata);
}
};
typedef void (*GenerateContactsFunc)(const Vector3 *,int, const Vector3 *,int ,_CollectorCallback *);
static void _generate_contacts_point_point(const Vector3 * p_points_A,int p_point_count_A, const Vector3 * p_points_B,int p_point_count_B,_CollectorCallback *p_callback) {
#ifdef DEBUG_ENABLED
ERR_FAIL_COND( p_point_count_A != 1 );
ERR_FAIL_COND( p_point_count_B != 1 );
#endif
p_callback->call(*p_points_A,*p_points_B);
}
static void _generate_contacts_point_edge(const Vector3 * p_points_A,int p_point_count_A, const Vector3 * p_points_B,int p_point_count_B,_CollectorCallback *p_callback) {
#ifdef DEBUG_ENABLED
ERR_FAIL_COND( p_point_count_A != 1 );
ERR_FAIL_COND( p_point_count_B != 2 );
#endif
Vector3 closest_B = Geometry::get_closest_point_to_segment_uncapped(*p_points_A, p_points_B );
p_callback->call(*p_points_A,closest_B);
}
static void _generate_contacts_point_face(const Vector3 * p_points_A,int p_point_count_A, const Vector3 * p_points_B,int p_point_count_B,_CollectorCallback *p_callback) {
#ifdef DEBUG_ENABLED
ERR_FAIL_COND( p_point_count_A != 1 );
ERR_FAIL_COND( p_point_count_B < 3 );
#endif
Vector3 closest_B=Plane(p_points_B[0],p_points_B[1],p_points_B[2]).project( *p_points_A );
p_callback->call(*p_points_A,closest_B);
}
static void _generate_contacts_edge_edge(const Vector3 * p_points_A,int p_point_count_A, const Vector3 * p_points_B,int p_point_count_B,_CollectorCallback *p_callback) {
#ifdef DEBUG_ENABLED
ERR_FAIL_COND( p_point_count_A != 2 );
ERR_FAIL_COND( p_point_count_B != 2 ); // circle is actually a 4x3 matrix
#endif
Vector3 rel_A=p_points_A[1]-p_points_A[0];
Vector3 rel_B=p_points_B[1]-p_points_B[0];
Vector3 c=rel_A.cross(rel_B).cross(rel_B);
// if ( Math::abs(rel_A.dot(c) )<_EDGE_IS_VALID_SUPPORT_TRESHOLD ) {
if ( Math::abs(rel_A.dot(c) )<CMP_EPSILON ) {
// should handle somehow..
//ERR_PRINT("TODO FIX");
//return;
Vector3 axis = rel_A.normalized(); //make an axis
Vector3 base_A = p_points_A[0] - axis * axis.dot(p_points_A[0]);
Vector3 base_B = p_points_B[0] - axis * axis.dot(p_points_B[0]);
//sort all 4 points in axis
float dvec[4]={ axis.dot(p_points_A[0]), axis.dot(p_points_A[1]), axis.dot(p_points_B[0]), axis.dot(p_points_B[1]) };
SortArray<float> sa;
sa.sort(dvec,4);
//use the middle ones as contacts
p_callback->call(base_A+axis*dvec[1],base_B+axis*dvec[1]);
p_callback->call(base_A+axis*dvec[2],base_B+axis*dvec[2]);
return;
}
real_t d = (c.dot( p_points_B[0] ) - p_points_A[0].dot(c))/rel_A.dot(c);
if (d<0.0)
d=0.0;
else if (d>1.0)
d=1.0;
Vector3 closest_A=p_points_A[0]+rel_A*d;
Vector3 closest_B=Geometry::get_closest_point_to_segment_uncapped(closest_A, p_points_B);
p_callback->call(closest_A,closest_B);
}
static void _generate_contacts_face_face(const Vector3 * p_points_A,int p_point_count_A, const Vector3 * p_points_B,int p_point_count_B,_CollectorCallback *p_callback) {
#ifdef DEBUG_ENABLED
ERR_FAIL_COND( p_point_count_A <2 );
ERR_FAIL_COND( p_point_count_B <3 );
#endif
static const int max_clip=32;
Vector3 _clipbuf1[max_clip];
Vector3 _clipbuf2[max_clip];
Vector3 *clipbuf_src=_clipbuf1;
Vector3 *clipbuf_dst=_clipbuf2;
int clipbuf_len=p_point_count_A;
// copy A points to clipbuf_src
for (int i=0;i<p_point_count_A;i++) {
clipbuf_src[i]=p_points_A[i];
}
Plane plane_B(p_points_B[0],p_points_B[1],p_points_B[2]);
// go through all of B points
for (int i=0;i<p_point_count_B;i++) {
int i_n=(i+1)%p_point_count_B;
Vector3 edge0_B=p_points_B[i];
Vector3 edge1_B=p_points_B[i_n];
Vector3 clip_normal = (edge0_B - edge1_B).cross( plane_B.normal ).normalized();
// make a clip plane
Plane clip(edge0_B,clip_normal);
// avoid double clip if A is edge
int dst_idx=0;
bool edge = clipbuf_len==2;
for (int j=0;j<clipbuf_len;j++) {
int j_n=(j+1)%clipbuf_len;
Vector3 edge0_A=clipbuf_src[j];
Vector3 edge1_A=clipbuf_src[j_n];
real_t dist0 = clip.distance_to(edge0_A);
real_t dist1 = clip.distance_to(edge1_A);
if ( dist0 <= 0 ) { // behind plane
ERR_FAIL_COND( dst_idx >= max_clip );
clipbuf_dst[dst_idx++]=clipbuf_src[j];
}
// check for different sides and non coplanar
// if ( (dist0*dist1) < -CMP_EPSILON && !(edge && j)) {
if ( (dist0*dist1) < 0 && !(edge && j)) {
// calculate intersection
Vector3 rel = edge1_A - edge0_A;
real_t den=clip.normal.dot( rel );
real_t dist=-(clip.normal.dot( edge0_A )-clip.d)/den;
Vector3 inters = edge0_A+rel*dist;
ERR_FAIL_COND( dst_idx >= max_clip );
clipbuf_dst[dst_idx]=inters;
dst_idx++;
}
}
clipbuf_len=dst_idx;
SWAP(clipbuf_src,clipbuf_dst);
}
// generate contacts
//Plane plane_A(p_points_A[0],p_points_A[1],p_points_A[2]);
int added=0;
for (int i=0;i<clipbuf_len;i++) {
float d = plane_B.distance_to(clipbuf_src[i]);
//if (d>CMP_EPSILON)
// continue;
Vector3 closest_B=clipbuf_src[i] - plane_B.normal*d;
if (p_callback->normal.dot(clipbuf_src[i]) >= p_callback->normal.dot(closest_B))
continue;
p_callback->call(clipbuf_src[i],closest_B);
added++;
}
}
static void _generate_contacts_from_supports(const Vector3 * p_points_A,int p_point_count_A, const Vector3 * p_points_B,int p_point_count_B,_CollectorCallback *p_callback) {
#ifdef DEBUG_ENABLED
ERR_FAIL_COND( p_point_count_A <1 );
ERR_FAIL_COND( p_point_count_B <1 );
#endif
static const GenerateContactsFunc generate_contacts_func_table[3][3]={
{
_generate_contacts_point_point,
_generate_contacts_point_edge,
_generate_contacts_point_face,
},{
0,
_generate_contacts_edge_edge,
_generate_contacts_face_face,
},{
0,0,
_generate_contacts_face_face,
}
};
int pointcount_B;
int pointcount_A;
const Vector3 *points_A;
const Vector3 *points_B;
if (p_point_count_A > p_point_count_B) {
//swap
p_callback->swap = !p_callback->swap;
p_callback->normal = -p_callback->normal;
pointcount_B = p_point_count_A;
pointcount_A = p_point_count_B;
points_A=p_points_B;
points_B=p_points_A;
} else {
pointcount_B = p_point_count_B;
pointcount_A = p_point_count_A;
points_A=p_points_A;
points_B=p_points_B;
}
int version_A = (pointcount_A > 3 ? 3 : pointcount_A) -1;
int version_B = (pointcount_B > 3 ? 3 : pointcount_B) -1;
GenerateContactsFunc contacts_func = generate_contacts_func_table[version_A][version_B];
ERR_FAIL_COND(!contacts_func);
contacts_func(points_A,pointcount_A,points_B,pointcount_B,p_callback);
}
template<class ShapeA, class ShapeB, bool withMargin=false>
class SeparatorAxisTest {
const ShapeA *shape_A;
const ShapeB *shape_B;
const Transform *transform_A;
const Transform *transform_B;
real_t best_depth;
Vector3 best_axis;
_CollectorCallback *callback;
real_t margin_A;
real_t margin_B;
Vector3 separator_axis;
public:
_FORCE_INLINE_ bool test_previous_axis() {
if (callback && callback->prev_axis && *callback->prev_axis!=Vector3())
return test_axis(*callback->prev_axis);
else
return true;
}
_FORCE_INLINE_ bool test_axis(const Vector3& p_axis) {
Vector3 axis=p_axis;
if ( Math::abs(axis.x)<CMP_EPSILON &&
Math::abs(axis.y)<CMP_EPSILON &&
Math::abs(axis.z)<CMP_EPSILON ) {
// strange case, try an upwards separator
axis=Vector3(0.0,1.0,0.0);
}
real_t min_A,max_A,min_B,max_B;
shape_A->project_range(axis,*transform_A,min_A,max_A);
shape_B->project_range(axis,*transform_B,min_B,max_B);
if (withMargin) {
min_A-=margin_A;
max_A+=margin_A;
min_B-=margin_B;
max_B+=margin_B;
}
min_B -= ( max_A - min_A ) * 0.5;
max_B += ( max_A - min_A ) * 0.5;
real_t dmin = min_B - ( min_A + max_A ) * 0.5;
real_t dmax = max_B - ( min_A + max_A ) * 0.5;
if (dmin > 0.0 || dmax < 0.0) {
separator_axis=axis;
return false; // doesn't contain 0
}
//use the smallest depth
dmin = Math::abs(dmin);
if ( dmax < dmin ) {
if ( dmax < best_depth ) {
best_depth=dmax;
best_axis=axis;
}
} else {
if ( dmin < best_depth ) {
best_depth=dmin;
best_axis=-axis; // keep it as A axis
}
}
return true;
}
_FORCE_INLINE_ void generate_contacts() {
// nothing to do, don't generate
if (best_axis==Vector3(0.0,0.0,0.0))
return;
if (!callback->callback) {
//just was checking intersection?
callback->collided=true;
if (callback->prev_axis)
*callback->prev_axis=best_axis;
return;
}
static const int max_supports=16;
Vector3 supports_A[max_supports];
int support_count_A;
shape_A->get_supports(transform_A->basis.xform_inv(-best_axis).normalized(),max_supports,supports_A,support_count_A);
for(int i=0;i<support_count_A;i++) {
supports_A[i] = transform_A->xform(supports_A[i]);
}
if (withMargin) {
for(int i=0;i<support_count_A;i++) {
supports_A[i]+=-best_axis*margin_A;
}
}
Vector3 supports_B[max_supports];
int support_count_B;
shape_B->get_supports(transform_B->basis.xform_inv(best_axis).normalized(),max_supports,supports_B,support_count_B);
for(int i=0;i<support_count_B;i++) {
supports_B[i] = transform_B->xform(supports_B[i]);
}
if (withMargin) {
for(int i=0;i<support_count_B;i++) {
supports_B[i]+=best_axis*margin_B;
}
}
/*
print_line("best depth: "+rtos(best_depth));
print_line("best axis: "+(best_axis));
for(int i=0;i<support_count_A;i++) {
print_line("A-"+itos(i)+": "+supports_A[i]);
}
for(int i=0;i<support_count_B;i++) {
print_line("B-"+itos(i)+": "+supports_B[i]);
}
*/
callback->normal=best_axis;
if (callback->prev_axis)
*callback->prev_axis=best_axis;
_generate_contacts_from_supports(supports_A,support_count_A,supports_B,support_count_B,callback);
callback->collided=true;
//CollisionSolverSW::CallbackResult cbk=NULL;
//cbk(Vector3(),Vector3(),NULL);
}
_FORCE_INLINE_ SeparatorAxisTest(const ShapeA *p_shape_A,const Transform& p_transform_A, const ShapeB *p_shape_B,const Transform& p_transform_B,_CollectorCallback *p_callback,real_t p_margin_A=0,real_t p_margin_B=0) {
best_depth=1e15;
shape_A=p_shape_A;
shape_B=p_shape_B;
transform_A=&p_transform_A;
transform_B=&p_transform_B;
callback=p_callback;
margin_A=p_margin_A;
margin_B=p_margin_B;
}
};
/****** SAT TESTS *******/
/****** SAT TESTS *******/
/****** SAT TESTS *******/
/****** SAT TESTS *******/
typedef void (*CollisionFunc)(const ShapeSW*,const Transform&,const ShapeSW*,const Transform&,_CollectorCallback *p_callback,float,float);
template<bool withMargin>
static void _collision_sphere_sphere(const ShapeSW *p_a,const Transform &p_transform_a,const ShapeSW *p_b,const Transform &p_transform_b,_CollectorCallback *p_collector,float p_margin_a,float p_margin_b) {
const SphereShapeSW *sphere_A = static_cast<const SphereShapeSW*>(p_a);
const SphereShapeSW *sphere_B = static_cast<const SphereShapeSW*>(p_b);
SeparatorAxisTest<SphereShapeSW,SphereShapeSW,withMargin> separator(sphere_A,p_transform_a,sphere_B,p_transform_b,p_collector,p_margin_a,p_margin_b);
// previous axis
if (!separator.test_previous_axis())
return;
if (!separator.test_axis( (p_transform_a.origin-p_transform_b.origin).normalized() ))
return;
separator.generate_contacts();
}
template<bool withMargin>
static void _collision_sphere_box(const ShapeSW *p_a,const Transform &p_transform_a,const ShapeSW *p_b,const Transform &p_transform_b,_CollectorCallback *p_collector,float p_margin_a,float p_margin_b) {
const SphereShapeSW *sphere_A = static_cast<const SphereShapeSW*>(p_a);
const BoxShapeSW *box_B = static_cast<const BoxShapeSW*>(p_b);
SeparatorAxisTest<SphereShapeSW,BoxShapeSW,withMargin> separator(sphere_A,p_transform_a,box_B,p_transform_b,p_collector,p_margin_a,p_margin_b);
if (!separator.test_previous_axis())
return;
// test faces
for (int i=0;i<3;i++) {
Vector3 axis = p_transform_b.basis.get_axis(i).normalized();
if (!separator.test_axis( axis ))
return;
}
// calculate closest point to sphere
Vector3 cnormal=p_transform_b.xform_inv( p_transform_a.origin );
Vector3 cpoint=p_transform_b.xform( Vector3(
(cnormal.x<0) ? -box_B->get_half_extents().x : box_B->get_half_extents().x,
(cnormal.y<0) ? -box_B->get_half_extents().y : box_B->get_half_extents().y,
(cnormal.z<0) ? -box_B->get_half_extents().z : box_B->get_half_extents().z
) );
// use point to test axis
Vector3 point_axis = (p_transform_a.origin - cpoint).normalized();
if (!separator.test_axis( point_axis ))
return;
// test edges
for (int i=0;i<3;i++) {
Vector3 axis = point_axis.cross( p_transform_b.basis.get_axis(i) ).cross( p_transform_b.basis.get_axis(i) ).normalized();
if (!separator.test_axis( axis ))
return;
}
separator.generate_contacts();
}
template<bool withMargin>
static void _collision_sphere_capsule(const ShapeSW *p_a,const Transform &p_transform_a,const ShapeSW *p_b,const Transform &p_transform_b,_CollectorCallback *p_collector,float p_margin_a,float p_margin_b) {
const SphereShapeSW *sphere_A = static_cast<const SphereShapeSW*>(p_a);
const CapsuleShapeSW *capsule_B = static_cast<const CapsuleShapeSW*>(p_b);
SeparatorAxisTest<SphereShapeSW,CapsuleShapeSW,withMargin> separator(sphere_A,p_transform_a,capsule_B,p_transform_b,p_collector,p_margin_a,p_margin_b);
if (!separator.test_previous_axis())
return;
//capsule sphere 1, sphere
Vector3 capsule_axis = p_transform_b.basis.get_axis(2) * (capsule_B->get_height() * 0.5);
Vector3 capsule_ball_1 = p_transform_b.origin + capsule_axis;
if (!separator.test_axis( (capsule_ball_1 - p_transform_a.origin).normalized() ) )
return;
//capsule sphere 2, sphere
Vector3 capsule_ball_2 = p_transform_b.origin - capsule_axis;
if (!separator.test_axis( (capsule_ball_2 - p_transform_a.origin).normalized() ) )
return;
//capsule edge, sphere
Vector3 b2a = p_transform_a.origin - p_transform_b.origin;
Vector3 axis = b2a.cross( capsule_axis ).cross( capsule_axis ).normalized();
if (!separator.test_axis( axis ))
return;
separator.generate_contacts();
}
template<bool withMargin>
static void _collision_sphere_convex_polygon(const ShapeSW *p_a,const Transform &p_transform_a,const ShapeSW *p_b,const Transform &p_transform_b,_CollectorCallback *p_collector,float p_margin_a,float p_margin_b) {
const SphereShapeSW *sphere_A = static_cast<const SphereShapeSW*>(p_a);
const ConvexPolygonShapeSW *convex_polygon_B = static_cast<const ConvexPolygonShapeSW*>(p_b);
SeparatorAxisTest<SphereShapeSW,ConvexPolygonShapeSW,withMargin> separator(sphere_A,p_transform_a,convex_polygon_B,p_transform_b,p_collector,p_margin_a,p_margin_b);
if (!separator.test_previous_axis())
return;
const Geometry::MeshData &mesh = convex_polygon_B->get_mesh();
const Geometry::MeshData::Face *faces = mesh.faces.ptr();
int face_count = mesh.faces.size();
const Geometry::MeshData::Edge *edges = mesh.edges.ptr();
int edge_count = mesh.edges.size();
const Vector3 *vertices = mesh.vertices.ptr();
int vertex_count = mesh.vertices.size();
// faces of B
for (int i=0;i<face_count;i++) {
Vector3 axis = p_transform_b.xform( faces[i].plane ).normal;
if (!separator.test_axis( axis ))
return;
}
// edges of B
for(int i=0;i<edge_count;i++) {
Vector3 v1=p_transform_b.xform( vertices[ edges[i].a ] );
Vector3 v2=p_transform_b.xform( vertices[ edges[i].b ] );
Vector3 v3=p_transform_a.origin;
Vector3 n1=v2-v1;
Vector3 n2=v2-v3;
Vector3 axis = n1.cross(n2).cross(n1).normalized();;
if (!separator.test_axis( axis ))
return;
}
// vertices of B
for(int i=0;i<vertex_count;i++) {
Vector3 v1=p_transform_b.xform( vertices[i] );
Vector3 v2=p_transform_a.origin;
Vector3 axis = (v2-v1).normalized();
if (!separator.test_axis( axis ))
return;
}
separator.generate_contacts();
}
template<bool withMargin>
static void _collision_sphere_face(const ShapeSW *p_a,const Transform &p_transform_a, const ShapeSW *p_b,const Transform& p_transform_b,_CollectorCallback *p_collector,float p_margin_a,float p_margin_b) {
const SphereShapeSW *sphere_A = static_cast<const SphereShapeSW*>(p_a);
const FaceShapeSW *face_B = static_cast<const FaceShapeSW*>(p_b);
SeparatorAxisTest<SphereShapeSW,FaceShapeSW,withMargin> separator(sphere_A,p_transform_a,face_B,p_transform_b,p_collector,p_margin_a,p_margin_b);
Vector3 vertex[3]={
p_transform_b.xform( face_B->vertex[0] ),
p_transform_b.xform( face_B->vertex[1] ),
p_transform_b.xform( face_B->vertex[2] ),
};
if (!separator.test_axis( (vertex[0]-vertex[2]).cross(vertex[0]-vertex[1]).normalized() ))
return;
// edges and points of B
for(int i=0;i<3;i++) {
Vector3 n1=vertex[i]-p_transform_a.origin;
if (!separator.test_axis( n1.normalized() )) {
return;
}
Vector3 n2=vertex[(i+1)%3]-vertex[i];
Vector3 axis = n1.cross(n2).cross(n2).normalized();
if (!separator.test_axis( axis )) {
return;
}
}
separator.generate_contacts();
}
template<bool withMargin>
static void _collision_box_box(const ShapeSW *p_a,const Transform &p_transform_a,const ShapeSW *p_b,const Transform &p_transform_b,_CollectorCallback *p_collector,float p_margin_a,float p_margin_b) {
const BoxShapeSW *box_A = static_cast<const BoxShapeSW*>(p_a);
const BoxShapeSW *box_B = static_cast<const BoxShapeSW*>(p_b);
SeparatorAxisTest<BoxShapeSW,BoxShapeSW,withMargin> separator(box_A,p_transform_a,box_B,p_transform_b,p_collector,p_margin_a,p_margin_b);
if (!separator.test_previous_axis())
return;
// test faces of A
for (int i=0;i<3;i++) {
Vector3 axis = p_transform_a.basis.get_axis(i).normalized();
if (!separator.test_axis( axis ))
return;
}
// test faces of B
for (int i=0;i<3;i++) {
Vector3 axis = p_transform_b.basis.get_axis(i).normalized();
if (!separator.test_axis( axis ))
return;
}
// test combined edges
for (int i=0;i<3;i++) {
for (int j=0;j<3;j++) {
Vector3 axis = p_transform_a.basis.get_axis(i).cross( p_transform_b.basis.get_axis(j) );
if (axis.length_squared()<CMP_EPSILON)
continue;
axis.normalize();
if (!separator.test_axis( axis )) {
return;
}
}
}
if (withMargin) {
//add endpoint test between closest vertices and edges
// calculate closest point to sphere
Vector3 ab_vec = p_transform_b.origin - p_transform_a.origin;
Vector3 cnormal_a=p_transform_a.basis.xform_inv( ab_vec );
Vector3 support_a=p_transform_a.xform( Vector3(
(cnormal_a.x<0) ? -box_A->get_half_extents().x : box_A->get_half_extents().x,
(cnormal_a.y<0) ? -box_A->get_half_extents().y : box_A->get_half_extents().y,
(cnormal_a.z<0) ? -box_A->get_half_extents().z : box_A->get_half_extents().z
) );
Vector3 cnormal_b=p_transform_b.basis.xform_inv( -ab_vec );
Vector3 support_b=p_transform_b.xform( Vector3(
(cnormal_b.x<0) ? -box_B->get_half_extents().x : box_B->get_half_extents().x,
(cnormal_b.y<0) ? -box_B->get_half_extents().y : box_B->get_half_extents().y,
(cnormal_b.z<0) ? -box_B->get_half_extents().z : box_B->get_half_extents().z
) );
Vector3 axis_ab = (support_a-support_b);
if (!separator.test_axis( axis_ab.normalized() )) {
return;
}
//now try edges, which become cylinders!
for(int i=0;i<3;i++) {
//a ->b
Vector3 axis_a = p_transform_a.basis.get_axis(i);
if (!separator.test_axis( axis_ab.cross(axis_a).cross(axis_a).normalized() ))
return;
//b ->a
Vector3 axis_b = p_transform_b.basis.get_axis(i);
if (!separator.test_axis( axis_ab.cross(axis_b).cross(axis_b).normalized() ))
return;
}
}
separator.generate_contacts();
}
template<bool withMargin>
static void _collision_box_capsule(const ShapeSW *p_a,const Transform &p_transform_a,const ShapeSW *p_b,const Transform &p_transform_b,_CollectorCallback *p_collector,float p_margin_a,float p_margin_b) {
const BoxShapeSW *box_A = static_cast<const BoxShapeSW*>(p_a);
const CapsuleShapeSW *capsule_B = static_cast<const CapsuleShapeSW*>(p_b);
SeparatorAxisTest<BoxShapeSW,CapsuleShapeSW,withMargin> separator(box_A,p_transform_a,capsule_B,p_transform_b,p_collector,p_margin_a,p_margin_b);
if (!separator.test_previous_axis())
return;
// faces of A
for (int i=0;i<3;i++) {
Vector3 axis = p_transform_a.basis.get_axis(i);
if (!separator.test_axis( axis ))
return;
}
Vector3 cyl_axis = p_transform_b.basis.get_axis(2).normalized();
// edges of A, capsule cylinder
for (int i=0;i<3;i++) {
// cylinder
Vector3 box_axis = p_transform_a.basis.get_axis(i);
Vector3 axis = box_axis.cross( cyl_axis );
if (axis.length_squared() < CMP_EPSILON)
continue;
if (!separator.test_axis( axis.normalized() ))
return;
}
// points of A, capsule cylinder
// this sure could be made faster somehow..
for (int i=0;i<2;i++) {
for (int j=0;j<2;j++) {
for (int k=0;k<2;k++) {
Vector3 he = box_A->get_half_extents();
he.x*=(i*2-1);
he.y*=(j*2-1);
he.z*=(k*2-1);
Vector3 point=p_transform_a.origin;
for(int l=0;l<3;l++)
point+=p_transform_a.basis.get_axis(l)*he[l];
//Vector3 axis = (point - cyl_axis * cyl_axis.dot(point)).normalized();
Vector3 axis = Plane(cyl_axis,0).project(point).normalized();
if (!separator.test_axis( axis ))
return;
}
}
}
// capsule balls, edges of A
for (int i=0;i<2;i++) {
Vector3 capsule_axis = p_transform_b.basis.get_axis(2)*(capsule_B->get_height()*0.5);
Vector3 sphere_pos = p_transform_b.origin + ((i==0)?capsule_axis:-capsule_axis);
Vector3 cnormal=p_transform_a.xform_inv( sphere_pos );
Vector3 cpoint=p_transform_a.xform( Vector3(
(cnormal.x<0) ? -box_A->get_half_extents().x : box_A->get_half_extents().x,
(cnormal.y<0) ? -box_A->get_half_extents().y : box_A->get_half_extents().y,
(cnormal.z<0) ? -box_A->get_half_extents().z : box_A->get_half_extents().z
) );
// use point to test axis
Vector3 point_axis = (sphere_pos - cpoint).normalized();
if (!separator.test_axis( point_axis ))
return;
// test edges of A
for (int i=0;i<3;i++) {
Vector3 axis = point_axis.cross( p_transform_a.basis.get_axis(i) ).cross( p_transform_a.basis.get_axis(i) ).normalized();
if (!separator.test_axis( axis ))
return;
}
}
separator.generate_contacts();
}
template<bool withMargin>
static void _collision_box_convex_polygon(const ShapeSW *p_a,const Transform &p_transform_a,const ShapeSW *p_b,const Transform &p_transform_b,_CollectorCallback *p_collector,float p_margin_a,float p_margin_b) {
const BoxShapeSW *box_A = static_cast<const BoxShapeSW*>(p_a);
const ConvexPolygonShapeSW *convex_polygon_B = static_cast<const ConvexPolygonShapeSW*>(p_b);
SeparatorAxisTest<BoxShapeSW,ConvexPolygonShapeSW,withMargin> separator(box_A,p_transform_a,convex_polygon_B,p_transform_b,p_collector,p_margin_a,p_margin_b);
if (!separator.test_previous_axis())
return;
const Geometry::MeshData &mesh = convex_polygon_B->get_mesh();
const Geometry::MeshData::Face *faces = mesh.faces.ptr();
int face_count = mesh.faces.size();
const Geometry::MeshData::Edge *edges = mesh.edges.ptr();
int edge_count = mesh.edges.size();
const Vector3 *vertices = mesh.vertices.ptr();
int vertex_count = mesh.vertices.size();
// faces of A
for (int i=0;i<3;i++) {
Vector3 axis = p_transform_a.basis.get_axis(i).normalized();
if (!separator.test_axis( axis ))
return;
}
// faces of B
for (int i=0;i<face_count;i++) {
Vector3 axis = p_transform_b.xform( faces[i].plane ).normal;
if (!separator.test_axis( axis ))
return;
}
// A<->B edges
for (int i=0;i<3;i++) {
Vector3 e1 = p_transform_a.basis.get_axis(i);
for (int j=0;j<edge_count;j++) {
Vector3 e2=p_transform_b.basis.xform(vertices[edges[j].a]) - p_transform_b.basis.xform(vertices[edges[j].b]);
Vector3 axis=e1.cross( e2 ).normalized();
if (!separator.test_axis( axis ))
return;
}
}
if (withMargin) {
// calculate closest points between vertices and box edges
for(int v=0;v<vertex_count;v++) {
Vector3 vtxb = p_transform_b.xform(vertices[v]);
Vector3 ab_vec = vtxb - p_transform_a.origin;
Vector3 cnormal_a=p_transform_a.basis.xform_inv( ab_vec );
Vector3 support_a=p_transform_a.xform( Vector3(
(cnormal_a.x<0) ? -box_A->get_half_extents().x : box_A->get_half_extents().x,
(cnormal_a.y<0) ? -box_A->get_half_extents().y : box_A->get_half_extents().y,
(cnormal_a.z<0) ? -box_A->get_half_extents().z : box_A->get_half_extents().z
) );
Vector3 axis_ab = support_a-vtxb;
if (!separator.test_axis( axis_ab.normalized() )) {
return;
}
//now try edges, which become cylinders!
for(int i=0;i<3;i++) {
//a ->b
Vector3 axis_a = p_transform_a.basis.get_axis(i);
if (!separator.test_axis( axis_ab.cross(axis_a).cross(axis_a).normalized() ))
return;
}
}
//convex edges and box points
for (int i=0;i<2;i++) {
for (int j=0;j<2;j++) {
for (int k=0;k<2;k++) {
Vector3 he = box_A->get_half_extents();
he.x*=(i*2-1);
he.y*=(j*2-1);
he.z*=(k*2-1);
Vector3 point=p_transform_a.origin;
for(int l=0;l<3;l++)
point+=p_transform_a.basis.get_axis(l)*he[l];
for(int e=0;e<edge_count;e++) {
Vector3 p1=p_transform_b.xform(vertices[edges[e].a]);
Vector3 p2=p_transform_b.xform(vertices[edges[e].b]);
Vector3 n = (p2-p1);
if (!separator.test_axis( (point-p2).cross(n).cross(n).normalized() ))
return;
}
}
}
}
}
separator.generate_contacts();
}
template<bool withMargin>
static void _collision_box_face(const ShapeSW *p_a,const Transform &p_transform_a, const ShapeSW *p_b,const Transform& p_transform_b,_CollectorCallback *p_collector,float p_margin_a,float p_margin_b) {
const BoxShapeSW *box_A = static_cast<const BoxShapeSW*>(p_a);
const FaceShapeSW *face_B = static_cast<const FaceShapeSW*>(p_b);
SeparatorAxisTest<BoxShapeSW,FaceShapeSW,withMargin> separator(box_A,p_transform_a,face_B,p_transform_b,p_collector,p_margin_a,p_margin_b);
Vector3 vertex[3]={
p_transform_b.xform( face_B->vertex[0] ),
p_transform_b.xform( face_B->vertex[1] ),
p_transform_b.xform( face_B->vertex[2] ),
};
if (!separator.test_axis( (vertex[0]-vertex[2]).cross(vertex[0]-vertex[1]).normalized() ))
return;
// faces of A
for (int i=0;i<3;i++) {
Vector3 axis = p_transform_a.basis.get_axis(i).normalized();
if (!separator.test_axis( axis ))
return;
}
// combined edges
for(int i=0;i<3;i++) {
Vector3 e=vertex[i]-vertex[(i+1)%3];
for (int j=0;j<3;j++) {
Vector3 axis = p_transform_a.basis.get_axis(j);
if (!separator.test_axis( e.cross(axis).normalized() ))
return;
}
}
if (withMargin) {
// calculate closest points between vertices and box edges
for(int v=0;v<3;v++) {
Vector3 ab_vec = vertex[v] - p_transform_a.origin;
Vector3 cnormal_a=p_transform_a.basis.xform_inv( ab_vec );
Vector3 support_a=p_transform_a.xform( Vector3(
(cnormal_a.x<0) ? -box_A->get_half_extents().x : box_A->get_half_extents().x,
(cnormal_a.y<0) ? -box_A->get_half_extents().y : box_A->get_half_extents().y,
(cnormal_a.z<0) ? -box_A->get_half_extents().z : box_A->get_half_extents().z
) );
Vector3 axis_ab = support_a-vertex[v];
if (!separator.test_axis( axis_ab.normalized() )) {
return;
}
//now try edges, which become cylinders!
for(int i=0;i<3;i++) {
//a ->b
Vector3 axis_a = p_transform_a.basis.get_axis(i);
if (!separator.test_axis( axis_ab.cross(axis_a).cross(axis_a).normalized() ))
return;
}
}
//convex edges and box points, there has to be a way to speed up this (get closest point?)
for (int i=0;i<2;i++) {
for (int j=0;j<2;j++) {
for (int k=0;k<2;k++) {
Vector3 he = box_A->get_half_extents();
he.x*=(i*2-1);
he.y*=(j*2-1);
he.z*=(k*2-1);
Vector3 point=p_transform_a.origin;
for(int l=0;l<3;l++)
point+=p_transform_a.basis.get_axis(l)*he[l];
for(int e=0;e<3;e++) {
Vector3 p1=vertex[e];
Vector3 p2=vertex[(e+1)%3];
Vector3 n = (p2-p1);
if (!separator.test_axis( (point-p2).cross(n).cross(n).normalized() ))
return;
}
}
}
}
}
separator.generate_contacts();
}
template<bool withMargin>
static void _collision_capsule_capsule(const ShapeSW *p_a,const Transform &p_transform_a,const ShapeSW *p_b,const Transform &p_transform_b,_CollectorCallback *p_collector,float p_margin_a,float p_margin_b) {
const CapsuleShapeSW *capsule_A = static_cast<const CapsuleShapeSW*>(p_a);
const CapsuleShapeSW *capsule_B = static_cast<const CapsuleShapeSW*>(p_b);
SeparatorAxisTest<CapsuleShapeSW,CapsuleShapeSW,withMargin> separator(capsule_A,p_transform_a,capsule_B,p_transform_b,p_collector,p_margin_a,p_margin_b);
if (!separator.test_previous_axis())
return;
// some values
Vector3 capsule_A_axis = p_transform_a.basis.get_axis(2) * (capsule_A->get_height() * 0.5);
Vector3 capsule_B_axis = p_transform_b.basis.get_axis(2) * (capsule_B->get_height() * 0.5);
Vector3 capsule_A_ball_1 = p_transform_a.origin + capsule_A_axis;
Vector3 capsule_A_ball_2 = p_transform_a.origin - capsule_A_axis;
Vector3 capsule_B_ball_1 = p_transform_b.origin + capsule_B_axis;
Vector3 capsule_B_ball_2 = p_transform_b.origin - capsule_B_axis;
//balls-balls
if (!separator.test_axis( (capsule_A_ball_1 - capsule_B_ball_1 ).normalized() ) )
return;
if (!separator.test_axis( (capsule_A_ball_1 - capsule_B_ball_2 ).normalized() ) )
return;
if (!separator.test_axis( (capsule_A_ball_2 - capsule_B_ball_1 ).normalized() ) )
return;
if (!separator.test_axis( (capsule_A_ball_2 - capsule_B_ball_2 ).normalized() ) )
return;
// edges-balls
if (!separator.test_axis( (capsule_A_ball_1 - capsule_B_ball_1 ).cross(capsule_A_axis).cross(capsule_A_axis).normalized() ) )
return;
if (!separator.test_axis( (capsule_A_ball_1 - capsule_B_ball_2 ).cross(capsule_A_axis).cross(capsule_A_axis).normalized() ) )
return;
if (!separator.test_axis( (capsule_B_ball_1 - capsule_A_ball_1 ).cross(capsule_B_axis).cross(capsule_B_axis).normalized() ) )
return;
if (!separator.test_axis( (capsule_B_ball_1 - capsule_A_ball_2 ).cross(capsule_B_axis).cross(capsule_B_axis).normalized() ) )
return;
// edges
if (!separator.test_axis( capsule_A_axis.cross(capsule_B_axis).normalized() ) )
return;
separator.generate_contacts();
}
template<bool withMargin>
static void _collision_capsule_convex_polygon(const ShapeSW *p_a,const Transform &p_transform_a,const ShapeSW *p_b,const Transform &p_transform_b,_CollectorCallback *p_collector,float p_margin_a,float p_margin_b) {
const CapsuleShapeSW *capsule_A = static_cast<const CapsuleShapeSW*>(p_a);
const ConvexPolygonShapeSW *convex_polygon_B = static_cast<const ConvexPolygonShapeSW*>(p_b);
SeparatorAxisTest<CapsuleShapeSW,ConvexPolygonShapeSW,withMargin> separator(capsule_A,p_transform_a,convex_polygon_B,p_transform_b,p_collector,p_margin_a,p_margin_b);
if (!separator.test_previous_axis())
return;
const Geometry::MeshData &mesh = convex_polygon_B->get_mesh();
const Geometry::MeshData::Face *faces = mesh.faces.ptr();
int face_count = mesh.faces.size();
const Geometry::MeshData::Edge *edges = mesh.edges.ptr();
int edge_count = mesh.edges.size();
const Vector3 *vertices = mesh.vertices.ptr();
// faces of B
for (int i=0;i<face_count;i++) {
Vector3 axis = p_transform_b.xform( faces[i].plane ).normal;
if (!separator.test_axis( axis ))
return;
}
// edges of B, capsule cylinder
for (int i=0;i<edge_count;i++) {
// cylinder
Vector3 edge_axis = p_transform_b.basis.xform( vertices[ edges[i].a] ) - p_transform_b.basis.xform( vertices[ edges[i].b] );
Vector3 axis = edge_axis.cross( p_transform_a.basis.get_axis(2) ).normalized();
if (!separator.test_axis( axis ))
return;
}
// capsule balls, edges of B
for (int i=0;i<2;i++) {
// edges of B, capsule cylinder
Vector3 capsule_axis = p_transform_a.basis.get_axis(2)*(capsule_A->get_height()*0.5);
Vector3 sphere_pos = p_transform_a.origin + ((i==0)?capsule_axis:-capsule_axis);
for (int j=0;j<edge_count;j++) {
Vector3 n1=sphere_pos - p_transform_b.xform( vertices[ edges[j].a] );
Vector3 n2=p_transform_b.basis.xform( vertices[ edges[j].a] ) - p_transform_b.basis.xform( vertices[ edges[j].b] );
Vector3 axis = n1.cross(n2).cross(n2).normalized();
if (!separator.test_axis( axis ))
return;
}
}
separator.generate_contacts();
}
template<bool withMargin>
static void _collision_capsule_face(const ShapeSW *p_a,const Transform &p_transform_a, const ShapeSW *p_b,const Transform& p_transform_b,_CollectorCallback *p_collector,float p_margin_a,float p_margin_b) {
const CapsuleShapeSW *capsule_A = static_cast<const CapsuleShapeSW*>(p_a);
const FaceShapeSW *face_B = static_cast<const FaceShapeSW*>(p_b);
SeparatorAxisTest<CapsuleShapeSW,FaceShapeSW,withMargin> separator(capsule_A,p_transform_a,face_B,p_transform_b,p_collector,p_margin_a,p_margin_b);
Vector3 vertex[3]={
p_transform_b.xform( face_B->vertex[0] ),
p_transform_b.xform( face_B->vertex[1] ),
p_transform_b.xform( face_B->vertex[2] ),
};
if (!separator.test_axis( (vertex[0]-vertex[2]).cross(vertex[0]-vertex[1]).normalized() ))
return;
// edges of B, capsule cylinder
Vector3 capsule_axis = p_transform_a.basis.get_axis(2)*(capsule_A->get_height()*0.5);
for (int i=0;i<3;i++) {
// edge-cylinder
Vector3 edge_axis = vertex[i]-vertex[(i+1)%3];
Vector3 axis = edge_axis.cross( capsule_axis ).normalized();
if (!separator.test_axis( axis ))
return;
if (!separator.test_axis( (p_transform_a.origin-vertex[i]).cross(capsule_axis).cross(capsule_axis).normalized() ))
return;
for (int j=0;j<2;j++) {
// point-spheres
Vector3 sphere_pos = p_transform_a.origin + ( (j==0) ? capsule_axis : -capsule_axis );
Vector3 n1=sphere_pos - vertex[i];
if (!separator.test_axis( n1.normalized() ))
return;
Vector3 n2=edge_axis;
axis = n1.cross(n2).cross(n2);
if (!separator.test_axis( axis.normalized() ))
return;
}
}
separator.generate_contacts();
}
template<bool withMargin>
static void _collision_convex_polygon_convex_polygon(const ShapeSW *p_a,const Transform &p_transform_a,const ShapeSW *p_b,const Transform &p_transform_b,_CollectorCallback *p_collector,float p_margin_a,float p_margin_b) {
const ConvexPolygonShapeSW *convex_polygon_A = static_cast<const ConvexPolygonShapeSW*>(p_a);
const ConvexPolygonShapeSW *convex_polygon_B = static_cast<const ConvexPolygonShapeSW*>(p_b);
SeparatorAxisTest<ConvexPolygonShapeSW,ConvexPolygonShapeSW,withMargin> separator(convex_polygon_A,p_transform_a,convex_polygon_B,p_transform_b,p_collector,p_margin_a,p_margin_b);
if (!separator.test_previous_axis())
return;
const Geometry::MeshData &mesh_A = convex_polygon_A->get_mesh();
const Geometry::MeshData::Face *faces_A = mesh_A.faces.ptr();
int face_count_A = mesh_A.faces.size();
const Geometry::MeshData::Edge *edges_A = mesh_A.edges.ptr();
int edge_count_A = mesh_A.edges.size();
const Vector3 *vertices_A = mesh_A.vertices.ptr();
int vertex_count_A = mesh_A.vertices.size();
const Geometry::MeshData &mesh_B = convex_polygon_B->get_mesh();
const Geometry::MeshData::Face *faces_B = mesh_B.faces.ptr();
int face_count_B = mesh_B.faces.size();
const Geometry::MeshData::Edge *edges_B = mesh_B.edges.ptr();
int edge_count_B = mesh_B.edges.size();
const Vector3 *vertices_B = mesh_B.vertices.ptr();
int vertex_count_B = mesh_B.vertices.size();
// faces of A
for (int i=0;i<face_count_A;i++) {
Vector3 axis = p_transform_a.xform( faces_A[i].plane ).normal;
// Vector3 axis = p_transform_a.basis.xform( faces_A[i].plane.normal ).normalized();
if (!separator.test_axis( axis ))
return;
}
// faces of B
for (int i=0;i<face_count_B;i++) {
Vector3 axis = p_transform_b.xform( faces_B[i].plane ).normal;
// Vector3 axis = p_transform_b.basis.xform( faces_B[i].plane.normal ).normalized();
if (!separator.test_axis( axis ))
return;
}
// A<->B edges
for (int i=0;i<edge_count_A;i++) {
Vector3 e1=p_transform_a.basis.xform( vertices_A[ edges_A[i].a] ) -p_transform_a.basis.xform( vertices_A[ edges_A[i].b] );
for (int j=0;j<edge_count_B;j++) {
Vector3 e2=p_transform_b.basis.xform( vertices_B[ edges_B[j].a] ) -p_transform_b.basis.xform( vertices_B[ edges_B[j].b] );
Vector3 axis=e1.cross( e2 ).normalized();
if (!separator.test_axis( axis ))
return;
}
}
if (withMargin) {
//vertex-vertex
for(int i=0;i<vertex_count_A;i++) {
Vector3 va = p_transform_a.xform(vertices_A[i]);
for(int j=0;j<vertex_count_B;j++) {
if (!separator.test_axis( (va-p_transform_b.xform(vertices_B[j])).normalized() ))
return;
}
}
//edge-vertex( hsell)
for (int i=0;i<edge_count_A;i++) {
Vector3 e1=p_transform_a.basis.xform( vertices_A[ edges_A[i].a] );
Vector3 e2=p_transform_a.basis.xform( vertices_A[ edges_A[i].b] );
Vector3 n = (e2-e1);
for(int j=0;j<vertex_count_B;j++) {
Vector3 e3=p_transform_b.xform(vertices_B[j]);
if (!separator.test_axis( (e1-e3).cross(n).cross(n).normalized() ))
return;
}
}
for (int i=0;i<edge_count_B;i++) {
Vector3 e1=p_transform_b.basis.xform( vertices_B[ edges_B[i].a] );
Vector3 e2=p_transform_b.basis.xform( vertices_B[ edges_B[i].b] );
Vector3 n = (e2-e1);
for(int j=0;j<vertex_count_A;j++) {
Vector3 e3=p_transform_a.xform(vertices_A[j]);
if (!separator.test_axis( (e1-e3).cross(n).cross(n).normalized() ))
return;
}
}
}
separator.generate_contacts();
}
template<bool withMargin>
static void _collision_convex_polygon_face(const ShapeSW *p_a,const Transform &p_transform_a, const ShapeSW *p_b,const Transform& p_transform_b,_CollectorCallback *p_collector,float p_margin_a,float p_margin_b) {
const ConvexPolygonShapeSW *convex_polygon_A = static_cast<const ConvexPolygonShapeSW*>(p_a);
const FaceShapeSW *face_B = static_cast<const FaceShapeSW*>(p_b);
SeparatorAxisTest<ConvexPolygonShapeSW,FaceShapeSW,withMargin> separator(convex_polygon_A,p_transform_a,face_B,p_transform_b,p_collector,p_margin_a,p_margin_b);
const Geometry::MeshData &mesh = convex_polygon_A->get_mesh();
const Geometry::MeshData::Face *faces = mesh.faces.ptr();
int face_count = mesh.faces.size();
const Geometry::MeshData::Edge *edges = mesh.edges.ptr();
int edge_count = mesh.edges.size();
const Vector3 *vertices = mesh.vertices.ptr();
int vertex_count = mesh.vertices.size();
Vector3 vertex[3]={
p_transform_b.xform( face_B->vertex[0] ),
p_transform_b.xform( face_B->vertex[1] ),
p_transform_b.xform( face_B->vertex[2] ),
};
if (!separator.test_axis( (vertex[0]-vertex[2]).cross(vertex[0]-vertex[1]).normalized() ))
return;
// faces of A
for (int i=0;i<face_count;i++) {
// Vector3 axis = p_transform_a.xform( faces[i].plane ).normal;
Vector3 axis = p_transform_a.basis.xform( faces[i].plane.normal ).normalized();
if (!separator.test_axis( axis ))
return;
}
// A<->B edges
for (int i=0;i<edge_count;i++) {
Vector3 e1=p_transform_a.xform( vertices[edges[i].a] ) - p_transform_a.xform( vertices[edges[i].b] );
for (int j=0;j<3;j++) {
Vector3 e2=vertex[j]-vertex[(j+1)%3];
Vector3 axis=e1.cross( e2 ).normalized();
if (!separator.test_axis( axis ))
return;
}
}
if (withMargin) {
//vertex-vertex
for(int i=0;i<vertex_count;i++) {
Vector3 va = p_transform_a.xform(vertices[i]);
for(int j=0;j<3;j++) {
if (!separator.test_axis( (va-vertex[j]).normalized() ))
return;
}
}
//edge-vertex( hsell)
for (int i=0;i<edge_count;i++) {
Vector3 e1=p_transform_a.basis.xform( vertices[ edges[i].a] );
Vector3 e2=p_transform_a.basis.xform( vertices[ edges[i].b] );
Vector3 n = (e2-e1);
for(int j=0;j<3;j++) {
Vector3 e3=vertex[j];
if (!separator.test_axis( (e1-e3).cross(n).cross(n).normalized() ))
return;
}
}
for (int i=0;i<3;i++) {
Vector3 e1=vertex[i];
Vector3 e2=vertex[(i+1)%3];
Vector3 n = (e2-e1);
for(int j=0;j<vertex_count;j++) {
Vector3 e3=p_transform_a.xform(vertices[j]);
if (!separator.test_axis( (e1-e3).cross(n).cross(n).normalized() ))
return;
}
}
}
separator.generate_contacts();
}
bool sat_calculate_penetration(const ShapeSW *p_shape_A, const Transform& p_transform_A, const ShapeSW *p_shape_B, const Transform& p_transform_B, CollisionSolverSW::CallbackResult p_result_callback,void *p_userdata,bool p_swap,Vector3* r_prev_axis,float p_margin_a,float p_margin_b) {
PhysicsServer::ShapeType type_A=p_shape_A->get_type();
ERR_FAIL_COND_V(type_A==PhysicsServer::SHAPE_PLANE,false);
ERR_FAIL_COND_V(type_A==PhysicsServer::SHAPE_RAY,false);
ERR_FAIL_COND_V(p_shape_A->is_concave(),false);
PhysicsServer::ShapeType type_B=p_shape_B->get_type();
ERR_FAIL_COND_V(type_B==PhysicsServer::SHAPE_PLANE,false);
ERR_FAIL_COND_V(type_B==PhysicsServer::SHAPE_RAY,false);
ERR_FAIL_COND_V(p_shape_B->is_concave(),false);
static const CollisionFunc collision_table[5][5]={
{_collision_sphere_sphere<false>,
_collision_sphere_box<false>,
_collision_sphere_capsule<false>,
_collision_sphere_convex_polygon<false>,
_collision_sphere_face<false>},
{0,
_collision_box_box<false>,
_collision_box_capsule<false>,
_collision_box_convex_polygon<false>,
_collision_box_face<false>},
{0,
0,
_collision_capsule_capsule<false>,
_collision_capsule_convex_polygon<false>,
_collision_capsule_face<false>},
{0,
0,
0,
_collision_convex_polygon_convex_polygon<false>,
_collision_convex_polygon_face<false>},
{0,
0,
0,
0,
0},
};
static const CollisionFunc collision_table_margin[5][5]={
{_collision_sphere_sphere<true>,
_collision_sphere_box<true>,
_collision_sphere_capsule<true>,
_collision_sphere_convex_polygon<true>,
_collision_sphere_face<true>},
{0,
_collision_box_box<true>,
_collision_box_capsule<true>,
_collision_box_convex_polygon<true>,
_collision_box_face<true>},
{0,
0,
_collision_capsule_capsule<true>,
_collision_capsule_convex_polygon<true>,
_collision_capsule_face<true>},
{0,
0,
0,
_collision_convex_polygon_convex_polygon<true>,
_collision_convex_polygon_face<true>},
{0,
0,
0,
0,
0},
};
_CollectorCallback callback;
callback.callback=p_result_callback;
callback.swap=p_swap;
callback.userdata=p_userdata;
callback.collided=false;
callback.prev_axis=r_prev_axis;
const ShapeSW *A=p_shape_A;
const ShapeSW *B=p_shape_B;
const Transform *transform_A=&p_transform_A;
const Transform *transform_B=&p_transform_B;
float margin_A=p_margin_a;
float margin_B=p_margin_b;
if (type_A > type_B) {
SWAP(A,B);
SWAP(transform_A,transform_B);
SWAP(type_A,type_B);
SWAP(margin_A,margin_B);
callback.swap = !callback.swap;
}
CollisionFunc collision_func;
if (margin_A!=0.0 || margin_B!=0.0) {
collision_func = collision_table_margin[type_A-2][type_B-2];
} else {
collision_func = collision_table[type_A-2][type_B-2];
}
ERR_FAIL_COND_V(!collision_func,false);
collision_func(A,*transform_A,B,*transform_B,&callback,margin_A,margin_B);
return callback.collided;
}