godot/drivers/webpold/dsp/enc_sse2.c
Juan Linietsky da113fe40d -Upgraded webp to a MUCH newer version. Hoping it fixes some bugs in the process. Keeping old version just in case for now.
-Added ability to convert xml and tscn scenes to binary on export, makes loading of larger scenes faster
2015-12-04 10:18:28 -03:00

838 lines
34 KiB
C

// Copyright 2011 Google Inc. All Rights Reserved.
//
// This code is licensed under the same terms as WebM:
// Software License Agreement: http://www.webmproject.org/license/software/
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
// -----------------------------------------------------------------------------
//
// SSE2 version of speed-critical encoding functions.
//
// Author: Christian Duvivier (cduvivier@google.com)
#include "./dsp.h"
#if defined(WEBP_USE_SSE2)
#include <stdlib.h> // for abs()
#include <emmintrin.h>
#include "../enc/vp8enci.h"
#if defined(__cplusplus) || defined(c_plusplus)
extern "C" {
#endif
//------------------------------------------------------------------------------
// Compute susceptibility based on DCT-coeff histograms:
// the higher, the "easier" the macroblock is to compress.
static int CollectHistogramSSE2(const uint8_t* ref, const uint8_t* pred,
int start_block, int end_block) {
int histo[MAX_COEFF_THRESH + 1] = { 0 };
int16_t out[16];
int j, k;
const __m128i max_coeff_thresh = _mm_set1_epi16(MAX_COEFF_THRESH);
for (j = start_block; j < end_block; ++j) {
VP8FTransform(ref + VP8DspScan[j], pred + VP8DspScan[j], out);
// Convert coefficients to bin (within out[]).
{
// Load.
const __m128i out0 = _mm_loadu_si128((__m128i*)&out[0]);
const __m128i out1 = _mm_loadu_si128((__m128i*)&out[8]);
// sign(out) = out >> 15 (0x0000 if positive, 0xffff if negative)
const __m128i sign0 = _mm_srai_epi16(out0, 15);
const __m128i sign1 = _mm_srai_epi16(out1, 15);
// abs(out) = (out ^ sign) - sign
const __m128i xor0 = _mm_xor_si128(out0, sign0);
const __m128i xor1 = _mm_xor_si128(out1, sign1);
const __m128i abs0 = _mm_sub_epi16(xor0, sign0);
const __m128i abs1 = _mm_sub_epi16(xor1, sign1);
// v = abs(out) >> 2
const __m128i v0 = _mm_srai_epi16(abs0, 2);
const __m128i v1 = _mm_srai_epi16(abs1, 2);
// bin = min(v, MAX_COEFF_THRESH)
const __m128i bin0 = _mm_min_epi16(v0, max_coeff_thresh);
const __m128i bin1 = _mm_min_epi16(v1, max_coeff_thresh);
// Store.
_mm_storeu_si128((__m128i*)&out[0], bin0);
_mm_storeu_si128((__m128i*)&out[8], bin1);
}
// Use bin to update histogram.
for (k = 0; k < 16; ++k) {
histo[out[k]]++;
}
}
return VP8GetAlpha(histo);
}
//------------------------------------------------------------------------------
// Transforms (Paragraph 14.4)
// Does one or two inverse transforms.
static void ITransformSSE2(const uint8_t* ref, const int16_t* in, uint8_t* dst,
int do_two) {
// This implementation makes use of 16-bit fixed point versions of two
// multiply constants:
// K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16
// K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16
//
// To be able to use signed 16-bit integers, we use the following trick to
// have constants within range:
// - Associated constants are obtained by subtracting the 16-bit fixed point
// version of one:
// k = K - (1 << 16) => K = k + (1 << 16)
// K1 = 85267 => k1 = 20091
// K2 = 35468 => k2 = -30068
// - The multiplication of a variable by a constant become the sum of the
// variable and the multiplication of that variable by the associated
// constant:
// (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x
const __m128i k1 = _mm_set1_epi16(20091);
const __m128i k2 = _mm_set1_epi16(-30068);
__m128i T0, T1, T2, T3;
// Load and concatenate the transform coefficients (we'll do two inverse
// transforms in parallel). In the case of only one inverse transform, the
// second half of the vectors will just contain random value we'll never
// use nor store.
__m128i in0, in1, in2, in3;
{
in0 = _mm_loadl_epi64((__m128i*)&in[0]);
in1 = _mm_loadl_epi64((__m128i*)&in[4]);
in2 = _mm_loadl_epi64((__m128i*)&in[8]);
in3 = _mm_loadl_epi64((__m128i*)&in[12]);
// a00 a10 a20 a30 x x x x
// a01 a11 a21 a31 x x x x
// a02 a12 a22 a32 x x x x
// a03 a13 a23 a33 x x x x
if (do_two) {
const __m128i inB0 = _mm_loadl_epi64((__m128i*)&in[16]);
const __m128i inB1 = _mm_loadl_epi64((__m128i*)&in[20]);
const __m128i inB2 = _mm_loadl_epi64((__m128i*)&in[24]);
const __m128i inB3 = _mm_loadl_epi64((__m128i*)&in[28]);
in0 = _mm_unpacklo_epi64(in0, inB0);
in1 = _mm_unpacklo_epi64(in1, inB1);
in2 = _mm_unpacklo_epi64(in2, inB2);
in3 = _mm_unpacklo_epi64(in3, inB3);
// a00 a10 a20 a30 b00 b10 b20 b30
// a01 a11 a21 a31 b01 b11 b21 b31
// a02 a12 a22 a32 b02 b12 b22 b32
// a03 a13 a23 a33 b03 b13 b23 b33
}
}
// Vertical pass and subsequent transpose.
{
// First pass, c and d calculations are longer because of the "trick"
// multiplications.
const __m128i a = _mm_add_epi16(in0, in2);
const __m128i b = _mm_sub_epi16(in0, in2);
// c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3
const __m128i c1 = _mm_mulhi_epi16(in1, k2);
const __m128i c2 = _mm_mulhi_epi16(in3, k1);
const __m128i c3 = _mm_sub_epi16(in1, in3);
const __m128i c4 = _mm_sub_epi16(c1, c2);
const __m128i c = _mm_add_epi16(c3, c4);
// d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3
const __m128i d1 = _mm_mulhi_epi16(in1, k1);
const __m128i d2 = _mm_mulhi_epi16(in3, k2);
const __m128i d3 = _mm_add_epi16(in1, in3);
const __m128i d4 = _mm_add_epi16(d1, d2);
const __m128i d = _mm_add_epi16(d3, d4);
// Second pass.
const __m128i tmp0 = _mm_add_epi16(a, d);
const __m128i tmp1 = _mm_add_epi16(b, c);
const __m128i tmp2 = _mm_sub_epi16(b, c);
const __m128i tmp3 = _mm_sub_epi16(a, d);
// Transpose the two 4x4.
// a00 a01 a02 a03 b00 b01 b02 b03
// a10 a11 a12 a13 b10 b11 b12 b13
// a20 a21 a22 a23 b20 b21 b22 b23
// a30 a31 a32 a33 b30 b31 b32 b33
const __m128i transpose0_0 = _mm_unpacklo_epi16(tmp0, tmp1);
const __m128i transpose0_1 = _mm_unpacklo_epi16(tmp2, tmp3);
const __m128i transpose0_2 = _mm_unpackhi_epi16(tmp0, tmp1);
const __m128i transpose0_3 = _mm_unpackhi_epi16(tmp2, tmp3);
// a00 a10 a01 a11 a02 a12 a03 a13
// a20 a30 a21 a31 a22 a32 a23 a33
// b00 b10 b01 b11 b02 b12 b03 b13
// b20 b30 b21 b31 b22 b32 b23 b33
const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
// a00 a10 a20 a30 a01 a11 a21 a31
// b00 b10 b20 b30 b01 b11 b21 b31
// a02 a12 a22 a32 a03 a13 a23 a33
// b02 b12 a22 b32 b03 b13 b23 b33
T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
// a00 a10 a20 a30 b00 b10 b20 b30
// a01 a11 a21 a31 b01 b11 b21 b31
// a02 a12 a22 a32 b02 b12 b22 b32
// a03 a13 a23 a33 b03 b13 b23 b33
}
// Horizontal pass and subsequent transpose.
{
// First pass, c and d calculations are longer because of the "trick"
// multiplications.
const __m128i four = _mm_set1_epi16(4);
const __m128i dc = _mm_add_epi16(T0, four);
const __m128i a = _mm_add_epi16(dc, T2);
const __m128i b = _mm_sub_epi16(dc, T2);
// c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3
const __m128i c1 = _mm_mulhi_epi16(T1, k2);
const __m128i c2 = _mm_mulhi_epi16(T3, k1);
const __m128i c3 = _mm_sub_epi16(T1, T3);
const __m128i c4 = _mm_sub_epi16(c1, c2);
const __m128i c = _mm_add_epi16(c3, c4);
// d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3
const __m128i d1 = _mm_mulhi_epi16(T1, k1);
const __m128i d2 = _mm_mulhi_epi16(T3, k2);
const __m128i d3 = _mm_add_epi16(T1, T3);
const __m128i d4 = _mm_add_epi16(d1, d2);
const __m128i d = _mm_add_epi16(d3, d4);
// Second pass.
const __m128i tmp0 = _mm_add_epi16(a, d);
const __m128i tmp1 = _mm_add_epi16(b, c);
const __m128i tmp2 = _mm_sub_epi16(b, c);
const __m128i tmp3 = _mm_sub_epi16(a, d);
const __m128i shifted0 = _mm_srai_epi16(tmp0, 3);
const __m128i shifted1 = _mm_srai_epi16(tmp1, 3);
const __m128i shifted2 = _mm_srai_epi16(tmp2, 3);
const __m128i shifted3 = _mm_srai_epi16(tmp3, 3);
// Transpose the two 4x4.
// a00 a01 a02 a03 b00 b01 b02 b03
// a10 a11 a12 a13 b10 b11 b12 b13
// a20 a21 a22 a23 b20 b21 b22 b23
// a30 a31 a32 a33 b30 b31 b32 b33
const __m128i transpose0_0 = _mm_unpacklo_epi16(shifted0, shifted1);
const __m128i transpose0_1 = _mm_unpacklo_epi16(shifted2, shifted3);
const __m128i transpose0_2 = _mm_unpackhi_epi16(shifted0, shifted1);
const __m128i transpose0_3 = _mm_unpackhi_epi16(shifted2, shifted3);
// a00 a10 a01 a11 a02 a12 a03 a13
// a20 a30 a21 a31 a22 a32 a23 a33
// b00 b10 b01 b11 b02 b12 b03 b13
// b20 b30 b21 b31 b22 b32 b23 b33
const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
// a00 a10 a20 a30 a01 a11 a21 a31
// b00 b10 b20 b30 b01 b11 b21 b31
// a02 a12 a22 a32 a03 a13 a23 a33
// b02 b12 a22 b32 b03 b13 b23 b33
T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
// a00 a10 a20 a30 b00 b10 b20 b30
// a01 a11 a21 a31 b01 b11 b21 b31
// a02 a12 a22 a32 b02 b12 b22 b32
// a03 a13 a23 a33 b03 b13 b23 b33
}
// Add inverse transform to 'ref' and store.
{
const __m128i zero = _mm_set1_epi16(0);
// Load the reference(s).
__m128i ref0, ref1, ref2, ref3;
if (do_two) {
// Load eight bytes/pixels per line.
ref0 = _mm_loadl_epi64((__m128i*)&ref[0 * BPS]);
ref1 = _mm_loadl_epi64((__m128i*)&ref[1 * BPS]);
ref2 = _mm_loadl_epi64((__m128i*)&ref[2 * BPS]);
ref3 = _mm_loadl_epi64((__m128i*)&ref[3 * BPS]);
} else {
// Load four bytes/pixels per line.
ref0 = _mm_cvtsi32_si128(*(int*)&ref[0 * BPS]);
ref1 = _mm_cvtsi32_si128(*(int*)&ref[1 * BPS]);
ref2 = _mm_cvtsi32_si128(*(int*)&ref[2 * BPS]);
ref3 = _mm_cvtsi32_si128(*(int*)&ref[3 * BPS]);
}
// Convert to 16b.
ref0 = _mm_unpacklo_epi8(ref0, zero);
ref1 = _mm_unpacklo_epi8(ref1, zero);
ref2 = _mm_unpacklo_epi8(ref2, zero);
ref3 = _mm_unpacklo_epi8(ref3, zero);
// Add the inverse transform(s).
ref0 = _mm_add_epi16(ref0, T0);
ref1 = _mm_add_epi16(ref1, T1);
ref2 = _mm_add_epi16(ref2, T2);
ref3 = _mm_add_epi16(ref3, T3);
// Unsigned saturate to 8b.
ref0 = _mm_packus_epi16(ref0, ref0);
ref1 = _mm_packus_epi16(ref1, ref1);
ref2 = _mm_packus_epi16(ref2, ref2);
ref3 = _mm_packus_epi16(ref3, ref3);
// Store the results.
if (do_two) {
// Store eight bytes/pixels per line.
_mm_storel_epi64((__m128i*)&dst[0 * BPS], ref0);
_mm_storel_epi64((__m128i*)&dst[1 * BPS], ref1);
_mm_storel_epi64((__m128i*)&dst[2 * BPS], ref2);
_mm_storel_epi64((__m128i*)&dst[3 * BPS], ref3);
} else {
// Store four bytes/pixels per line.
*((int32_t *)&dst[0 * BPS]) = _mm_cvtsi128_si32(ref0);
*((int32_t *)&dst[1 * BPS]) = _mm_cvtsi128_si32(ref1);
*((int32_t *)&dst[2 * BPS]) = _mm_cvtsi128_si32(ref2);
*((int32_t *)&dst[3 * BPS]) = _mm_cvtsi128_si32(ref3);
}
}
}
static void FTransformSSE2(const uint8_t* src, const uint8_t* ref,
int16_t* out) {
const __m128i zero = _mm_setzero_si128();
const __m128i seven = _mm_set1_epi16(7);
const __m128i k7500 = _mm_set1_epi32(7500);
const __m128i k14500 = _mm_set1_epi32(14500);
const __m128i k51000 = _mm_set1_epi32(51000);
const __m128i k12000_plus_one = _mm_set1_epi32(12000 + (1 << 16));
const __m128i k5352_2217 = _mm_set_epi16(5352, 2217, 5352, 2217,
5352, 2217, 5352, 2217);
const __m128i k2217_5352 = _mm_set_epi16(2217, -5352, 2217, -5352,
2217, -5352, 2217, -5352);
__m128i v01, v32;
// Difference between src and ref and initial transpose.
{
// Load src and convert to 16b.
const __m128i src0 = _mm_loadl_epi64((__m128i*)&src[0 * BPS]);
const __m128i src1 = _mm_loadl_epi64((__m128i*)&src[1 * BPS]);
const __m128i src2 = _mm_loadl_epi64((__m128i*)&src[2 * BPS]);
const __m128i src3 = _mm_loadl_epi64((__m128i*)&src[3 * BPS]);
const __m128i src_0 = _mm_unpacklo_epi8(src0, zero);
const __m128i src_1 = _mm_unpacklo_epi8(src1, zero);
const __m128i src_2 = _mm_unpacklo_epi8(src2, zero);
const __m128i src_3 = _mm_unpacklo_epi8(src3, zero);
// Load ref and convert to 16b.
const __m128i ref0 = _mm_loadl_epi64((__m128i*)&ref[0 * BPS]);
const __m128i ref1 = _mm_loadl_epi64((__m128i*)&ref[1 * BPS]);
const __m128i ref2 = _mm_loadl_epi64((__m128i*)&ref[2 * BPS]);
const __m128i ref3 = _mm_loadl_epi64((__m128i*)&ref[3 * BPS]);
const __m128i ref_0 = _mm_unpacklo_epi8(ref0, zero);
const __m128i ref_1 = _mm_unpacklo_epi8(ref1, zero);
const __m128i ref_2 = _mm_unpacklo_epi8(ref2, zero);
const __m128i ref_3 = _mm_unpacklo_epi8(ref3, zero);
// Compute difference.
const __m128i diff0 = _mm_sub_epi16(src_0, ref_0);
const __m128i diff1 = _mm_sub_epi16(src_1, ref_1);
const __m128i diff2 = _mm_sub_epi16(src_2, ref_2);
const __m128i diff3 = _mm_sub_epi16(src_3, ref_3);
// Transpose.
// 00 01 02 03 0 0 0 0
// 10 11 12 13 0 0 0 0
// 20 21 22 23 0 0 0 0
// 30 31 32 33 0 0 0 0
const __m128i transpose0_0 = _mm_unpacklo_epi16(diff0, diff1);
const __m128i transpose0_1 = _mm_unpacklo_epi16(diff2, diff3);
// 00 10 01 11 02 12 03 13
// 20 30 21 31 22 32 23 33
const __m128i v23 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
v01 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
v32 = _mm_shuffle_epi32(v23, _MM_SHUFFLE(1, 0, 3, 2));
// a02 a12 a22 a32 a03 a13 a23 a33
// a00 a10 a20 a30 a01 a11 a21 a31
// a03 a13 a23 a33 a02 a12 a22 a32
}
// First pass and subsequent transpose.
{
// Same operations are done on the (0,3) and (1,2) pairs.
// b0 = (a0 + a3) << 3
// b1 = (a1 + a2) << 3
// b3 = (a0 - a3) << 3
// b2 = (a1 - a2) << 3
const __m128i a01 = _mm_add_epi16(v01, v32);
const __m128i a32 = _mm_sub_epi16(v01, v32);
const __m128i b01 = _mm_slli_epi16(a01, 3);
const __m128i b32 = _mm_slli_epi16(a32, 3);
const __m128i b11 = _mm_unpackhi_epi64(b01, b01);
const __m128i b22 = _mm_unpackhi_epi64(b32, b32);
// e0 = b0 + b1
// e2 = b0 - b1
const __m128i e0 = _mm_add_epi16(b01, b11);
const __m128i e2 = _mm_sub_epi16(b01, b11);
const __m128i e02 = _mm_unpacklo_epi64(e0, e2);
// e1 = (b3 * 5352 + b2 * 2217 + 14500) >> 12
// e3 = (b3 * 2217 - b2 * 5352 + 7500) >> 12
const __m128i b23 = _mm_unpacklo_epi16(b22, b32);
const __m128i c1 = _mm_madd_epi16(b23, k5352_2217);
const __m128i c3 = _mm_madd_epi16(b23, k2217_5352);
const __m128i d1 = _mm_add_epi32(c1, k14500);
const __m128i d3 = _mm_add_epi32(c3, k7500);
const __m128i e1 = _mm_srai_epi32(d1, 12);
const __m128i e3 = _mm_srai_epi32(d3, 12);
const __m128i e13 = _mm_packs_epi32(e1, e3);
// Transpose.
// 00 01 02 03 20 21 22 23
// 10 11 12 13 30 31 32 33
const __m128i transpose0_0 = _mm_unpacklo_epi16(e02, e13);
const __m128i transpose0_1 = _mm_unpackhi_epi16(e02, e13);
// 00 10 01 11 02 12 03 13
// 20 30 21 31 22 32 23 33
const __m128i v23 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
v01 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
v32 = _mm_shuffle_epi32(v23, _MM_SHUFFLE(1, 0, 3, 2));
// 02 12 22 32 03 13 23 33
// 00 10 20 30 01 11 21 31
// 03 13 23 33 02 12 22 32
}
// Second pass
{
// Same operations are done on the (0,3) and (1,2) pairs.
// a0 = v0 + v3
// a1 = v1 + v2
// a3 = v0 - v3
// a2 = v1 - v2
const __m128i a01 = _mm_add_epi16(v01, v32);
const __m128i a32 = _mm_sub_epi16(v01, v32);
const __m128i a11 = _mm_unpackhi_epi64(a01, a01);
const __m128i a22 = _mm_unpackhi_epi64(a32, a32);
// d0 = (a0 + a1 + 7) >> 4;
// d2 = (a0 - a1 + 7) >> 4;
const __m128i b0 = _mm_add_epi16(a01, a11);
const __m128i b2 = _mm_sub_epi16(a01, a11);
const __m128i c0 = _mm_add_epi16(b0, seven);
const __m128i c2 = _mm_add_epi16(b2, seven);
const __m128i d0 = _mm_srai_epi16(c0, 4);
const __m128i d2 = _mm_srai_epi16(c2, 4);
// f1 = ((b3 * 5352 + b2 * 2217 + 12000) >> 16)
// f3 = ((b3 * 2217 - b2 * 5352 + 51000) >> 16)
const __m128i b23 = _mm_unpacklo_epi16(a22, a32);
const __m128i c1 = _mm_madd_epi16(b23, k5352_2217);
const __m128i c3 = _mm_madd_epi16(b23, k2217_5352);
const __m128i d1 = _mm_add_epi32(c1, k12000_plus_one);
const __m128i d3 = _mm_add_epi32(c3, k51000);
const __m128i e1 = _mm_srai_epi32(d1, 16);
const __m128i e3 = _mm_srai_epi32(d3, 16);
const __m128i f1 = _mm_packs_epi32(e1, e1);
const __m128i f3 = _mm_packs_epi32(e3, e3);
// f1 = f1 + (a3 != 0);
// The compare will return (0xffff, 0) for (==0, !=0). To turn that into the
// desired (0, 1), we add one earlier through k12000_plus_one.
const __m128i g1 = _mm_add_epi16(f1, _mm_cmpeq_epi16(a32, zero));
_mm_storel_epi64((__m128i*)&out[ 0], d0);
_mm_storel_epi64((__m128i*)&out[ 4], g1);
_mm_storel_epi64((__m128i*)&out[ 8], d2);
_mm_storel_epi64((__m128i*)&out[12], f3);
}
}
//------------------------------------------------------------------------------
// Metric
static int SSE4x4SSE2(const uint8_t* a, const uint8_t* b) {
const __m128i zero = _mm_set1_epi16(0);
// Load values.
const __m128i a0 = _mm_loadl_epi64((__m128i*)&a[BPS * 0]);
const __m128i a1 = _mm_loadl_epi64((__m128i*)&a[BPS * 1]);
const __m128i a2 = _mm_loadl_epi64((__m128i*)&a[BPS * 2]);
const __m128i a3 = _mm_loadl_epi64((__m128i*)&a[BPS * 3]);
const __m128i b0 = _mm_loadl_epi64((__m128i*)&b[BPS * 0]);
const __m128i b1 = _mm_loadl_epi64((__m128i*)&b[BPS * 1]);
const __m128i b2 = _mm_loadl_epi64((__m128i*)&b[BPS * 2]);
const __m128i b3 = _mm_loadl_epi64((__m128i*)&b[BPS * 3]);
// Combine pair of lines and convert to 16b.
const __m128i a01 = _mm_unpacklo_epi32(a0, a1);
const __m128i a23 = _mm_unpacklo_epi32(a2, a3);
const __m128i b01 = _mm_unpacklo_epi32(b0, b1);
const __m128i b23 = _mm_unpacklo_epi32(b2, b3);
const __m128i a01s = _mm_unpacklo_epi8(a01, zero);
const __m128i a23s = _mm_unpacklo_epi8(a23, zero);
const __m128i b01s = _mm_unpacklo_epi8(b01, zero);
const __m128i b23s = _mm_unpacklo_epi8(b23, zero);
// Compute differences; (a-b)^2 = (abs(a-b))^2 = (sat8(a-b) + sat8(b-a))^2
// TODO(cduvivier): Dissassemble and figure out why this is fastest. We don't
// need absolute values, there is no need to do calculation
// in 8bit as we are already in 16bit, ... Yet this is what
// benchmarks the fastest!
const __m128i d0 = _mm_subs_epu8(a01s, b01s);
const __m128i d1 = _mm_subs_epu8(b01s, a01s);
const __m128i d2 = _mm_subs_epu8(a23s, b23s);
const __m128i d3 = _mm_subs_epu8(b23s, a23s);
// Square and add them all together.
const __m128i madd0 = _mm_madd_epi16(d0, d0);
const __m128i madd1 = _mm_madd_epi16(d1, d1);
const __m128i madd2 = _mm_madd_epi16(d2, d2);
const __m128i madd3 = _mm_madd_epi16(d3, d3);
const __m128i sum0 = _mm_add_epi32(madd0, madd1);
const __m128i sum1 = _mm_add_epi32(madd2, madd3);
const __m128i sum2 = _mm_add_epi32(sum0, sum1);
int32_t tmp[4];
_mm_storeu_si128((__m128i*)tmp, sum2);
return (tmp[3] + tmp[2] + tmp[1] + tmp[0]);
}
//------------------------------------------------------------------------------
// Texture distortion
//
// We try to match the spectral content (weighted) between source and
// reconstructed samples.
// Hadamard transform
// Returns the difference between the weighted sum of the absolute value of
// transformed coefficients.
static int TTransformSSE2(const uint8_t* inA, const uint8_t* inB,
const uint16_t* const w) {
int32_t sum[4];
__m128i tmp_0, tmp_1, tmp_2, tmp_3;
const __m128i zero = _mm_setzero_si128();
const __m128i one = _mm_set1_epi16(1);
const __m128i three = _mm_set1_epi16(3);
// Load, combine and tranpose inputs.
{
const __m128i inA_0 = _mm_loadl_epi64((__m128i*)&inA[BPS * 0]);
const __m128i inA_1 = _mm_loadl_epi64((__m128i*)&inA[BPS * 1]);
const __m128i inA_2 = _mm_loadl_epi64((__m128i*)&inA[BPS * 2]);
const __m128i inA_3 = _mm_loadl_epi64((__m128i*)&inA[BPS * 3]);
const __m128i inB_0 = _mm_loadl_epi64((__m128i*)&inB[BPS * 0]);
const __m128i inB_1 = _mm_loadl_epi64((__m128i*)&inB[BPS * 1]);
const __m128i inB_2 = _mm_loadl_epi64((__m128i*)&inB[BPS * 2]);
const __m128i inB_3 = _mm_loadl_epi64((__m128i*)&inB[BPS * 3]);
// Combine inA and inB (we'll do two transforms in parallel).
const __m128i inAB_0 = _mm_unpacklo_epi8(inA_0, inB_0);
const __m128i inAB_1 = _mm_unpacklo_epi8(inA_1, inB_1);
const __m128i inAB_2 = _mm_unpacklo_epi8(inA_2, inB_2);
const __m128i inAB_3 = _mm_unpacklo_epi8(inA_3, inB_3);
// a00 b00 a01 b01 a02 b03 a03 b03 0 0 0 0 0 0 0 0
// a10 b10 a11 b11 a12 b12 a13 b13 0 0 0 0 0 0 0 0
// a20 b20 a21 b21 a22 b22 a23 b23 0 0 0 0 0 0 0 0
// a30 b30 a31 b31 a32 b32 a33 b33 0 0 0 0 0 0 0 0
// Transpose the two 4x4, discarding the filling zeroes.
const __m128i transpose0_0 = _mm_unpacklo_epi8(inAB_0, inAB_2);
const __m128i transpose0_1 = _mm_unpacklo_epi8(inAB_1, inAB_3);
// a00 a20 b00 b20 a01 a21 b01 b21 a02 a22 b02 b22 a03 a23 b03 b23
// a10 a30 b10 b30 a11 a31 b11 b31 a12 a32 b12 b32 a13 a33 b13 b33
const __m128i transpose1_0 = _mm_unpacklo_epi8(transpose0_0, transpose0_1);
const __m128i transpose1_1 = _mm_unpackhi_epi8(transpose0_0, transpose0_1);
// a00 a10 a20 a30 b00 b10 b20 b30 a01 a11 a21 a31 b01 b11 b21 b31
// a02 a12 a22 a32 b02 b12 b22 b32 a03 a13 a23 a33 b03 b13 b23 b33
// Convert to 16b.
tmp_0 = _mm_unpacklo_epi8(transpose1_0, zero);
tmp_1 = _mm_unpackhi_epi8(transpose1_0, zero);
tmp_2 = _mm_unpacklo_epi8(transpose1_1, zero);
tmp_3 = _mm_unpackhi_epi8(transpose1_1, zero);
// a00 a10 a20 a30 b00 b10 b20 b30
// a01 a11 a21 a31 b01 b11 b21 b31
// a02 a12 a22 a32 b02 b12 b22 b32
// a03 a13 a23 a33 b03 b13 b23 b33
}
// Horizontal pass and subsequent transpose.
{
// Calculate a and b (two 4x4 at once).
const __m128i a0 = _mm_slli_epi16(_mm_add_epi16(tmp_0, tmp_2), 2);
const __m128i a1 = _mm_slli_epi16(_mm_add_epi16(tmp_1, tmp_3), 2);
const __m128i a2 = _mm_slli_epi16(_mm_sub_epi16(tmp_1, tmp_3), 2);
const __m128i a3 = _mm_slli_epi16(_mm_sub_epi16(tmp_0, tmp_2), 2);
// b0_extra = (a0 != 0);
const __m128i b0_extra = _mm_andnot_si128(_mm_cmpeq_epi16 (a0, zero), one);
const __m128i b0_base = _mm_add_epi16(a0, a1);
const __m128i b1 = _mm_add_epi16(a3, a2);
const __m128i b2 = _mm_sub_epi16(a3, a2);
const __m128i b3 = _mm_sub_epi16(a0, a1);
const __m128i b0 = _mm_add_epi16(b0_base, b0_extra);
// a00 a01 a02 a03 b00 b01 b02 b03
// a10 a11 a12 a13 b10 b11 b12 b13
// a20 a21 a22 a23 b20 b21 b22 b23
// a30 a31 a32 a33 b30 b31 b32 b33
// Transpose the two 4x4.
const __m128i transpose0_0 = _mm_unpacklo_epi16(b0, b1);
const __m128i transpose0_1 = _mm_unpacklo_epi16(b2, b3);
const __m128i transpose0_2 = _mm_unpackhi_epi16(b0, b1);
const __m128i transpose0_3 = _mm_unpackhi_epi16(b2, b3);
// a00 a10 a01 a11 a02 a12 a03 a13
// a20 a30 a21 a31 a22 a32 a23 a33
// b00 b10 b01 b11 b02 b12 b03 b13
// b20 b30 b21 b31 b22 b32 b23 b33
const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
// a00 a10 a20 a30 a01 a11 a21 a31
// b00 b10 b20 b30 b01 b11 b21 b31
// a02 a12 a22 a32 a03 a13 a23 a33
// b02 b12 a22 b32 b03 b13 b23 b33
tmp_0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
tmp_1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
tmp_2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
tmp_3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
// a00 a10 a20 a30 b00 b10 b20 b30
// a01 a11 a21 a31 b01 b11 b21 b31
// a02 a12 a22 a32 b02 b12 b22 b32
// a03 a13 a23 a33 b03 b13 b23 b33
}
// Vertical pass and difference of weighted sums.
{
// Load all inputs.
// TODO(cduvivier): Make variable declarations and allocations aligned so
// we can use _mm_load_si128 instead of _mm_loadu_si128.
const __m128i w_0 = _mm_loadu_si128((__m128i*)&w[0]);
const __m128i w_8 = _mm_loadu_si128((__m128i*)&w[8]);
// Calculate a and b (two 4x4 at once).
const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2);
const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3);
const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3);
const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2);
const __m128i b0 = _mm_add_epi16(a0, a1);
const __m128i b1 = _mm_add_epi16(a3, a2);
const __m128i b2 = _mm_sub_epi16(a3, a2);
const __m128i b3 = _mm_sub_epi16(a0, a1);
// Separate the transforms of inA and inB.
__m128i A_b0 = _mm_unpacklo_epi64(b0, b1);
__m128i A_b2 = _mm_unpacklo_epi64(b2, b3);
__m128i B_b0 = _mm_unpackhi_epi64(b0, b1);
__m128i B_b2 = _mm_unpackhi_epi64(b2, b3);
{
// sign(b) = b >> 15 (0x0000 if positive, 0xffff if negative)
const __m128i sign_A_b0 = _mm_srai_epi16(A_b0, 15);
const __m128i sign_A_b2 = _mm_srai_epi16(A_b2, 15);
const __m128i sign_B_b0 = _mm_srai_epi16(B_b0, 15);
const __m128i sign_B_b2 = _mm_srai_epi16(B_b2, 15);
// b = abs(b) = (b ^ sign) - sign
A_b0 = _mm_xor_si128(A_b0, sign_A_b0);
A_b2 = _mm_xor_si128(A_b2, sign_A_b2);
B_b0 = _mm_xor_si128(B_b0, sign_B_b0);
B_b2 = _mm_xor_si128(B_b2, sign_B_b2);
A_b0 = _mm_sub_epi16(A_b0, sign_A_b0);
A_b2 = _mm_sub_epi16(A_b2, sign_A_b2);
B_b0 = _mm_sub_epi16(B_b0, sign_B_b0);
B_b2 = _mm_sub_epi16(B_b2, sign_B_b2);
}
// b = abs(b) + 3
A_b0 = _mm_add_epi16(A_b0, three);
A_b2 = _mm_add_epi16(A_b2, three);
B_b0 = _mm_add_epi16(B_b0, three);
B_b2 = _mm_add_epi16(B_b2, three);
// abs((b + (b<0) + 3) >> 3) = (abs(b) + 3) >> 3
// b = (abs(b) + 3) >> 3
A_b0 = _mm_srai_epi16(A_b0, 3);
A_b2 = _mm_srai_epi16(A_b2, 3);
B_b0 = _mm_srai_epi16(B_b0, 3);
B_b2 = _mm_srai_epi16(B_b2, 3);
// weighted sums
A_b0 = _mm_madd_epi16(A_b0, w_0);
A_b2 = _mm_madd_epi16(A_b2, w_8);
B_b0 = _mm_madd_epi16(B_b0, w_0);
B_b2 = _mm_madd_epi16(B_b2, w_8);
A_b0 = _mm_add_epi32(A_b0, A_b2);
B_b0 = _mm_add_epi32(B_b0, B_b2);
// difference of weighted sums
A_b0 = _mm_sub_epi32(A_b0, B_b0);
_mm_storeu_si128((__m128i*)&sum[0], A_b0);
}
return sum[0] + sum[1] + sum[2] + sum[3];
}
static int Disto4x4SSE2(const uint8_t* const a, const uint8_t* const b,
const uint16_t* const w) {
const int diff_sum = TTransformSSE2(a, b, w);
return (abs(diff_sum) + 8) >> 4;
}
static int Disto16x16SSE2(const uint8_t* const a, const uint8_t* const b,
const uint16_t* const w) {
int D = 0;
int x, y;
for (y = 0; y < 16 * BPS; y += 4 * BPS) {
for (x = 0; x < 16; x += 4) {
D += Disto4x4SSE2(a + x + y, b + x + y, w);
}
}
return D;
}
//------------------------------------------------------------------------------
// Quantization
//
// Simple quantization
static int QuantizeBlockSSE2(int16_t in[16], int16_t out[16],
int n, const VP8Matrix* const mtx) {
const __m128i max_coeff_2047 = _mm_set1_epi16(2047);
const __m128i zero = _mm_set1_epi16(0);
__m128i sign0, sign8;
__m128i coeff0, coeff8;
__m128i out0, out8;
__m128i packed_out;
// Load all inputs.
// TODO(cduvivier): Make variable declarations and allocations aligned so that
// we can use _mm_load_si128 instead of _mm_loadu_si128.
__m128i in0 = _mm_loadu_si128((__m128i*)&in[0]);
__m128i in8 = _mm_loadu_si128((__m128i*)&in[8]);
const __m128i sharpen0 = _mm_loadu_si128((__m128i*)&mtx->sharpen_[0]);
const __m128i sharpen8 = _mm_loadu_si128((__m128i*)&mtx->sharpen_[8]);
const __m128i iq0 = _mm_loadu_si128((__m128i*)&mtx->iq_[0]);
const __m128i iq8 = _mm_loadu_si128((__m128i*)&mtx->iq_[8]);
const __m128i bias0 = _mm_loadu_si128((__m128i*)&mtx->bias_[0]);
const __m128i bias8 = _mm_loadu_si128((__m128i*)&mtx->bias_[8]);
const __m128i q0 = _mm_loadu_si128((__m128i*)&mtx->q_[0]);
const __m128i q8 = _mm_loadu_si128((__m128i*)&mtx->q_[8]);
const __m128i zthresh0 = _mm_loadu_si128((__m128i*)&mtx->zthresh_[0]);
const __m128i zthresh8 = _mm_loadu_si128((__m128i*)&mtx->zthresh_[8]);
// sign(in) = in >> 15 (0x0000 if positive, 0xffff if negative)
sign0 = _mm_srai_epi16(in0, 15);
sign8 = _mm_srai_epi16(in8, 15);
// coeff = abs(in) = (in ^ sign) - sign
coeff0 = _mm_xor_si128(in0, sign0);
coeff8 = _mm_xor_si128(in8, sign8);
coeff0 = _mm_sub_epi16(coeff0, sign0);
coeff8 = _mm_sub_epi16(coeff8, sign8);
// coeff = abs(in) + sharpen
coeff0 = _mm_add_epi16(coeff0, sharpen0);
coeff8 = _mm_add_epi16(coeff8, sharpen8);
// if (coeff > 2047) coeff = 2047
coeff0 = _mm_min_epi16(coeff0, max_coeff_2047);
coeff8 = _mm_min_epi16(coeff8, max_coeff_2047);
// out = (coeff * iQ + B) >> QFIX;
{
// doing calculations with 32b precision (QFIX=17)
// out = (coeff * iQ)
__m128i coeff_iQ0H = _mm_mulhi_epu16(coeff0, iq0);
__m128i coeff_iQ0L = _mm_mullo_epi16(coeff0, iq0);
__m128i coeff_iQ8H = _mm_mulhi_epu16(coeff8, iq8);
__m128i coeff_iQ8L = _mm_mullo_epi16(coeff8, iq8);
__m128i out_00 = _mm_unpacklo_epi16(coeff_iQ0L, coeff_iQ0H);
__m128i out_04 = _mm_unpackhi_epi16(coeff_iQ0L, coeff_iQ0H);
__m128i out_08 = _mm_unpacklo_epi16(coeff_iQ8L, coeff_iQ8H);
__m128i out_12 = _mm_unpackhi_epi16(coeff_iQ8L, coeff_iQ8H);
// expand bias from 16b to 32b
__m128i bias_00 = _mm_unpacklo_epi16(bias0, zero);
__m128i bias_04 = _mm_unpackhi_epi16(bias0, zero);
__m128i bias_08 = _mm_unpacklo_epi16(bias8, zero);
__m128i bias_12 = _mm_unpackhi_epi16(bias8, zero);
// out = (coeff * iQ + B)
out_00 = _mm_add_epi32(out_00, bias_00);
out_04 = _mm_add_epi32(out_04, bias_04);
out_08 = _mm_add_epi32(out_08, bias_08);
out_12 = _mm_add_epi32(out_12, bias_12);
// out = (coeff * iQ + B) >> QFIX;
out_00 = _mm_srai_epi32(out_00, QFIX);
out_04 = _mm_srai_epi32(out_04, QFIX);
out_08 = _mm_srai_epi32(out_08, QFIX);
out_12 = _mm_srai_epi32(out_12, QFIX);
// pack result as 16b
out0 = _mm_packs_epi32(out_00, out_04);
out8 = _mm_packs_epi32(out_08, out_12);
}
// get sign back (if (sign[j]) out_n = -out_n)
out0 = _mm_xor_si128(out0, sign0);
out8 = _mm_xor_si128(out8, sign8);
out0 = _mm_sub_epi16(out0, sign0);
out8 = _mm_sub_epi16(out8, sign8);
// in = out * Q
in0 = _mm_mullo_epi16(out0, q0);
in8 = _mm_mullo_epi16(out8, q8);
// if (coeff <= mtx->zthresh_) {in=0; out=0;}
{
__m128i cmp0 = _mm_cmpgt_epi16(coeff0, zthresh0);
__m128i cmp8 = _mm_cmpgt_epi16(coeff8, zthresh8);
in0 = _mm_and_si128(in0, cmp0);
in8 = _mm_and_si128(in8, cmp8);
_mm_storeu_si128((__m128i*)&in[0], in0);
_mm_storeu_si128((__m128i*)&in[8], in8);
out0 = _mm_and_si128(out0, cmp0);
out8 = _mm_and_si128(out8, cmp8);
}
// zigzag the output before storing it.
//
// The zigzag pattern can almost be reproduced with a small sequence of
// shuffles. After it, we only need to swap the 7th (ending up in third
// position instead of twelfth) and 8th values.
{
__m128i outZ0, outZ8;
outZ0 = _mm_shufflehi_epi16(out0, _MM_SHUFFLE(2, 1, 3, 0));
outZ0 = _mm_shuffle_epi32 (outZ0, _MM_SHUFFLE(3, 1, 2, 0));
outZ0 = _mm_shufflehi_epi16(outZ0, _MM_SHUFFLE(3, 1, 0, 2));
outZ8 = _mm_shufflelo_epi16(out8, _MM_SHUFFLE(3, 0, 2, 1));
outZ8 = _mm_shuffle_epi32 (outZ8, _MM_SHUFFLE(3, 1, 2, 0));
outZ8 = _mm_shufflelo_epi16(outZ8, _MM_SHUFFLE(1, 3, 2, 0));
_mm_storeu_si128((__m128i*)&out[0], outZ0);
_mm_storeu_si128((__m128i*)&out[8], outZ8);
packed_out = _mm_packs_epi16(outZ0, outZ8);
}
{
const int16_t outZ_12 = out[12];
const int16_t outZ_3 = out[3];
out[3] = outZ_12;
out[12] = outZ_3;
}
// detect if all 'out' values are zeroes or not
{
int32_t tmp[4];
_mm_storeu_si128((__m128i*)tmp, packed_out);
if (n) {
tmp[0] &= ~0xff;
}
return (tmp[3] || tmp[2] || tmp[1] || tmp[0]);
}
}
extern void VP8EncDspInitSSE2(void);
void VP8EncDspInitSSE2(void) {
VP8CollectHistogram = CollectHistogramSSE2;
VP8EncQuantizeBlock = QuantizeBlockSSE2;
VP8ITransform = ITransformSSE2;
VP8FTransform = FTransformSSE2;
VP8SSE4x4 = SSE4x4SSE2;
VP8TDisto4x4 = Disto4x4SSE2;
VP8TDisto16x16 = Disto16x16SSE2;
}
#if defined(__cplusplus) || defined(c_plusplus)
} // extern "C"
#endif
#endif // WEBP_USE_SSE2