godot/modules/gdscript/gd_parser.cpp
Karroffel 5319098aef fix a regression (GDScript) from e00630b
This removes `not` from the variable safe list of
keywords.
Before that this was a valid expression:
    self.!(some_arg)

The other fix is just a forgotten boolean negation.
2017-07-25 20:01:19 +02:00

4396 lines
126 KiB
C++

/*************************************************************************/
/* gd_parser.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* http://www.godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2017 Godot Engine contributors (cf. AUTHORS.md) */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "gd_parser.h"
#include "gd_script.h"
#include "io/resource_loader.h"
#include "os/file_access.h"
#include "print_string.h"
#include "script_language.h"
template <class T>
T *GDParser::alloc_node() {
T *t = memnew(T);
t->next = list;
list = t;
if (!head)
head = t;
t->line = tokenizer->get_token_line();
t->column = tokenizer->get_token_column();
return t;
}
bool GDParser::_end_statement() {
if (tokenizer->get_token() == GDTokenizer::TK_SEMICOLON) {
tokenizer->advance();
return true; //handle next
} else if (tokenizer->get_token() == GDTokenizer::TK_NEWLINE || tokenizer->get_token() == GDTokenizer::TK_EOF) {
return true; //will be handled properly
}
return false;
}
bool GDParser::_enter_indent_block(BlockNode *p_block) {
if (tokenizer->get_token() != GDTokenizer::TK_COLON) {
// report location at the previous token (on the previous line)
int error_line = tokenizer->get_token_line(-1);
int error_column = tokenizer->get_token_column(-1);
_set_error("':' expected at end of line.", error_line, error_column);
return false;
}
tokenizer->advance();
if (tokenizer->get_token() != GDTokenizer::TK_NEWLINE) {
// be more python-like
int current = tab_level.back()->get();
tab_level.push_back(current);
return true;
//_set_error("newline expected after ':'.");
//return false;
}
while (true) {
if (tokenizer->get_token() != GDTokenizer::TK_NEWLINE) {
return false; //wtf
} else if (tokenizer->get_token(1) != GDTokenizer::TK_NEWLINE) {
int indent = tokenizer->get_token_line_indent();
int current = tab_level.back()->get();
if (indent <= current) {
print_line("current: " + itos(current) + " indent: " + itos(indent));
print_line("less than current");
return false;
}
tab_level.push_back(indent);
tokenizer->advance();
return true;
} else if (p_block) {
NewLineNode *nl = alloc_node<NewLineNode>();
nl->line = tokenizer->get_token_line();
p_block->statements.push_back(nl);
}
tokenizer->advance(); // go to next newline
}
}
bool GDParser::_parse_arguments(Node *p_parent, Vector<Node *> &p_args, bool p_static, bool p_can_codecomplete) {
if (tokenizer->get_token() == GDTokenizer::TK_PARENTHESIS_CLOSE) {
tokenizer->advance();
} else {
parenthesis++;
int argidx = 0;
while (true) {
if (tokenizer->get_token() == GDTokenizer::TK_CURSOR) {
_make_completable_call(argidx);
completion_node = p_parent;
} else if (tokenizer->get_token() == GDTokenizer::TK_CONSTANT && tokenizer->get_token_constant().get_type() == Variant::STRING && tokenizer->get_token(1) == GDTokenizer::TK_CURSOR) {
//completing a string argument..
completion_cursor = tokenizer->get_token_constant();
_make_completable_call(argidx);
completion_node = p_parent;
tokenizer->advance(1);
return false;
}
Node *arg = _parse_expression(p_parent, p_static);
if (!arg)
return false;
p_args.push_back(arg);
if (tokenizer->get_token() == GDTokenizer::TK_PARENTHESIS_CLOSE) {
tokenizer->advance();
break;
} else if (tokenizer->get_token() == GDTokenizer::TK_COMMA) {
if (tokenizer->get_token(1) == GDTokenizer::TK_PARENTHESIS_CLOSE) {
_set_error("Expression expected");
return false;
}
tokenizer->advance();
argidx++;
} else {
// something is broken
_set_error("Expected ',' or ')'");
return false;
}
}
parenthesis--;
}
return true;
}
void GDParser::_make_completable_call(int p_arg) {
completion_cursor = StringName();
completion_type = COMPLETION_CALL_ARGUMENTS;
completion_class = current_class;
completion_function = current_function;
completion_line = tokenizer->get_token_line();
completion_argument = p_arg;
completion_block = current_block;
completion_found = true;
tokenizer->advance();
}
bool GDParser::_get_completable_identifier(CompletionType p_type, StringName &identifier) {
identifier = StringName();
if (tokenizer->is_token_literal()) {
identifier = tokenizer->get_token_literal();
tokenizer->advance();
}
if (tokenizer->get_token() == GDTokenizer::TK_CURSOR) {
completion_cursor = identifier;
completion_type = p_type;
completion_class = current_class;
completion_function = current_function;
completion_line = tokenizer->get_token_line();
completion_block = current_block;
completion_found = true;
completion_ident_is_call = false;
tokenizer->advance();
if (tokenizer->is_token_literal()) {
identifier = identifier.operator String() + tokenizer->get_token_literal().operator String();
tokenizer->advance();
}
if (tokenizer->get_token() == GDTokenizer::TK_PARENTHESIS_OPEN) {
completion_ident_is_call = true;
}
return true;
}
return false;
}
GDParser::Node *GDParser::_parse_expression(Node *p_parent, bool p_static, bool p_allow_assign, bool p_parsing_constant) {
//Vector<Node*> expressions;
//Vector<OperatorNode::Operator> operators;
Vector<Expression> expression;
Node *expr = NULL;
int op_line = tokenizer->get_token_line(); // when operators are created at the bottom, the line might have been changed (\n found)
while (true) {
/*****************/
/* Parse Operand */
/*****************/
if (parenthesis > 0) {
//remove empty space (only allowed if inside parenthesis
while (tokenizer->get_token() == GDTokenizer::TK_NEWLINE) {
tokenizer->advance();
}
}
if (tokenizer->get_token() == GDTokenizer::TK_PARENTHESIS_OPEN) {
//subexpression ()
tokenizer->advance();
parenthesis++;
Node *subexpr = _parse_expression(p_parent, p_static, p_allow_assign, p_parsing_constant);
parenthesis--;
if (!subexpr)
return NULL;
if (tokenizer->get_token() != GDTokenizer::TK_PARENTHESIS_CLOSE) {
_set_error("Expected ')' in expression");
return NULL;
}
tokenizer->advance();
expr = subexpr;
} else if (tokenizer->get_token() == GDTokenizer::TK_DOLLAR) {
tokenizer->advance();
String path;
bool need_identifier = true;
bool done = false;
while (!done) {
switch (tokenizer->get_token()) {
case GDTokenizer::TK_CURSOR: {
completion_cursor = StringName();
completion_type = COMPLETION_GET_NODE;
completion_class = current_class;
completion_function = current_function;
completion_line = tokenizer->get_token_line();
completion_cursor = path;
completion_argument = 0;
completion_block = current_block;
completion_found = true;
tokenizer->advance();
} break;
case GDTokenizer::TK_CONSTANT: {
if (!need_identifier) {
done = true;
break;
}
if (tokenizer->get_token_constant().get_type() != Variant::STRING) {
_set_error("Expected string constant or identifier after '$' or '/'.");
return NULL;
}
path += String(tokenizer->get_token_constant());
tokenizer->advance();
need_identifier = false;
} break;
case GDTokenizer::TK_OP_DIV: {
if (need_identifier) {
done = true;
break;
}
path += "/";
tokenizer->advance();
need_identifier = true;
} break;
default: {
// Instead of checking for TK_IDENTIFIER, we check with is_token_literal, as this allows us to use match/sync/etc. as a name
if (need_identifier && tokenizer->is_token_literal()) {
path += String(tokenizer->get_token_literal());
tokenizer->advance();
need_identifier = false;
}
done = true;
break;
}
}
}
if (path == "") {
_set_error("Path expected after $.");
return NULL;
}
OperatorNode *op = alloc_node<OperatorNode>();
op->op = OperatorNode::OP_CALL;
op->arguments.push_back(alloc_node<SelfNode>());
IdentifierNode *funcname = alloc_node<IdentifierNode>();
funcname->name = "get_node";
op->arguments.push_back(funcname);
ConstantNode *nodepath = alloc_node<ConstantNode>();
nodepath->value = NodePath(StringName(path));
op->arguments.push_back(nodepath);
expr = op;
} else if (tokenizer->get_token() == GDTokenizer::TK_CURSOR) {
tokenizer->advance();
continue; //no point in cursor in the middle of expression
} else if (tokenizer->get_token() == GDTokenizer::TK_CONSTANT) {
//constant defined by tokenizer
ConstantNode *constant = alloc_node<ConstantNode>();
constant->value = tokenizer->get_token_constant();
tokenizer->advance();
expr = constant;
} else if (tokenizer->get_token() == GDTokenizer::TK_CONST_PI) {
//constant defined by tokenizer
ConstantNode *constant = alloc_node<ConstantNode>();
constant->value = Math_PI;
tokenizer->advance();
expr = constant;
} else if (tokenizer->get_token() == GDTokenizer::TK_CONST_INF) {
//constant defined by tokenizer
ConstantNode *constant = alloc_node<ConstantNode>();
constant->value = Math_INF;
tokenizer->advance();
expr = constant;
} else if (tokenizer->get_token() == GDTokenizer::TK_CONST_NAN) {
//constant defined by tokenizer
ConstantNode *constant = alloc_node<ConstantNode>();
constant->value = Math_NAN;
tokenizer->advance();
expr = constant;
} else if (tokenizer->get_token() == GDTokenizer::TK_PR_PRELOAD) {
//constant defined by tokenizer
tokenizer->advance();
if (tokenizer->get_token() != GDTokenizer::TK_PARENTHESIS_OPEN) {
_set_error("Expected '(' after 'preload'");
return NULL;
}
tokenizer->advance();
if (tokenizer->get_token() == GDTokenizer::TK_CURSOR) {
completion_cursor = StringName();
completion_node = p_parent;
completion_type = COMPLETION_RESOURCE_PATH;
completion_class = current_class;
completion_function = current_function;
completion_line = tokenizer->get_token_line();
completion_block = current_block;
completion_argument = 0;
completion_found = true;
tokenizer->advance();
}
String path;
bool found_constant = false;
bool valid = false;
ConstantNode *cn;
Node *subexpr = _parse_and_reduce_expression(p_parent, p_static);
if (subexpr) {
if (subexpr->type == Node::TYPE_CONSTANT) {
cn = static_cast<ConstantNode *>(subexpr);
found_constant = true;
}
if (subexpr->type == Node::TYPE_IDENTIFIER) {
IdentifierNode *in = static_cast<IdentifierNode *>(subexpr);
Vector<ClassNode::Constant> ce = current_class->constant_expressions;
// Try to find the constant expression by the identifier
for (int i = 0; i < ce.size(); ++i) {
if (ce[i].identifier == in->name) {
if (ce[i].expression->type == Node::TYPE_CONSTANT) {
cn = static_cast<ConstantNode *>(ce[i].expression);
found_constant = true;
}
}
}
}
if (found_constant && cn->value.get_type() == Variant::STRING) {
valid = true;
path = (String)cn->value;
}
}
if (!valid) {
_set_error("expected string constant as 'preload' argument.");
return NULL;
}
if (!path.is_abs_path() && base_path != "")
path = base_path + "/" + path;
path = path.replace("///", "//").simplify_path();
if (path == self_path) {
_set_error("Can't preload itself (use 'get_script()').");
return NULL;
}
Ref<Resource> res;
if (!validating) {
//this can be too slow for just validating code
if (for_completion && ScriptCodeCompletionCache::get_sigleton()) {
res = ScriptCodeCompletionCache::get_sigleton()->get_cached_resource(path);
} else {
res = ResourceLoader::load(path);
}
if (!res.is_valid()) {
_set_error("Can't preload resource at path: " + path);
return NULL;
}
} else {
if (!FileAccess::exists(path)) {
_set_error("Can't preload resource at path: " + path);
return NULL;
}
}
if (tokenizer->get_token() != GDTokenizer::TK_PARENTHESIS_CLOSE) {
_set_error("Expected ')' after 'preload' path");
return NULL;
}
tokenizer->advance();
ConstantNode *constant = alloc_node<ConstantNode>();
constant->value = res;
expr = constant;
} else if (tokenizer->get_token() == GDTokenizer::TK_PR_YIELD) {
//constant defined by tokenizer
tokenizer->advance();
if (tokenizer->get_token() != GDTokenizer::TK_PARENTHESIS_OPEN) {
_set_error("Expected '(' after 'yield'");
return NULL;
}
tokenizer->advance();
OperatorNode *yield = alloc_node<OperatorNode>();
yield->op = OperatorNode::OP_YIELD;
while (tokenizer->get_token() == GDTokenizer::TK_NEWLINE) {
tokenizer->advance();
}
if (tokenizer->get_token() == GDTokenizer::TK_PARENTHESIS_CLOSE) {
expr = yield;
tokenizer->advance();
} else {
parenthesis++;
Node *object = _parse_and_reduce_expression(p_parent, p_static);
if (!object)
return NULL;
yield->arguments.push_back(object);
if (tokenizer->get_token() != GDTokenizer::TK_COMMA) {
_set_error("Expected ',' after first argument of 'yield'");
return NULL;
}
tokenizer->advance();
if (tokenizer->get_token() == GDTokenizer::TK_CURSOR) {
completion_cursor = StringName();
completion_node = object;
completion_type = COMPLETION_YIELD;
completion_class = current_class;
completion_function = current_function;
completion_line = tokenizer->get_token_line();
completion_argument = 0;
completion_block = current_block;
completion_found = true;
tokenizer->advance();
}
Node *signal = _parse_and_reduce_expression(p_parent, p_static);
if (!signal)
return NULL;
yield->arguments.push_back(signal);
if (tokenizer->get_token() != GDTokenizer::TK_PARENTHESIS_CLOSE) {
_set_error("Expected ')' after second argument of 'yield'");
return NULL;
}
parenthesis--;
tokenizer->advance();
expr = yield;
}
} else if (tokenizer->get_token() == GDTokenizer::TK_SELF) {
if (p_static) {
_set_error("'self'' not allowed in static function or constant expression");
return NULL;
}
//constant defined by tokenizer
SelfNode *self = alloc_node<SelfNode>();
tokenizer->advance();
expr = self;
} else if (tokenizer->get_token() == GDTokenizer::TK_BUILT_IN_TYPE && tokenizer->get_token(1) == GDTokenizer::TK_PERIOD) {
Variant::Type bi_type = tokenizer->get_token_type();
tokenizer->advance(2);
StringName identifier;
if (_get_completable_identifier(COMPLETION_BUILT_IN_TYPE_CONSTANT, identifier)) {
completion_built_in_constant = bi_type;
}
if (identifier == StringName()) {
_set_error("Built-in type constant expected after '.'");
return NULL;
}
if (!Variant::has_numeric_constant(bi_type, identifier)) {
_set_error("Static constant '" + identifier.operator String() + "' not present in built-in type " + Variant::get_type_name(bi_type) + ".");
return NULL;
}
ConstantNode *cn = alloc_node<ConstantNode>();
cn->value = Variant::get_numeric_constant_value(bi_type, identifier);
expr = cn;
} else if (tokenizer->get_token(1) == GDTokenizer::TK_PARENTHESIS_OPEN && tokenizer->is_token_literal()) {
// We check with is_token_literal, as this allows us to use match/sync/etc. as a name
//function or constructor
OperatorNode *op = alloc_node<OperatorNode>();
op->op = OperatorNode::OP_CALL;
if (tokenizer->get_token() == GDTokenizer::TK_BUILT_IN_TYPE) {
TypeNode *tn = alloc_node<TypeNode>();
tn->vtype = tokenizer->get_token_type();
op->arguments.push_back(tn);
tokenizer->advance(2);
} else if (tokenizer->get_token() == GDTokenizer::TK_BUILT_IN_FUNC) {
BuiltInFunctionNode *bn = alloc_node<BuiltInFunctionNode>();
bn->function = tokenizer->get_token_built_in_func();
op->arguments.push_back(bn);
tokenizer->advance(2);
} else {
SelfNode *self = alloc_node<SelfNode>();
op->arguments.push_back(self);
StringName identifier;
if (_get_completable_identifier(COMPLETION_FUNCTION, identifier)) {
}
IdentifierNode *id = alloc_node<IdentifierNode>();
id->name = identifier;
op->arguments.push_back(id);
tokenizer->advance(1);
}
if (tokenizer->get_token() == GDTokenizer::TK_CURSOR) {
_make_completable_call(0);
completion_node = op;
}
if (!_parse_arguments(op, op->arguments, p_static, true))
return NULL;
expr = op;
} else if (tokenizer->is_token_literal(0, true)) {
// We check with is_token_literal, as this allows us to use match/sync/etc. as a name
//identifier (reference)
const ClassNode *cln = current_class;
bool bfn = false;
StringName identifier;
if (_get_completable_identifier(COMPLETION_IDENTIFIER, identifier)) {
}
if (p_parsing_constant) {
for (int i = 0; i < cln->constant_expressions.size(); ++i) {
if (cln->constant_expressions[i].identifier == identifier) {
expr = cln->constant_expressions[i].expression;
bfn = true;
break;
}
}
if (GDScriptLanguage::get_singleton()->get_global_map().has(identifier)) {
//check from constants
ConstantNode *constant = alloc_node<ConstantNode>();
constant->value = GDScriptLanguage::get_singleton()->get_global_array()[GDScriptLanguage::get_singleton()->get_global_map()[identifier]];
expr = constant;
bfn = true;
}
}
if (!bfn) {
IdentifierNode *id = alloc_node<IdentifierNode>();
id->name = identifier;
expr = id;
}
} else if (tokenizer->get_token() == GDTokenizer::TK_OP_ADD || tokenizer->get_token() == GDTokenizer::TK_OP_SUB || tokenizer->get_token() == GDTokenizer::TK_OP_NOT || tokenizer->get_token() == GDTokenizer::TK_OP_BIT_INVERT) {
//single prefix operators like !expr +expr -expr ++expr --expr
alloc_node<OperatorNode>();
Expression e;
e.is_op = true;
switch (tokenizer->get_token()) {
case GDTokenizer::TK_OP_ADD: e.op = OperatorNode::OP_POS; break;
case GDTokenizer::TK_OP_SUB: e.op = OperatorNode::OP_NEG; break;
case GDTokenizer::TK_OP_NOT: e.op = OperatorNode::OP_NOT; break;
case GDTokenizer::TK_OP_BIT_INVERT: e.op = OperatorNode::OP_BIT_INVERT; break;
default: {}
}
tokenizer->advance();
if (e.op != OperatorNode::OP_NOT && tokenizer->get_token() == GDTokenizer::TK_OP_NOT) {
_set_error("Misplaced 'not'.");
return NULL;
}
expression.push_back(e);
continue; //only exception, must continue...
/*
Node *subexpr=_parse_expression(op,p_static);
if (!subexpr)
return NULL;
op->arguments.push_back(subexpr);
expr=op;*/
} else if (tokenizer->get_token() == GDTokenizer::TK_BRACKET_OPEN) {
// array
tokenizer->advance();
ArrayNode *arr = alloc_node<ArrayNode>();
bool expecting_comma = false;
while (true) {
if (tokenizer->get_token() == GDTokenizer::TK_EOF) {
_set_error("Unterminated array");
return NULL;
} else if (tokenizer->get_token() == GDTokenizer::TK_BRACKET_CLOSE) {
tokenizer->advance();
break;
} else if (tokenizer->get_token() == GDTokenizer::TK_NEWLINE) {
tokenizer->advance(); //ignore newline
} else if (tokenizer->get_token() == GDTokenizer::TK_COMMA) {
if (!expecting_comma) {
_set_error("expression or ']' expected");
return NULL;
}
expecting_comma = false;
tokenizer->advance(); //ignore newline
} else {
//parse expression
if (expecting_comma) {
_set_error("',' or ']' expected");
return NULL;
}
Node *n = _parse_expression(arr, p_static, p_allow_assign, p_parsing_constant);
if (!n)
return NULL;
arr->elements.push_back(n);
expecting_comma = true;
}
}
expr = arr;
} else if (tokenizer->get_token() == GDTokenizer::TK_CURLY_BRACKET_OPEN) {
// array
tokenizer->advance();
DictionaryNode *dict = alloc_node<DictionaryNode>();
enum DictExpect {
DICT_EXPECT_KEY,
DICT_EXPECT_COLON,
DICT_EXPECT_VALUE,
DICT_EXPECT_COMMA
};
Node *key = NULL;
Set<Variant> keys;
DictExpect expecting = DICT_EXPECT_KEY;
while (true) {
if (tokenizer->get_token() == GDTokenizer::TK_EOF) {
_set_error("Unterminated dictionary");
return NULL;
} else if (tokenizer->get_token() == GDTokenizer::TK_CURLY_BRACKET_CLOSE) {
if (expecting == DICT_EXPECT_COLON) {
_set_error("':' expected");
return NULL;
}
if (expecting == DICT_EXPECT_VALUE) {
_set_error("value expected");
return NULL;
}
tokenizer->advance();
break;
} else if (tokenizer->get_token() == GDTokenizer::TK_NEWLINE) {
tokenizer->advance(); //ignore newline
} else if (tokenizer->get_token() == GDTokenizer::TK_COMMA) {
if (expecting == DICT_EXPECT_KEY) {
_set_error("key or '}' expected");
return NULL;
}
if (expecting == DICT_EXPECT_VALUE) {
_set_error("value expected");
return NULL;
}
if (expecting == DICT_EXPECT_COLON) {
_set_error("':' expected");
return NULL;
}
expecting = DICT_EXPECT_KEY;
tokenizer->advance(); //ignore newline
} else if (tokenizer->get_token() == GDTokenizer::TK_COLON) {
if (expecting == DICT_EXPECT_KEY) {
_set_error("key or '}' expected");
return NULL;
}
if (expecting == DICT_EXPECT_VALUE) {
_set_error("value expected");
return NULL;
}
if (expecting == DICT_EXPECT_COMMA) {
_set_error("',' or '}' expected");
return NULL;
}
expecting = DICT_EXPECT_VALUE;
tokenizer->advance(); //ignore newline
} else {
if (expecting == DICT_EXPECT_COMMA) {
_set_error("',' or '}' expected");
return NULL;
}
if (expecting == DICT_EXPECT_COLON) {
_set_error("':' expected");
return NULL;
}
if (expecting == DICT_EXPECT_KEY) {
if (tokenizer->is_token_literal() && tokenizer->get_token(1) == GDTokenizer::TK_OP_ASSIGN) {
// We check with is_token_literal, as this allows us to use match/sync/etc. as a name
//lua style identifier, easier to write
ConstantNode *cn = alloc_node<ConstantNode>();
cn->value = tokenizer->get_token_literal();
key = cn;
tokenizer->advance(2);
expecting = DICT_EXPECT_VALUE;
} else {
//python/js style more flexible
key = _parse_expression(dict, p_static, p_allow_assign, p_parsing_constant);
if (!key)
return NULL;
expecting = DICT_EXPECT_COLON;
}
}
if (expecting == DICT_EXPECT_VALUE) {
Node *value = _parse_expression(dict, p_static, p_allow_assign, p_parsing_constant);
if (!value)
return NULL;
expecting = DICT_EXPECT_COMMA;
if (key->type == GDParser::Node::TYPE_CONSTANT) {
Variant const &keyName = static_cast<const GDParser::ConstantNode *>(key)->value;
if (keys.has(keyName)) {
_set_error("Duplicate key found in Dictionary literal");
return NULL;
}
keys.insert(keyName);
}
DictionaryNode::Pair pair;
pair.key = key;
pair.value = value;
dict->elements.push_back(pair);
key = NULL;
}
}
}
expr = dict;
} else if (tokenizer->get_token() == GDTokenizer::TK_PERIOD && (tokenizer->is_token_literal(1) || tokenizer->get_token(1) == GDTokenizer::TK_CURSOR) && tokenizer->get_token(2) == GDTokenizer::TK_PARENTHESIS_OPEN) {
// We check with is_token_literal, as this allows us to use match/sync/etc. as a name
// parent call
tokenizer->advance(); //goto identifier
OperatorNode *op = alloc_node<OperatorNode>();
op->op = OperatorNode::OP_PARENT_CALL;
/*SelfNode *self = alloc_node<SelfNode>();
op->arguments.push_back(self);
forbidden for now */
StringName identifier;
if (_get_completable_identifier(COMPLETION_PARENT_FUNCTION, identifier)) {
//indexing stuff
}
IdentifierNode *id = alloc_node<IdentifierNode>();
id->name = identifier;
op->arguments.push_back(id);
tokenizer->advance(1);
if (!_parse_arguments(op, op->arguments, p_static))
return NULL;
expr = op;
} else {
//find list [ or find dictionary {
//print_line("found bug?");
_set_error("Error parsing expression, misplaced: " + String(tokenizer->get_token_name(tokenizer->get_token())));
return NULL; //nothing
}
if (!expr) {
ERR_EXPLAIN("GDParser bug, couldn't figure out what expression is..");
ERR_FAIL_COND_V(!expr, NULL);
}
/******************/
/* Parse Indexing */
/******************/
while (true) {
//expressions can be indexed any number of times
if (tokenizer->get_token() == GDTokenizer::TK_PERIOD) {
//indexing using "."
if (tokenizer->get_token(1) != GDTokenizer::TK_CURSOR && !tokenizer->is_token_literal(1)) {
// We check with is_token_literal, as this allows us to use match/sync/etc. as a name
_set_error("Expected identifier as member");
return NULL;
} else if (tokenizer->get_token(2) == GDTokenizer::TK_PARENTHESIS_OPEN) {
//call!!
OperatorNode *op = alloc_node<OperatorNode>();
op->op = OperatorNode::OP_CALL;
tokenizer->advance();
IdentifierNode *id = alloc_node<IdentifierNode>();
if (tokenizer->get_token() == GDTokenizer::TK_BUILT_IN_FUNC) {
//small hack so built in funcs don't obfuscate methods
id->name = GDFunctions::get_func_name(tokenizer->get_token_built_in_func());
tokenizer->advance();
} else {
StringName identifier;
if (_get_completable_identifier(COMPLETION_METHOD, identifier)) {
completion_node = op;
//indexing stuff
}
id->name = identifier;
}
op->arguments.push_back(expr); // call what
op->arguments.push_back(id); // call func
//get arguments
tokenizer->advance(1);
if (tokenizer->get_token() == GDTokenizer::TK_CURSOR) {
_make_completable_call(0);
completion_node = op;
}
if (!_parse_arguments(op, op->arguments, p_static, true))
return NULL;
expr = op;
} else {
//simple indexing!
OperatorNode *op = alloc_node<OperatorNode>();
op->op = OperatorNode::OP_INDEX_NAMED;
tokenizer->advance();
StringName identifier;
if (_get_completable_identifier(COMPLETION_INDEX, identifier)) {
if (identifier == StringName()) {
identifier = "@temp"; //so it parses allright
}
completion_node = op;
//indexing stuff
}
IdentifierNode *id = alloc_node<IdentifierNode>();
id->name = identifier;
op->arguments.push_back(expr);
op->arguments.push_back(id);
expr = op;
}
} else if (tokenizer->get_token() == GDTokenizer::TK_BRACKET_OPEN) {
//indexing using "[]"
OperatorNode *op = alloc_node<OperatorNode>();
op->op = OperatorNode::OP_INDEX;
tokenizer->advance(1);
Node *subexpr = _parse_expression(op, p_static, p_allow_assign, p_parsing_constant);
if (!subexpr) {
return NULL;
}
if (tokenizer->get_token() != GDTokenizer::TK_BRACKET_CLOSE) {
_set_error("Expected ']'");
return NULL;
}
op->arguments.push_back(expr);
op->arguments.push_back(subexpr);
tokenizer->advance(1);
expr = op;
} else
break;
}
/******************/
/* Parse Operator */
/******************/
if (parenthesis > 0) {
//remove empty space (only allowed if inside parenthesis
while (tokenizer->get_token() == GDTokenizer::TK_NEWLINE) {
tokenizer->advance();
}
}
Expression e;
e.is_op = false;
e.node = expr;
expression.push_back(e);
// determine which operator is next
OperatorNode::Operator op;
bool valid = true;
//assign, if allowed is only allowed on the first operator
#define _VALIDATE_ASSIGN \
if (!p_allow_assign) { \
_set_error("Unexpected assign."); \
return NULL; \
} \
p_allow_assign = false;
switch (tokenizer->get_token()) { //see operator
case GDTokenizer::TK_OP_IN: op = OperatorNode::OP_IN; break;
case GDTokenizer::TK_OP_EQUAL: op = OperatorNode::OP_EQUAL; break;
case GDTokenizer::TK_OP_NOT_EQUAL: op = OperatorNode::OP_NOT_EQUAL; break;
case GDTokenizer::TK_OP_LESS: op = OperatorNode::OP_LESS; break;
case GDTokenizer::TK_OP_LESS_EQUAL: op = OperatorNode::OP_LESS_EQUAL; break;
case GDTokenizer::TK_OP_GREATER: op = OperatorNode::OP_GREATER; break;
case GDTokenizer::TK_OP_GREATER_EQUAL: op = OperatorNode::OP_GREATER_EQUAL; break;
case GDTokenizer::TK_OP_AND: op = OperatorNode::OP_AND; break;
case GDTokenizer::TK_OP_OR: op = OperatorNode::OP_OR; break;
case GDTokenizer::TK_OP_ADD: op = OperatorNode::OP_ADD; break;
case GDTokenizer::TK_OP_SUB: op = OperatorNode::OP_SUB; break;
case GDTokenizer::TK_OP_MUL: op = OperatorNode::OP_MUL; break;
case GDTokenizer::TK_OP_DIV: op = OperatorNode::OP_DIV; break;
case GDTokenizer::TK_OP_MOD:
op = OperatorNode::OP_MOD;
break;
//case GDTokenizer::TK_OP_NEG: op=OperatorNode::OP_NEG ; break;
case GDTokenizer::TK_OP_SHIFT_LEFT: op = OperatorNode::OP_SHIFT_LEFT; break;
case GDTokenizer::TK_OP_SHIFT_RIGHT: op = OperatorNode::OP_SHIFT_RIGHT; break;
case GDTokenizer::TK_OP_ASSIGN: _VALIDATE_ASSIGN op = OperatorNode::OP_ASSIGN; break;
case GDTokenizer::TK_OP_ASSIGN_ADD: _VALIDATE_ASSIGN op = OperatorNode::OP_ASSIGN_ADD; break;
case GDTokenizer::TK_OP_ASSIGN_SUB: _VALIDATE_ASSIGN op = OperatorNode::OP_ASSIGN_SUB; break;
case GDTokenizer::TK_OP_ASSIGN_MUL: _VALIDATE_ASSIGN op = OperatorNode::OP_ASSIGN_MUL; break;
case GDTokenizer::TK_OP_ASSIGN_DIV: _VALIDATE_ASSIGN op = OperatorNode::OP_ASSIGN_DIV; break;
case GDTokenizer::TK_OP_ASSIGN_MOD: _VALIDATE_ASSIGN op = OperatorNode::OP_ASSIGN_MOD; break;
case GDTokenizer::TK_OP_ASSIGN_SHIFT_LEFT: _VALIDATE_ASSIGN op = OperatorNode::OP_ASSIGN_SHIFT_LEFT; break;
case GDTokenizer::TK_OP_ASSIGN_SHIFT_RIGHT: _VALIDATE_ASSIGN op = OperatorNode::OP_ASSIGN_SHIFT_RIGHT; break;
case GDTokenizer::TK_OP_ASSIGN_BIT_AND: _VALIDATE_ASSIGN op = OperatorNode::OP_ASSIGN_BIT_AND; break;
case GDTokenizer::TK_OP_ASSIGN_BIT_OR: _VALIDATE_ASSIGN op = OperatorNode::OP_ASSIGN_BIT_OR; break;
case GDTokenizer::TK_OP_ASSIGN_BIT_XOR: _VALIDATE_ASSIGN op = OperatorNode::OP_ASSIGN_BIT_XOR; break;
case GDTokenizer::TK_OP_BIT_AND: op = OperatorNode::OP_BIT_AND; break;
case GDTokenizer::TK_OP_BIT_OR: op = OperatorNode::OP_BIT_OR; break;
case GDTokenizer::TK_OP_BIT_XOR: op = OperatorNode::OP_BIT_XOR; break;
case GDTokenizer::TK_PR_IS: op = OperatorNode::OP_IS; break;
case GDTokenizer::TK_CF_IF: op = OperatorNode::OP_TERNARY_IF; break;
case GDTokenizer::TK_CF_ELSE: op = OperatorNode::OP_TERNARY_ELSE; break;
default: valid = false; break;
}
if (valid) {
e.is_op = true;
e.op = op;
expression.push_back(e);
tokenizer->advance();
} else {
break;
}
}
/* Reduce the set set of expressions and place them in an operator tree, respecting precedence */
while (expression.size() > 1) {
int next_op = -1;
int min_priority = 0xFFFFF;
bool is_unary = false;
bool is_ternary = false;
for (int i = 0; i < expression.size(); i++) {
if (!expression[i].is_op) {
continue;
}
int priority;
bool unary = false;
bool ternary = false;
bool error = false;
switch (expression[i].op) {
case OperatorNode::OP_IS:
priority = -1;
break; //before anything
case OperatorNode::OP_BIT_INVERT:
priority = 0;
unary = true;
break;
case OperatorNode::OP_NEG:
priority = 1;
unary = true;
break;
case OperatorNode::OP_POS:
priority = 1;
unary = true;
break;
case OperatorNode::OP_MUL: priority = 2; break;
case OperatorNode::OP_DIV: priority = 2; break;
case OperatorNode::OP_MOD: priority = 2; break;
case OperatorNode::OP_ADD: priority = 3; break;
case OperatorNode::OP_SUB: priority = 3; break;
case OperatorNode::OP_SHIFT_LEFT: priority = 4; break;
case OperatorNode::OP_SHIFT_RIGHT: priority = 4; break;
case OperatorNode::OP_BIT_AND: priority = 5; break;
case OperatorNode::OP_BIT_XOR: priority = 6; break;
case OperatorNode::OP_BIT_OR: priority = 7; break;
case OperatorNode::OP_LESS: priority = 8; break;
case OperatorNode::OP_LESS_EQUAL: priority = 8; break;
case OperatorNode::OP_GREATER: priority = 8; break;
case OperatorNode::OP_GREATER_EQUAL: priority = 8; break;
case OperatorNode::OP_EQUAL: priority = 8; break;
case OperatorNode::OP_NOT_EQUAL: priority = 8; break;
case OperatorNode::OP_IN: priority = 10; break;
case OperatorNode::OP_NOT:
priority = 11;
unary = true;
break;
case OperatorNode::OP_AND: priority = 12; break;
case OperatorNode::OP_OR: priority = 13; break;
case OperatorNode::OP_TERNARY_IF:
priority = 14;
ternary = true;
break;
case OperatorNode::OP_TERNARY_ELSE:
priority = 14;
error = true;
break; // Errors out when found without IF (since IF would consume it)
case OperatorNode::OP_ASSIGN: priority = 15; break;
case OperatorNode::OP_ASSIGN_ADD: priority = 15; break;
case OperatorNode::OP_ASSIGN_SUB: priority = 15; break;
case OperatorNode::OP_ASSIGN_MUL: priority = 15; break;
case OperatorNode::OP_ASSIGN_DIV: priority = 15; break;
case OperatorNode::OP_ASSIGN_MOD: priority = 15; break;
case OperatorNode::OP_ASSIGN_SHIFT_LEFT: priority = 15; break;
case OperatorNode::OP_ASSIGN_SHIFT_RIGHT: priority = 15; break;
case OperatorNode::OP_ASSIGN_BIT_AND: priority = 15; break;
case OperatorNode::OP_ASSIGN_BIT_OR: priority = 15; break;
case OperatorNode::OP_ASSIGN_BIT_XOR: priority = 15; break;
default: {
_set_error("GDParser bug, invalid operator in expression: " + itos(expression[i].op));
return NULL;
}
}
if (priority < min_priority) {
if (error) {
_set_error("Unexpected operator");
return NULL;
}
// < is used for left to right (default)
// <= is used for right to left
next_op = i;
min_priority = priority;
is_unary = unary;
is_ternary = ternary;
}
}
if (next_op == -1) {
_set_error("Yet another parser bug....");
ERR_FAIL_COND_V(next_op == -1, NULL);
}
// OK! create operator..
if (is_unary) {
int expr_pos = next_op;
while (expression[expr_pos].is_op) {
expr_pos++;
if (expr_pos == expression.size()) {
//can happen..
_set_error("Unexpected end of expression..");
return NULL;
}
}
//consecutively do unary opeators
for (int i = expr_pos - 1; i >= next_op; i--) {
OperatorNode *op = alloc_node<OperatorNode>();
op->op = expression[i].op;
op->arguments.push_back(expression[i + 1].node);
op->line = op_line; //line might have been changed from a \n
expression[i].is_op = false;
expression[i].node = op;
expression.remove(i + 1);
}
} else if (is_ternary) {
if (next_op < 1 || next_op >= (expression.size() - 1)) {
_set_error("Parser bug..");
ERR_FAIL_V(NULL);
}
if (next_op >= (expression.size() - 2) || expression[next_op + 2].op != OperatorNode::OP_TERNARY_ELSE) {
_set_error("Expected else after ternary if.");
ERR_FAIL_V(NULL);
}
if (next_op >= (expression.size() - 3)) {
_set_error("Expected value after ternary else.");
ERR_FAIL_V(NULL);
}
OperatorNode *op = alloc_node<OperatorNode>();
op->op = expression[next_op].op;
op->line = op_line; //line might have been changed from a \n
if (expression[next_op - 1].is_op) {
_set_error("Parser bug..");
ERR_FAIL_V(NULL);
}
if (expression[next_op + 1].is_op) {
// this is not invalid and can really appear
// but it becomes invalid anyway because no binary op
// can be followed by an unary op in a valid combination,
// due to how precedence works, unaries will always disappear first
_set_error("Unexpected two consecutive operators after ternary if.");
return NULL;
}
if (expression[next_op + 3].is_op) {
// this is not invalid and can really appear
// but it becomes invalid anyway because no binary op
// can be followed by an unary op in a valid combination,
// due to how precedence works, unaries will always disappear first
_set_error("Unexpected two consecutive operators after ternary else.");
return NULL;
}
op->arguments.push_back(expression[next_op + 1].node); //next expression goes as first
op->arguments.push_back(expression[next_op - 1].node); //left expression goes as when-true
op->arguments.push_back(expression[next_op + 3].node); //expression after next goes as when-false
//replace all 3 nodes by this operator and make it an expression
expression[next_op - 1].node = op;
expression.remove(next_op);
expression.remove(next_op);
expression.remove(next_op);
expression.remove(next_op);
} else {
if (next_op < 1 || next_op >= (expression.size() - 1)) {
_set_error("Parser bug..");
ERR_FAIL_V(NULL);
}
OperatorNode *op = alloc_node<OperatorNode>();
op->op = expression[next_op].op;
op->line = op_line; //line might have been changed from a \n
if (expression[next_op - 1].is_op) {
_set_error("Parser bug..");
ERR_FAIL_V(NULL);
}
if (expression[next_op + 1].is_op) {
// this is not invalid and can really appear
// but it becomes invalid anyway because no binary op
// can be followed by an unary op in a valid combination,
// due to how precedence works, unaries will always disappear first
_set_error("Unexpected two consecutive operators.");
return NULL;
}
op->arguments.push_back(expression[next_op - 1].node); //expression goes as left
op->arguments.push_back(expression[next_op + 1].node); //next expression goes as right
//replace all 3 nodes by this operator and make it an expression
expression[next_op - 1].node = op;
expression.remove(next_op);
expression.remove(next_op);
}
}
return expression[0].node;
}
GDParser::Node *GDParser::_reduce_expression(Node *p_node, bool p_to_const) {
switch (p_node->type) {
case Node::TYPE_BUILT_IN_FUNCTION: {
//many may probably be optimizable
return p_node;
} break;
case Node::TYPE_ARRAY: {
ArrayNode *an = static_cast<ArrayNode *>(p_node);
bool all_constants = true;
for (int i = 0; i < an->elements.size(); i++) {
an->elements[i] = _reduce_expression(an->elements[i], p_to_const);
if (an->elements[i]->type != Node::TYPE_CONSTANT)
all_constants = false;
}
if (all_constants && p_to_const) {
//reduce constant array expression
ConstantNode *cn = alloc_node<ConstantNode>();
Array arr;
//print_line("mk array "+itos(!p_to_const));
arr.resize(an->elements.size());
for (int i = 0; i < an->elements.size(); i++) {
ConstantNode *acn = static_cast<ConstantNode *>(an->elements[i]);
arr[i] = acn->value;
}
cn->value = arr;
return cn;
}
return an;
} break;
case Node::TYPE_DICTIONARY: {
DictionaryNode *dn = static_cast<DictionaryNode *>(p_node);
bool all_constants = true;
for (int i = 0; i < dn->elements.size(); i++) {
dn->elements[i].key = _reduce_expression(dn->elements[i].key, p_to_const);
if (dn->elements[i].key->type != Node::TYPE_CONSTANT)
all_constants = false;
dn->elements[i].value = _reduce_expression(dn->elements[i].value, p_to_const);
if (dn->elements[i].value->type != Node::TYPE_CONSTANT)
all_constants = false;
}
if (all_constants && p_to_const) {
//reduce constant array expression
ConstantNode *cn = alloc_node<ConstantNode>();
Dictionary dict;
for (int i = 0; i < dn->elements.size(); i++) {
ConstantNode *key_c = static_cast<ConstantNode *>(dn->elements[i].key);
ConstantNode *value_c = static_cast<ConstantNode *>(dn->elements[i].value);
dict[key_c->value] = value_c->value;
}
cn->value = dict;
return cn;
}
return dn;
} break;
case Node::TYPE_OPERATOR: {
OperatorNode *op = static_cast<OperatorNode *>(p_node);
bool all_constants = true;
int last_not_constant = -1;
for (int i = 0; i < op->arguments.size(); i++) {
op->arguments[i] = _reduce_expression(op->arguments[i], p_to_const);
if (op->arguments[i]->type != Node::TYPE_CONSTANT) {
all_constants = false;
last_not_constant = i;
}
}
if (op->op == OperatorNode::OP_IS) {
//nothing much
return op;
}
if (op->op == OperatorNode::OP_PARENT_CALL) {
//nothing much
return op;
} else if (op->op == OperatorNode::OP_CALL) {
//can reduce base type constructors
if ((op->arguments[0]->type == Node::TYPE_TYPE || (op->arguments[0]->type == Node::TYPE_BUILT_IN_FUNCTION && GDFunctions::is_deterministic(static_cast<BuiltInFunctionNode *>(op->arguments[0])->function))) && last_not_constant == 0) {
//native type constructor or intrinsic function
const Variant **vptr = NULL;
Vector<Variant *> ptrs;
if (op->arguments.size() > 1) {
ptrs.resize(op->arguments.size() - 1);
for (int i = 0; i < ptrs.size(); i++) {
ConstantNode *cn = static_cast<ConstantNode *>(op->arguments[i + 1]);
ptrs[i] = &cn->value;
}
vptr = (const Variant **)&ptrs[0];
}
Variant::CallError ce;
Variant v;
if (op->arguments[0]->type == Node::TYPE_TYPE) {
TypeNode *tn = static_cast<TypeNode *>(op->arguments[0]);
v = Variant::construct(tn->vtype, vptr, ptrs.size(), ce);
} else {
GDFunctions::Function func = static_cast<BuiltInFunctionNode *>(op->arguments[0])->function;
GDFunctions::call(func, vptr, ptrs.size(), v, ce);
}
if (ce.error != Variant::CallError::CALL_OK) {
String errwhere;
if (op->arguments[0]->type == Node::TYPE_TYPE) {
TypeNode *tn = static_cast<TypeNode *>(op->arguments[0]);
errwhere = "'" + Variant::get_type_name(tn->vtype) + "'' constructor";
} else {
GDFunctions::Function func = static_cast<BuiltInFunctionNode *>(op->arguments[0])->function;
errwhere = String("'") + GDFunctions::get_func_name(func) + "'' intrinsic function";
}
switch (ce.error) {
case Variant::CallError::CALL_ERROR_INVALID_ARGUMENT: {
_set_error("Invalid argument (#" + itos(ce.argument + 1) + ") for " + errwhere + ".");
} break;
case Variant::CallError::CALL_ERROR_TOO_MANY_ARGUMENTS: {
_set_error("Too many arguments for " + errwhere + ".");
} break;
case Variant::CallError::CALL_ERROR_TOO_FEW_ARGUMENTS: {
_set_error("Too few arguments for " + errwhere + ".");
} break;
default: {
_set_error("Invalid arguments for " + errwhere + ".");
} break;
}
error_line = op->line;
return p_node;
}
ConstantNode *cn = alloc_node<ConstantNode>();
cn->value = v;
return cn;
} else if (op->arguments[0]->type == Node::TYPE_BUILT_IN_FUNCTION && last_not_constant == 0) {
}
return op; //don't reduce yet
} else if (op->op == OperatorNode::OP_YIELD) {
return op;
} else if (op->op == OperatorNode::OP_INDEX) {
//can reduce indices into constant arrays or dictionaries
if (all_constants) {
ConstantNode *ca = static_cast<ConstantNode *>(op->arguments[0]);
ConstantNode *cb = static_cast<ConstantNode *>(op->arguments[1]);
bool valid;
Variant v = ca->value.get(cb->value, &valid);
if (!valid) {
_set_error("invalid index in constant expression");
error_line = op->line;
return op;
}
ConstantNode *cn = alloc_node<ConstantNode>();
cn->value = v;
return cn;
} /*else if (op->arguments[0]->type==Node::TYPE_CONSTANT && op->arguments[1]->type==Node::TYPE_IDENTIFIER) {
ConstantNode *ca = static_cast<ConstantNode*>(op->arguments[0]);
IdentifierNode *ib = static_cast<IdentifierNode*>(op->arguments[1]);
bool valid;
Variant v = ca->value.get_named(ib->name,&valid);
if (!valid) {
_set_error("invalid index '"+String(ib->name)+"' in constant expression");
return op;
}
ConstantNode *cn = alloc_node<ConstantNode>();
cn->value=v;
return cn;
}*/
return op;
} else if (op->op == OperatorNode::OP_INDEX_NAMED) {
if (op->arguments[0]->type == Node::TYPE_CONSTANT && op->arguments[1]->type == Node::TYPE_IDENTIFIER) {
ConstantNode *ca = static_cast<ConstantNode *>(op->arguments[0]);
IdentifierNode *ib = static_cast<IdentifierNode *>(op->arguments[1]);
bool valid;
Variant v = ca->value.get_named(ib->name, &valid);
if (!valid) {
_set_error("invalid index '" + String(ib->name) + "' in constant expression");
error_line = op->line;
return op;
}
ConstantNode *cn = alloc_node<ConstantNode>();
cn->value = v;
return cn;
}
return op;
}
//validate assignment (don't assign to cosntant expression
switch (op->op) {
case OperatorNode::OP_ASSIGN:
case OperatorNode::OP_ASSIGN_ADD:
case OperatorNode::OP_ASSIGN_SUB:
case OperatorNode::OP_ASSIGN_MUL:
case OperatorNode::OP_ASSIGN_DIV:
case OperatorNode::OP_ASSIGN_MOD:
case OperatorNode::OP_ASSIGN_SHIFT_LEFT:
case OperatorNode::OP_ASSIGN_SHIFT_RIGHT:
case OperatorNode::OP_ASSIGN_BIT_AND:
case OperatorNode::OP_ASSIGN_BIT_OR:
case OperatorNode::OP_ASSIGN_BIT_XOR: {
if (op->arguments[0]->type == Node::TYPE_CONSTANT) {
_set_error("Can't assign to constant", tokenizer->get_token_line() - 1);
error_line = op->line;
return op;
}
if (op->arguments[0]->type == Node::TYPE_OPERATOR) {
OperatorNode *on = static_cast<OperatorNode *>(op->arguments[0]);
if (on->op != OperatorNode::OP_INDEX && on->op != OperatorNode::OP_INDEX_NAMED) {
_set_error("Can't assign to an expression", tokenizer->get_token_line() - 1);
error_line = op->line;
return op;
}
}
} break;
default: { break; }
}
//now se if all are constants
if (!all_constants)
return op; //nothing to reduce from here on
#define _REDUCE_UNARY(m_vop) \
bool valid = false; \
Variant res; \
Variant::evaluate(m_vop, static_cast<ConstantNode *>(op->arguments[0])->value, Variant(), res, valid); \
if (!valid) { \
_set_error("Invalid operand for unary operator"); \
error_line = op->line; \
return p_node; \
} \
ConstantNode *cn = alloc_node<ConstantNode>(); \
cn->value = res; \
return cn;
#define _REDUCE_BINARY(m_vop) \
bool valid = false; \
Variant res; \
Variant::evaluate(m_vop, static_cast<ConstantNode *>(op->arguments[0])->value, static_cast<ConstantNode *>(op->arguments[1])->value, res, valid); \
if (!valid) { \
_set_error("Invalid operands for operator"); \
error_line = op->line; \
return p_node; \
} \
ConstantNode *cn = alloc_node<ConstantNode>(); \
cn->value = res; \
return cn;
switch (op->op) {
//unary operators
case OperatorNode::OP_NEG: {
_REDUCE_UNARY(Variant::OP_NEGATE);
} break;
case OperatorNode::OP_POS: {
_REDUCE_UNARY(Variant::OP_POSITIVE);
} break;
case OperatorNode::OP_NOT: {
_REDUCE_UNARY(Variant::OP_NOT);
} break;
case OperatorNode::OP_BIT_INVERT: {
_REDUCE_UNARY(Variant::OP_BIT_NEGATE);
} break;
//binary operators (in precedence order)
case OperatorNode::OP_IN: {
_REDUCE_BINARY(Variant::OP_IN);
} break;
case OperatorNode::OP_EQUAL: {
_REDUCE_BINARY(Variant::OP_EQUAL);
} break;
case OperatorNode::OP_NOT_EQUAL: {
_REDUCE_BINARY(Variant::OP_NOT_EQUAL);
} break;
case OperatorNode::OP_LESS: {
_REDUCE_BINARY(Variant::OP_LESS);
} break;
case OperatorNode::OP_LESS_EQUAL: {
_REDUCE_BINARY(Variant::OP_LESS_EQUAL);
} break;
case OperatorNode::OP_GREATER: {
_REDUCE_BINARY(Variant::OP_GREATER);
} break;
case OperatorNode::OP_GREATER_EQUAL: {
_REDUCE_BINARY(Variant::OP_GREATER_EQUAL);
} break;
case OperatorNode::OP_AND: {
_REDUCE_BINARY(Variant::OP_AND);
} break;
case OperatorNode::OP_OR: {
_REDUCE_BINARY(Variant::OP_OR);
} break;
case OperatorNode::OP_ADD: {
_REDUCE_BINARY(Variant::OP_ADD);
} break;
case OperatorNode::OP_SUB: {
_REDUCE_BINARY(Variant::OP_SUBSTRACT);
} break;
case OperatorNode::OP_MUL: {
_REDUCE_BINARY(Variant::OP_MULTIPLY);
} break;
case OperatorNode::OP_DIV: {
_REDUCE_BINARY(Variant::OP_DIVIDE);
} break;
case OperatorNode::OP_MOD: {
_REDUCE_BINARY(Variant::OP_MODULE);
} break;
case OperatorNode::OP_SHIFT_LEFT: {
_REDUCE_BINARY(Variant::OP_SHIFT_LEFT);
} break;
case OperatorNode::OP_SHIFT_RIGHT: {
_REDUCE_BINARY(Variant::OP_SHIFT_RIGHT);
} break;
case OperatorNode::OP_BIT_AND: {
_REDUCE_BINARY(Variant::OP_BIT_AND);
} break;
case OperatorNode::OP_BIT_OR: {
_REDUCE_BINARY(Variant::OP_BIT_OR);
} break;
case OperatorNode::OP_BIT_XOR: {
_REDUCE_BINARY(Variant::OP_BIT_XOR);
} break;
default: { ERR_FAIL_V(op); }
}
ERR_FAIL_V(op);
} break;
default: {
return p_node;
} break;
}
}
GDParser::Node *GDParser::_parse_and_reduce_expression(Node *p_parent, bool p_static, bool p_reduce_const, bool p_allow_assign) {
Node *expr = _parse_expression(p_parent, p_static, p_allow_assign, p_reduce_const);
if (!expr || error_set)
return NULL;
expr = _reduce_expression(expr, p_reduce_const);
if (!expr || error_set)
return NULL;
return expr;
}
bool GDParser::_recover_from_completion() {
if (!completion_found) {
return false; //can't recover if no completion
}
//skip stuff until newline
while (tokenizer->get_token() != GDTokenizer::TK_NEWLINE && tokenizer->get_token() != GDTokenizer::TK_EOF && tokenizer->get_token() != GDTokenizer::TK_ERROR) {
tokenizer->advance();
}
completion_found = false;
error_set = false;
if (tokenizer->get_token() == GDTokenizer::TK_ERROR) {
error_set = true;
}
return true;
}
GDParser::PatternNode *GDParser::_parse_pattern(bool p_static) {
PatternNode *pattern = alloc_node<PatternNode>();
GDTokenizer::Token token = tokenizer->get_token();
if (error_set)
return NULL;
if (token == GDTokenizer::TK_EOF) {
return NULL;
}
switch (token) {
// array
case GDTokenizer::TK_BRACKET_OPEN: {
tokenizer->advance();
pattern->pt_type = GDParser::PatternNode::PT_ARRAY;
while (true) {
if (tokenizer->get_token() == GDTokenizer::TK_BRACKET_CLOSE) {
tokenizer->advance();
break;
}
if (tokenizer->get_token() == GDTokenizer::TK_PERIOD && tokenizer->get_token(1) == GDTokenizer::TK_PERIOD) {
// match everything
tokenizer->advance(2);
PatternNode *sub_pattern = alloc_node<PatternNode>();
sub_pattern->pt_type = GDParser::PatternNode::PT_IGNORE_REST;
pattern->array.push_back(sub_pattern);
if (tokenizer->get_token() == GDTokenizer::TK_COMMA && tokenizer->get_token(1) == GDTokenizer::TK_BRACKET_CLOSE) {
tokenizer->advance(2);
break;
} else if (tokenizer->get_token() == GDTokenizer::TK_BRACKET_CLOSE) {
tokenizer->advance(1);
break;
} else {
_set_error("'..' pattern only allowed at the end of an array pattern");
return NULL;
}
}
PatternNode *sub_pattern = _parse_pattern(p_static);
if (!sub_pattern) {
return NULL;
}
pattern->array.push_back(sub_pattern);
if (tokenizer->get_token() == GDTokenizer::TK_COMMA) {
tokenizer->advance();
continue;
} else if (tokenizer->get_token() == GDTokenizer::TK_BRACKET_CLOSE) {
tokenizer->advance();
break;
} else {
_set_error("Not a valid pattern");
return NULL;
}
}
} break;
// bind
case GDTokenizer::TK_PR_VAR: {
tokenizer->advance();
pattern->pt_type = GDParser::PatternNode::PT_BIND;
pattern->bind = tokenizer->get_token_identifier();
tokenizer->advance();
} break;
// dictionary
case GDTokenizer::TK_CURLY_BRACKET_OPEN: {
tokenizer->advance();
pattern->pt_type = GDParser::PatternNode::PT_DICTIONARY;
while (true) {
if (tokenizer->get_token() == GDTokenizer::TK_CURLY_BRACKET_CLOSE) {
tokenizer->advance();
break;
}
if (tokenizer->get_token() == GDTokenizer::TK_PERIOD && tokenizer->get_token(1) == GDTokenizer::TK_PERIOD) {
// match everything
tokenizer->advance(2);
PatternNode *sub_pattern = alloc_node<PatternNode>();
sub_pattern->pt_type = PatternNode::PT_IGNORE_REST;
pattern->array.push_back(sub_pattern);
if (tokenizer->get_token() == GDTokenizer::TK_COMMA && tokenizer->get_token(1) == GDTokenizer::TK_CURLY_BRACKET_CLOSE) {
tokenizer->advance(2);
break;
} else if (tokenizer->get_token() == GDTokenizer::TK_CURLY_BRACKET_CLOSE) {
tokenizer->advance(1);
break;
} else {
_set_error("'..' pattern only allowed at the end of an dictionary pattern");
return NULL;
}
}
Node *key = _parse_and_reduce_expression(pattern, p_static);
if (!key) {
_set_error("Not a valid key in pattern");
return NULL;
}
if (key->type != GDParser::Node::TYPE_CONSTANT) {
_set_error("Not a constant expression as key");
return NULL;
}
if (tokenizer->get_token() == GDTokenizer::TK_COLON) {
tokenizer->advance();
PatternNode *value = _parse_pattern(p_static);
if (!value) {
_set_error("Expected pattern in dictionary value");
return NULL;
}
pattern->dictionary.insert(static_cast<ConstantNode *>(key), value);
} else {
pattern->dictionary.insert(static_cast<ConstantNode *>(key), NULL);
}
if (tokenizer->get_token() == GDTokenizer::TK_COMMA) {
tokenizer->advance();
continue;
} else if (tokenizer->get_token() == GDTokenizer::TK_CURLY_BRACKET_CLOSE) {
tokenizer->advance();
break;
} else {
_set_error("Not a valid pattern");
return NULL;
}
}
} break;
case GDTokenizer::TK_WILDCARD: {
tokenizer->advance();
pattern->pt_type = PatternNode::PT_WILDCARD;
} break;
// all the constants like strings and numbers
default: {
Node *value = _parse_and_reduce_expression(pattern, p_static);
if (error_set) {
return NULL;
}
if (value->type != Node::TYPE_IDENTIFIER && value->type != Node::TYPE_CONSTANT) {
_set_error("Only constant expressions or variables allowed in a pattern");
return NULL;
}
pattern->pt_type = PatternNode::PT_CONSTANT;
pattern->constant = value;
} break;
}
return pattern;
}
void GDParser::_parse_pattern_block(BlockNode *p_block, Vector<PatternBranchNode *> &p_branches, bool p_static) {
int indent_level = tab_level.back()->get();
while (true) {
while (tokenizer->get_token() == GDTokenizer::TK_NEWLINE && _parse_newline())
;
// GDTokenizer::Token token = tokenizer->get_token();
if (error_set)
return;
if (indent_level > tab_level.back()->get()) {
return; // go back a level
}
if (pending_newline != -1) {
pending_newline = -1;
}
PatternBranchNode *branch = alloc_node<PatternBranchNode>();
branch->patterns.push_back(_parse_pattern(p_static));
if (!branch->patterns[0]) {
return;
}
while (tokenizer->get_token() == GDTokenizer::TK_COMMA) {
tokenizer->advance();
branch->patterns.push_back(_parse_pattern(p_static));
if (!branch->patterns[branch->patterns.size() - 1]) {
return;
}
}
if (!_enter_indent_block()) {
_set_error("Expected block in pattern branch");
return;
}
branch->body = alloc_node<BlockNode>();
branch->body->parent_block = p_block;
p_block->sub_blocks.push_back(branch->body);
current_block = branch->body;
_parse_block(branch->body, p_static);
current_block = p_block;
p_branches.push_back(branch);
}
}
void GDParser::_generate_pattern(PatternNode *p_pattern, Node *p_node_to_match, Node *&p_resulting_node, Map<StringName, Node *> &p_bindings) {
switch (p_pattern->pt_type) {
case PatternNode::PT_CONSTANT: {
// typecheck
BuiltInFunctionNode *typeof_node = alloc_node<BuiltInFunctionNode>();
typeof_node->function = GDFunctions::TYPE_OF;
OperatorNode *typeof_match_value = alloc_node<OperatorNode>();
typeof_match_value->op = OperatorNode::OP_CALL;
typeof_match_value->arguments.push_back(typeof_node);
typeof_match_value->arguments.push_back(p_node_to_match);
OperatorNode *typeof_pattern_value = alloc_node<OperatorNode>();
typeof_pattern_value->op = OperatorNode::OP_CALL;
typeof_pattern_value->arguments.push_back(typeof_node);
typeof_pattern_value->arguments.push_back(p_pattern->constant);
OperatorNode *type_comp = alloc_node<OperatorNode>();
type_comp->op = OperatorNode::OP_EQUAL;
type_comp->arguments.push_back(typeof_match_value);
type_comp->arguments.push_back(typeof_pattern_value);
// comare the actual values
OperatorNode *value_comp = alloc_node<OperatorNode>();
value_comp->op = OperatorNode::OP_EQUAL;
value_comp->arguments.push_back(p_pattern->constant);
value_comp->arguments.push_back(p_node_to_match);
OperatorNode *comparison = alloc_node<OperatorNode>();
comparison->op = OperatorNode::OP_AND;
comparison->arguments.push_back(type_comp);
comparison->arguments.push_back(value_comp);
p_resulting_node = comparison;
} break;
case PatternNode::PT_BIND: {
p_bindings[p_pattern->bind] = p_node_to_match;
// a bind always matches
ConstantNode *true_value = alloc_node<ConstantNode>();
true_value->value = Variant(true);
p_resulting_node = true_value;
} break;
case PatternNode::PT_ARRAY: {
bool open_ended = false;
if (p_pattern->array.size() > 0) {
if (p_pattern->array[p_pattern->array.size() - 1]->pt_type == PatternNode::PT_IGNORE_REST) {
open_ended = true;
}
}
// typeof(value_to_match) == TYPE_ARRAY && value_to_match.size() >= length
// typeof(value_to_match) == TYPE_ARRAY && value_to_match.size() == length
{
// typecheck
BuiltInFunctionNode *typeof_node = alloc_node<BuiltInFunctionNode>();
typeof_node->function = GDFunctions::TYPE_OF;
OperatorNode *typeof_match_value = alloc_node<OperatorNode>();
typeof_match_value->op = OperatorNode::OP_CALL;
typeof_match_value->arguments.push_back(typeof_node);
typeof_match_value->arguments.push_back(p_node_to_match);
IdentifierNode *typeof_array = alloc_node<IdentifierNode>();
typeof_array->name = "TYPE_ARRAY";
OperatorNode *type_comp = alloc_node<OperatorNode>();
type_comp->op = OperatorNode::OP_EQUAL;
type_comp->arguments.push_back(typeof_match_value);
type_comp->arguments.push_back(typeof_array);
// size
ConstantNode *length = alloc_node<ConstantNode>();
length->value = Variant(open_ended ? p_pattern->array.size() - 1 : p_pattern->array.size());
OperatorNode *call = alloc_node<OperatorNode>();
call->op = OperatorNode::OP_CALL;
call->arguments.push_back(p_node_to_match);
IdentifierNode *size = alloc_node<IdentifierNode>();
size->name = "size";
call->arguments.push_back(size);
OperatorNode *length_comparison = alloc_node<OperatorNode>();
length_comparison->op = open_ended ? OperatorNode::OP_GREATER_EQUAL : OperatorNode::OP_EQUAL;
length_comparison->arguments.push_back(call);
length_comparison->arguments.push_back(length);
OperatorNode *type_and_length_comparison = alloc_node<OperatorNode>();
type_and_length_comparison->op = OperatorNode::OP_AND;
type_and_length_comparison->arguments.push_back(type_comp);
type_and_length_comparison->arguments.push_back(length_comparison);
p_resulting_node = type_and_length_comparison;
}
for (int i = 0; i < p_pattern->array.size(); i++) {
PatternNode *pattern = p_pattern->array[i];
Node *condition = NULL;
ConstantNode *index = alloc_node<ConstantNode>();
index->value = Variant(i);
OperatorNode *indexed_value = alloc_node<OperatorNode>();
indexed_value->op = OperatorNode::OP_INDEX;
indexed_value->arguments.push_back(p_node_to_match);
indexed_value->arguments.push_back(index);
_generate_pattern(pattern, indexed_value, condition, p_bindings);
// concatenate all the patterns with &&
OperatorNode *and_node = alloc_node<OperatorNode>();
and_node->op = OperatorNode::OP_AND;
and_node->arguments.push_back(p_resulting_node);
and_node->arguments.push_back(condition);
p_resulting_node = and_node;
}
} break;
case PatternNode::PT_DICTIONARY: {
bool open_ended = false;
if (p_pattern->array.size() > 0) {
open_ended = true;
}
// typeof(value_to_match) == TYPE_DICTIONARY && value_to_match.size() >= length
// typeof(value_to_match) == TYPE_DICTIONARY && value_to_match.size() == length
{
// typecheck
BuiltInFunctionNode *typeof_node = alloc_node<BuiltInFunctionNode>();
typeof_node->function = GDFunctions::TYPE_OF;
OperatorNode *typeof_match_value = alloc_node<OperatorNode>();
typeof_match_value->op = OperatorNode::OP_CALL;
typeof_match_value->arguments.push_back(typeof_node);
typeof_match_value->arguments.push_back(p_node_to_match);
IdentifierNode *typeof_dictionary = alloc_node<IdentifierNode>();
typeof_dictionary->name = "TYPE_DICTIONARY";
OperatorNode *type_comp = alloc_node<OperatorNode>();
type_comp->op = OperatorNode::OP_EQUAL;
type_comp->arguments.push_back(typeof_match_value);
type_comp->arguments.push_back(typeof_dictionary);
// size
ConstantNode *length = alloc_node<ConstantNode>();
length->value = Variant(open_ended ? p_pattern->dictionary.size() - 1 : p_pattern->dictionary.size());
OperatorNode *call = alloc_node<OperatorNode>();
call->op = OperatorNode::OP_CALL;
call->arguments.push_back(p_node_to_match);
IdentifierNode *size = alloc_node<IdentifierNode>();
size->name = "size";
call->arguments.push_back(size);
OperatorNode *length_comparison = alloc_node<OperatorNode>();
length_comparison->op = open_ended ? OperatorNode::OP_GREATER_EQUAL : OperatorNode::OP_EQUAL;
length_comparison->arguments.push_back(call);
length_comparison->arguments.push_back(length);
OperatorNode *type_and_length_comparison = alloc_node<OperatorNode>();
type_and_length_comparison->op = OperatorNode::OP_AND;
type_and_length_comparison->arguments.push_back(type_comp);
type_and_length_comparison->arguments.push_back(length_comparison);
p_resulting_node = type_and_length_comparison;
}
for (Map<ConstantNode *, PatternNode *>::Element *e = p_pattern->dictionary.front(); e; e = e->next()) {
Node *condition = NULL;
// chech for has, then for pattern
IdentifierNode *has = alloc_node<IdentifierNode>();
has->name = "has";
OperatorNode *has_call = alloc_node<OperatorNode>();
has_call->op = OperatorNode::OP_CALL;
has_call->arguments.push_back(p_node_to_match);
has_call->arguments.push_back(has);
has_call->arguments.push_back(e->key());
if (e->value()) {
OperatorNode *indexed_value = alloc_node<OperatorNode>();
indexed_value->op = OperatorNode::OP_INDEX;
indexed_value->arguments.push_back(p_node_to_match);
indexed_value->arguments.push_back(e->key());
_generate_pattern(e->value(), indexed_value, condition, p_bindings);
OperatorNode *has_and_pattern = alloc_node<OperatorNode>();
has_and_pattern->op = OperatorNode::OP_AND;
has_and_pattern->arguments.push_back(has_call);
has_and_pattern->arguments.push_back(condition);
condition = has_and_pattern;
} else {
condition = has_call;
}
// concatenate all the patterns with &&
OperatorNode *and_node = alloc_node<OperatorNode>();
and_node->op = OperatorNode::OP_AND;
and_node->arguments.push_back(p_resulting_node);
and_node->arguments.push_back(condition);
p_resulting_node = and_node;
}
} break;
case PatternNode::PT_IGNORE_REST:
case PatternNode::PT_WILDCARD: {
// simply generate a `true`
ConstantNode *true_value = alloc_node<ConstantNode>();
true_value->value = Variant(true);
p_resulting_node = true_value;
} break;
default: {
} break;
}
}
void GDParser::_transform_match_statment(BlockNode *p_block, MatchNode *p_match_statement) {
IdentifierNode *id = alloc_node<IdentifierNode>();
id->name = "#match_value";
for (int i = 0; i < p_match_statement->branches.size(); i++) {
PatternBranchNode *branch = p_match_statement->branches[i];
MatchNode::CompiledPatternBranch compiled_branch;
compiled_branch.compiled_pattern = NULL;
Map<StringName, Node *> binding;
for (int j = 0; j < branch->patterns.size(); j++) {
PatternNode *pattern = branch->patterns[j];
Map<StringName, Node *> bindings;
Node *resulting_node;
_generate_pattern(pattern, id, resulting_node, bindings);
if (!binding.empty() && !bindings.empty()) {
_set_error("Multipatterns can't contain bindings");
return;
} else {
binding = bindings;
}
if (compiled_branch.compiled_pattern) {
OperatorNode *or_node = alloc_node<OperatorNode>();
or_node->op = OperatorNode::OP_OR;
or_node->arguments.push_back(compiled_branch.compiled_pattern);
or_node->arguments.push_back(resulting_node);
compiled_branch.compiled_pattern = or_node;
} else {
// single pattern | first one
compiled_branch.compiled_pattern = resulting_node;
}
}
// prepare the body ...hehe
for (Map<StringName, Node *>::Element *e = binding.front(); e; e = e->next()) {
LocalVarNode *local_var = alloc_node<LocalVarNode>();
local_var->name = e->key();
local_var->assign = e->value();
IdentifierNode *id = alloc_node<IdentifierNode>();
id->name = local_var->name;
OperatorNode *op = alloc_node<OperatorNode>();
op->op = OperatorNode::OP_ASSIGN;
op->arguments.push_back(id);
op->arguments.push_back(local_var->assign);
branch->body->statements.push_front(op);
branch->body->statements.push_front(local_var);
}
compiled_branch.body = branch->body;
p_match_statement->compiled_pattern_branches.push_back(compiled_branch);
}
}
void GDParser::_parse_block(BlockNode *p_block, bool p_static) {
int indent_level = tab_level.back()->get();
#ifdef DEBUG_ENABLED
NewLineNode *nl = alloc_node<NewLineNode>();
nl->line = tokenizer->get_token_line();
p_block->statements.push_back(nl);
#endif
bool is_first_line = true;
while (true) {
if (!is_first_line && tab_level.back()->prev() && tab_level.back()->prev()->get() == indent_level) {
// pythonic single-line expression, don't parse future lines
tab_level.pop_back();
p_block->end_line = tokenizer->get_token_line();
return;
}
is_first_line = false;
GDTokenizer::Token token = tokenizer->get_token();
if (error_set)
return;
if (indent_level > tab_level.back()->get()) {
p_block->end_line = tokenizer->get_token_line();
return; //go back a level
}
if (pending_newline != -1) {
NewLineNode *nl = alloc_node<NewLineNode>();
nl->line = pending_newline;
p_block->statements.push_back(nl);
pending_newline = -1;
}
switch (token) {
case GDTokenizer::TK_EOF:
p_block->end_line = tokenizer->get_token_line();
case GDTokenizer::TK_ERROR: {
return; //go back
//end of file!
} break;
case GDTokenizer::TK_NEWLINE: {
if (!_parse_newline()) {
if (!error_set) {
p_block->end_line = tokenizer->get_token_line();
pending_newline = p_block->end_line;
}
return;
}
NewLineNode *nl = alloc_node<NewLineNode>();
nl->line = tokenizer->get_token_line();
p_block->statements.push_back(nl);
} break;
case GDTokenizer::TK_CF_PASS: {
if (tokenizer->get_token(1) != GDTokenizer::TK_SEMICOLON && tokenizer->get_token(1) != GDTokenizer::TK_NEWLINE && tokenizer->get_token(1) != GDTokenizer::TK_EOF) {
_set_error("Expected ';' or <NewLine>.");
return;
}
tokenizer->advance();
if (tokenizer->get_token() == GDTokenizer::TK_SEMICOLON) {
// Ignore semicolon after 'pass'
tokenizer->advance();
}
} break;
case GDTokenizer::TK_PR_VAR: {
//variale declaration and (eventual) initialization
tokenizer->advance();
if (!tokenizer->is_token_literal(0, true)) {
_set_error("Expected identifier for local variable name.");
return;
}
StringName n = tokenizer->get_token_literal();
tokenizer->advance();
if (current_function) {
for (int i = 0; i < current_function->arguments.size(); i++) {
if (n == current_function->arguments[i]) {
_set_error("Variable '" + String(n) + "' already defined in the scope (at line: " + itos(current_function->line) + ").");
return;
}
}
}
BlockNode *check_block = p_block;
while (check_block) {
for (int i = 0; i < check_block->variables.size(); i++) {
if (n == check_block->variables[i]) {
_set_error("Variable '" + String(n) + "' already defined in the scope (at line: " + itos(check_block->variable_lines[i]) + ").");
return;
}
}
check_block = check_block->parent_block;
}
p_block->variables.push_back(n); //line?
p_block->variable_lines.push_back(tokenizer->get_token_line());
//must know when the local variable is declared
LocalVarNode *lv = alloc_node<LocalVarNode>();
lv->name = n;
p_block->statements.push_back(lv);
Node *assigned = NULL;
if (tokenizer->get_token() == GDTokenizer::TK_OP_ASSIGN) {
tokenizer->advance();
Node *subexpr = NULL;
subexpr = _parse_and_reduce_expression(p_block, p_static);
if (!subexpr) {
if (_recover_from_completion()) {
break;
}
return;
}
lv->assign = subexpr;
assigned = subexpr;
} else {
ConstantNode *c = alloc_node<ConstantNode>();
c->value = Variant();
assigned = c;
}
IdentifierNode *id = alloc_node<IdentifierNode>();
id->name = n;
OperatorNode *op = alloc_node<OperatorNode>();
op->op = OperatorNode::OP_ASSIGN;
op->arguments.push_back(id);
op->arguments.push_back(assigned);
p_block->statements.push_back(op);
if (!_end_statement()) {
_set_error("Expected end of statement (var)");
return;
}
} break;
case GDTokenizer::TK_CF_IF: {
tokenizer->advance();
Node *condition = _parse_and_reduce_expression(p_block, p_static);
if (!condition) {
if (_recover_from_completion()) {
break;
}
return;
}
ControlFlowNode *cf_if = alloc_node<ControlFlowNode>();
cf_if->cf_type = ControlFlowNode::CF_IF;
cf_if->arguments.push_back(condition);
cf_if->body = alloc_node<BlockNode>();
cf_if->body->parent_block = p_block;
p_block->sub_blocks.push_back(cf_if->body);
if (!_enter_indent_block(cf_if->body)) {
_set_error("Expected indented block after 'if'");
p_block->end_line = tokenizer->get_token_line();
return;
}
current_block = cf_if->body;
_parse_block(cf_if->body, p_static);
current_block = p_block;
if (error_set)
return;
p_block->statements.push_back(cf_if);
while (true) {
while (tokenizer->get_token() == GDTokenizer::TK_NEWLINE && _parse_newline())
;
if (tab_level.back()->get() < indent_level) { //not at current indent level
p_block->end_line = tokenizer->get_token_line();
return;
}
if (tokenizer->get_token() == GDTokenizer::TK_CF_ELIF) {
if (tab_level.back()->get() > indent_level) {
_set_error("Invalid indent");
return;
}
tokenizer->advance();
cf_if->body_else = alloc_node<BlockNode>();
cf_if->body_else->parent_block = p_block;
p_block->sub_blocks.push_back(cf_if->body_else);
ControlFlowNode *cf_else = alloc_node<ControlFlowNode>();
cf_else->cf_type = ControlFlowNode::CF_IF;
//condition
Node *condition = _parse_and_reduce_expression(p_block, p_static);
if (!condition) {
if (_recover_from_completion()) {
break;
}
return;
}
cf_else->arguments.push_back(condition);
cf_else->cf_type = ControlFlowNode::CF_IF;
cf_if->body_else->statements.push_back(cf_else);
cf_if = cf_else;
cf_if->body = alloc_node<BlockNode>();
cf_if->body->parent_block = p_block;
p_block->sub_blocks.push_back(cf_if->body);
if (!_enter_indent_block(cf_if->body)) {
_set_error("Expected indented block after 'elif'");
p_block->end_line = tokenizer->get_token_line();
return;
}
current_block = cf_else->body;
_parse_block(cf_else->body, p_static);
current_block = p_block;
if (error_set)
return;
} else if (tokenizer->get_token() == GDTokenizer::TK_CF_ELSE) {
if (tab_level.back()->get() > indent_level) {
_set_error("Invalid indent");
return;
}
tokenizer->advance();
cf_if->body_else = alloc_node<BlockNode>();
cf_if->body_else->parent_block = p_block;
p_block->sub_blocks.push_back(cf_if->body_else);
if (!_enter_indent_block(cf_if->body_else)) {
_set_error("Expected indented block after 'else'");
p_block->end_line = tokenizer->get_token_line();
return;
}
current_block = cf_if->body_else;
_parse_block(cf_if->body_else, p_static);
current_block = p_block;
if (error_set)
return;
break; //after else, exit
} else
break;
}
} break;
case GDTokenizer::TK_CF_WHILE: {
tokenizer->advance();
Node *condition = _parse_and_reduce_expression(p_block, p_static);
if (!condition) {
if (_recover_from_completion()) {
break;
}
return;
}
ControlFlowNode *cf_while = alloc_node<ControlFlowNode>();
cf_while->cf_type = ControlFlowNode::CF_WHILE;
cf_while->arguments.push_back(condition);
cf_while->body = alloc_node<BlockNode>();
cf_while->body->parent_block = p_block;
p_block->sub_blocks.push_back(cf_while->body);
if (!_enter_indent_block(cf_while->body)) {
_set_error("Expected indented block after 'while'");
p_block->end_line = tokenizer->get_token_line();
return;
}
current_block = cf_while->body;
_parse_block(cf_while->body, p_static);
current_block = p_block;
if (error_set)
return;
p_block->statements.push_back(cf_while);
} break;
case GDTokenizer::TK_CF_FOR: {
tokenizer->advance();
if (!tokenizer->is_token_literal(0, true)) {
_set_error("identifier expected after 'for'");
}
IdentifierNode *id = alloc_node<IdentifierNode>();
id->name = tokenizer->get_token_identifier();
tokenizer->advance();
if (tokenizer->get_token() != GDTokenizer::TK_OP_IN) {
_set_error("'in' expected after identifier");
return;
}
tokenizer->advance();
Node *container = _parse_and_reduce_expression(p_block, p_static);
if (!container) {
if (_recover_from_completion()) {
break;
}
return;
}
if (container->type == Node::TYPE_OPERATOR) {
OperatorNode *op = static_cast<OperatorNode *>(container);
if (op->op == OperatorNode::OP_CALL && op->arguments[0]->type == Node::TYPE_BUILT_IN_FUNCTION && static_cast<BuiltInFunctionNode *>(op->arguments[0])->function == GDFunctions::GEN_RANGE) {
//iterating a range, so see if range() can be optimized without allocating memory, by replacing it by vectors (which can work as iterable too!)
Vector<Node *> args;
Vector<double> constants;
bool constant = false;
for (int i = 1; i < op->arguments.size(); i++) {
args.push_back(op->arguments[i]);
if (constant && op->arguments[i]->type == Node::TYPE_CONSTANT) {
ConstantNode *c = static_cast<ConstantNode *>(op->arguments[i]);
if (c->value.get_type() == Variant::REAL || c->value.get_type() == Variant::INT) {
constants.push_back(c->value);
constant = true;
}
} else {
constant = false;
}
}
if (args.size() > 0 && args.size() < 4) {
if (constant) {
ConstantNode *cn = alloc_node<ConstantNode>();
switch (args.size()) {
case 1: cn->value = (int)constants[0]; break;
case 2: cn->value = Vector2(constants[0], constants[1]); break;
case 3: cn->value = Vector3(constants[0], constants[1], constants[2]); break;
}
container = cn;
} else {
OperatorNode *on = alloc_node<OperatorNode>();
on->op = OperatorNode::OP_CALL;
TypeNode *tn = alloc_node<TypeNode>();
on->arguments.push_back(tn);
switch (args.size()) {
case 1: tn->vtype = Variant::INT; break;
case 2: tn->vtype = Variant::VECTOR2; break;
case 3: tn->vtype = Variant::VECTOR3; break;
}
for (int i = 0; i < args.size(); i++) {
on->arguments.push_back(args[i]);
}
container = on;
}
}
}
}
ControlFlowNode *cf_for = alloc_node<ControlFlowNode>();
cf_for->cf_type = ControlFlowNode::CF_FOR;
cf_for->arguments.push_back(id);
cf_for->arguments.push_back(container);
cf_for->body = alloc_node<BlockNode>();
cf_for->body->parent_block = p_block;
p_block->sub_blocks.push_back(cf_for->body);
if (!_enter_indent_block(cf_for->body)) {
_set_error("Expected indented block after 'for'");
p_block->end_line = tokenizer->get_token_line();
return;
}
current_block = cf_for->body;
// this is for checking variable for redefining
// inside this _parse_block
cf_for->body->variables.push_back(id->name);
cf_for->body->variable_lines.push_back(id->line);
_parse_block(cf_for->body, p_static);
cf_for->body->variables.remove(0);
cf_for->body->variable_lines.remove(0);
current_block = p_block;
if (error_set)
return;
p_block->statements.push_back(cf_for);
} break;
case GDTokenizer::TK_CF_CONTINUE: {
tokenizer->advance();
ControlFlowNode *cf_continue = alloc_node<ControlFlowNode>();
cf_continue->cf_type = ControlFlowNode::CF_CONTINUE;
p_block->statements.push_back(cf_continue);
if (!_end_statement()) {
_set_error("Expected end of statement (continue)");
return;
}
} break;
case GDTokenizer::TK_CF_BREAK: {
tokenizer->advance();
ControlFlowNode *cf_break = alloc_node<ControlFlowNode>();
cf_break->cf_type = ControlFlowNode::CF_BREAK;
p_block->statements.push_back(cf_break);
if (!_end_statement()) {
_set_error("Expected end of statement (break)");
return;
}
} break;
case GDTokenizer::TK_CF_RETURN: {
tokenizer->advance();
ControlFlowNode *cf_return = alloc_node<ControlFlowNode>();
cf_return->cf_type = ControlFlowNode::CF_RETURN;
if (tokenizer->get_token() == GDTokenizer::TK_SEMICOLON || tokenizer->get_token() == GDTokenizer::TK_NEWLINE || tokenizer->get_token() == GDTokenizer::TK_EOF) {
//expect end of statement
p_block->statements.push_back(cf_return);
if (!_end_statement()) {
return;
}
} else {
//expect expression
Node *retexpr = _parse_and_reduce_expression(p_block, p_static);
if (!retexpr) {
if (_recover_from_completion()) {
break;
}
return;
}
cf_return->arguments.push_back(retexpr);
p_block->statements.push_back(cf_return);
if (!_end_statement()) {
_set_error("Expected end of statement after return expression.");
return;
}
}
} break;
case GDTokenizer::TK_CF_MATCH: {
tokenizer->advance();
MatchNode *match_node = alloc_node<MatchNode>();
Node *val_to_match = _parse_and_reduce_expression(p_block, p_static);
if (!val_to_match) {
if (_recover_from_completion()) {
break;
}
return;
}
match_node->val_to_match = val_to_match;
if (!_enter_indent_block()) {
_set_error("Expected indented pattern matching block after 'match'");
return;
}
BlockNode *compiled_branches = alloc_node<BlockNode>();
compiled_branches->parent_block = p_block;
compiled_branches->parent_class = p_block->parent_class;
p_block->sub_blocks.push_back(compiled_branches);
_parse_pattern_block(compiled_branches, match_node->branches, p_static);
_transform_match_statment(compiled_branches, match_node);
ControlFlowNode *match_cf_node = alloc_node<ControlFlowNode>();
match_cf_node->cf_type = ControlFlowNode::CF_MATCH;
match_cf_node->match = match_node;
p_block->statements.push_back(match_cf_node);
_end_statement();
} break;
case GDTokenizer::TK_PR_ASSERT: {
tokenizer->advance();
Node *condition = _parse_and_reduce_expression(p_block, p_static);
if (!condition) {
if (_recover_from_completion()) {
break;
}
return;
}
AssertNode *an = alloc_node<AssertNode>();
an->condition = condition;
p_block->statements.push_back(an);
if (!_end_statement()) {
_set_error("Expected end of statement after assert.");
return;
}
} break;
case GDTokenizer::TK_PR_BREAKPOINT: {
tokenizer->advance();
BreakpointNode *bn = alloc_node<BreakpointNode>();
p_block->statements.push_back(bn);
if (!_end_statement()) {
_set_error("Expected end of statement after breakpoint.");
return;
}
} break;
default: {
Node *expression = _parse_and_reduce_expression(p_block, p_static, false, true);
if (!expression) {
if (_recover_from_completion()) {
break;
}
return;
}
p_block->statements.push_back(expression);
if (!_end_statement()) {
_set_error("Expected end of statement after expression.");
return;
}
} break;
/*
case GDTokenizer::TK_CF_LOCAL: {
if (tokenizer->get_token(1)!=GDTokenizer::TK_SEMICOLON && tokenizer->get_token(1)!=GDTokenizer::TK_NEWLINE ) {
_set_error("Expected ';' or <NewLine>.");
}
tokenizer->advance();
} break;
*/
}
}
}
bool GDParser::_parse_newline() {
if (tokenizer->get_token(1) != GDTokenizer::TK_EOF && tokenizer->get_token(1) != GDTokenizer::TK_NEWLINE) {
int indent = tokenizer->get_token_line_indent();
int current_indent = tab_level.back()->get();
if (indent > current_indent) {
_set_error("Unexpected indent.");
return false;
}
if (indent < current_indent) {
while (indent < current_indent) {
//exit block
if (tab_level.size() == 1) {
_set_error("Invalid indent. BUG?");
return false;
}
tab_level.pop_back();
if (tab_level.back()->get() < indent) {
_set_error("Unindent does not match any outer indentation level.");
return false;
}
current_indent = tab_level.back()->get();
}
tokenizer->advance();
return false;
}
}
tokenizer->advance();
return true;
}
void GDParser::_parse_extends(ClassNode *p_class) {
if (p_class->extends_used) {
_set_error("'extends' already used for this class.");
return;
}
if (!p_class->constant_expressions.empty() || !p_class->subclasses.empty() || !p_class->functions.empty() || !p_class->variables.empty()) {
_set_error("'extends' must be used before anything else.");
return;
}
p_class->extends_used = true;
tokenizer->advance();
if (tokenizer->get_token() == GDTokenizer::TK_BUILT_IN_TYPE && tokenizer->get_token_type() == Variant::OBJECT) {
p_class->extends_class.push_back(Variant::get_type_name(Variant::OBJECT));
tokenizer->advance();
return;
}
// see if inheritance happens from a file
if (tokenizer->get_token() == GDTokenizer::TK_CONSTANT) {
Variant constant = tokenizer->get_token_constant();
if (constant.get_type() != Variant::STRING) {
_set_error("'extends' constant must be a string.");
return;
}
p_class->extends_file = constant;
tokenizer->advance();
if (tokenizer->get_token() != GDTokenizer::TK_PERIOD) {
return;
} else
tokenizer->advance();
}
while (true) {
if (tokenizer->get_token() != GDTokenizer::TK_IDENTIFIER) {
_set_error("Invalid 'extends' syntax, expected string constant (path) and/or identifier (parent class).");
return;
}
StringName identifier = tokenizer->get_token_identifier();
p_class->extends_class.push_back(identifier);
tokenizer->advance(1);
if (tokenizer->get_token() != GDTokenizer::TK_PERIOD)
return;
}
}
void GDParser::_parse_class(ClassNode *p_class) {
int indent_level = tab_level.back()->get();
while (true) {
GDTokenizer::Token token = tokenizer->get_token();
if (error_set)
return;
if (indent_level > tab_level.back()->get()) {
p_class->end_line = tokenizer->get_token_line();
return; //go back a level
}
switch (token) {
case GDTokenizer::TK_EOF:
p_class->end_line = tokenizer->get_token_line();
case GDTokenizer::TK_ERROR: {
return; //go back
//end of file!
} break;
case GDTokenizer::TK_NEWLINE: {
if (!_parse_newline()) {
if (!error_set) {
p_class->end_line = tokenizer->get_token_line();
}
return;
}
} break;
case GDTokenizer::TK_PR_EXTENDS: {
_parse_extends(p_class);
if (error_set)
return;
if (!_end_statement()) {
_set_error("Expected end of statement after extends");
return;
}
} break;
case GDTokenizer::TK_PR_TOOL: {
if (p_class->tool) {
_set_error("tool used more than once");
return;
}
p_class->tool = true;
tokenizer->advance();
} break;
case GDTokenizer::TK_PR_CLASS: {
//class inside class :D
StringName name;
StringName extends;
if (tokenizer->get_token(1) != GDTokenizer::TK_IDENTIFIER) {
_set_error("'class' syntax: 'class <Name>:' or 'class <Name> extends <BaseClass>:'");
return;
}
name = tokenizer->get_token_identifier(1);
tokenizer->advance(2);
ClassNode *newclass = alloc_node<ClassNode>();
newclass->initializer = alloc_node<BlockNode>();
newclass->initializer->parent_class = newclass;
newclass->ready = alloc_node<BlockNode>();
newclass->ready->parent_class = newclass;
newclass->name = name;
newclass->owner = p_class;
p_class->subclasses.push_back(newclass);
if (tokenizer->get_token() == GDTokenizer::TK_PR_EXTENDS) {
_parse_extends(newclass);
if (error_set)
return;
}
if (!_enter_indent_block()) {
_set_error("Indented block expected.");
return;
}
current_class = newclass;
_parse_class(newclass);
current_class = p_class;
} break;
/* this is for functions....
case GDTokenizer::TK_CF_PASS: {
tokenizer->advance(1);
} break;
*/
case GDTokenizer::TK_PR_STATIC: {
tokenizer->advance();
if (tokenizer->get_token() != GDTokenizer::TK_PR_FUNCTION) {
_set_error("Expected 'func'.");
return;
}
}; //fallthrough to function
case GDTokenizer::TK_PR_FUNCTION: {
bool _static = false;
pending_newline = -1;
if (tokenizer->get_token(-1) == GDTokenizer::TK_PR_STATIC) {
_static = true;
}
tokenizer->advance();
StringName name;
if (_get_completable_identifier(COMPLETION_VIRTUAL_FUNC, name)) {
}
if (name == StringName()) {
_set_error("Expected identifier after 'func' (syntax: 'func <identifier>([arguments]):' ).");
return;
}
for (int i = 0; i < p_class->functions.size(); i++) {
if (p_class->functions[i]->name == name) {
_set_error("Function '" + String(name) + "' already exists in this class (at line: " + itos(p_class->functions[i]->line) + ").");
}
}
for (int i = 0; i < p_class->static_functions.size(); i++) {
if (p_class->static_functions[i]->name == name) {
_set_error("Function '" + String(name) + "' already exists in this class (at line: " + itos(p_class->static_functions[i]->line) + ").");
}
}
if (tokenizer->get_token() != GDTokenizer::TK_PARENTHESIS_OPEN) {
_set_error("Expected '(' after identifier (syntax: 'func <identifier>([arguments]):' ).");
return;
}
tokenizer->advance();
Vector<StringName> arguments;
Vector<Node *> default_values;
int fnline = tokenizer->get_token_line();
if (tokenizer->get_token() != GDTokenizer::TK_PARENTHESIS_CLOSE) {
//has arguments
bool defaulting = false;
while (true) {
if (tokenizer->get_token() == GDTokenizer::TK_NEWLINE) {
tokenizer->advance();
continue;
}
if (tokenizer->get_token() == GDTokenizer::TK_PR_VAR) {
tokenizer->advance(); //var before the identifier is allowed
}
if (!tokenizer->is_token_literal(0, true)) {
_set_error("Expected identifier for argument.");
return;
}
StringName argname = tokenizer->get_token_identifier();
arguments.push_back(argname);
tokenizer->advance();
if (defaulting && tokenizer->get_token() != GDTokenizer::TK_OP_ASSIGN) {
_set_error("Default parameter expected.");
return;
}
//tokenizer->advance();
if (tokenizer->get_token() == GDTokenizer::TK_OP_ASSIGN) {
defaulting = true;
tokenizer->advance(1);
Node *defval = NULL;
defval = _parse_and_reduce_expression(p_class, _static);
if (!defval || error_set)
return;
OperatorNode *on = alloc_node<OperatorNode>();
on->op = OperatorNode::OP_ASSIGN;
IdentifierNode *in = alloc_node<IdentifierNode>();
in->name = argname;
on->arguments.push_back(in);
on->arguments.push_back(defval);
/* no ..
if (defval->type!=Node::TYPE_CONSTANT) {
_set_error("default argument must be constant");
}
*/
default_values.push_back(on);
}
while (tokenizer->get_token() == GDTokenizer::TK_NEWLINE) {
tokenizer->advance();
}
if (tokenizer->get_token() == GDTokenizer::TK_COMMA) {
tokenizer->advance();
continue;
} else if (tokenizer->get_token() != GDTokenizer::TK_PARENTHESIS_CLOSE) {
_set_error("Expected ',' or ')'.");
return;
}
break;
}
}
tokenizer->advance();
BlockNode *block = alloc_node<BlockNode>();
block->parent_class = p_class;
if (name == "_init") {
if (p_class->extends_used) {
OperatorNode *cparent = alloc_node<OperatorNode>();
cparent->op = OperatorNode::OP_PARENT_CALL;
block->statements.push_back(cparent);
IdentifierNode *id = alloc_node<IdentifierNode>();
id->name = "_init";
cparent->arguments.push_back(id);
if (tokenizer->get_token() == GDTokenizer::TK_PERIOD) {
tokenizer->advance();
if (tokenizer->get_token() != GDTokenizer::TK_PARENTHESIS_OPEN) {
_set_error("expected '(' for parent constructor arguments.");
}
tokenizer->advance();
if (tokenizer->get_token() != GDTokenizer::TK_PARENTHESIS_CLOSE) {
//has arguments
parenthesis++;
while (true) {
Node *arg = _parse_and_reduce_expression(p_class, _static);
cparent->arguments.push_back(arg);
if (tokenizer->get_token() == GDTokenizer::TK_COMMA) {
tokenizer->advance();
continue;
} else if (tokenizer->get_token() != GDTokenizer::TK_PARENTHESIS_CLOSE) {
_set_error("Expected ',' or ')'.");
return;
}
break;
}
parenthesis--;
}
tokenizer->advance();
}
} else {
if (tokenizer->get_token() == GDTokenizer::TK_PERIOD) {
_set_error("Parent constructor call found for a class without inheritance.");
return;
}
}
}
if (!_enter_indent_block(block)) {
_set_error("Indented block expected.");
return;
}
FunctionNode *function = alloc_node<FunctionNode>();
function->name = name;
function->arguments = arguments;
function->default_values = default_values;
function->_static = _static;
function->line = fnline;
function->rpc_mode = rpc_mode;
rpc_mode = ScriptInstance::RPC_MODE_DISABLED;
if (_static)
p_class->static_functions.push_back(function);
else
p_class->functions.push_back(function);
current_function = function;
function->body = block;
current_block = block;
_parse_block(block, _static);
current_block = NULL;
//arguments
} break;
case GDTokenizer::TK_PR_SIGNAL: {
tokenizer->advance();
if (!tokenizer->is_token_literal()) {
_set_error("Expected identifier after 'signal'.");
return;
}
ClassNode::Signal sig;
sig.name = tokenizer->get_token_identifier();
tokenizer->advance();
if (tokenizer->get_token() == GDTokenizer::TK_PARENTHESIS_OPEN) {
tokenizer->advance();
while (true) {
if (tokenizer->get_token() == GDTokenizer::TK_NEWLINE) {
tokenizer->advance();
continue;
}
if (tokenizer->get_token() == GDTokenizer::TK_PARENTHESIS_CLOSE) {
tokenizer->advance();
break;
}
if (!tokenizer->is_token_literal(0, true)) {
_set_error("Expected identifier in signal argument.");
return;
}
sig.arguments.push_back(tokenizer->get_token_identifier());
tokenizer->advance();
while (tokenizer->get_token() == GDTokenizer::TK_NEWLINE) {
tokenizer->advance();
}
if (tokenizer->get_token() == GDTokenizer::TK_COMMA) {
tokenizer->advance();
} else if (tokenizer->get_token() != GDTokenizer::TK_PARENTHESIS_CLOSE) {
_set_error("Expected ',' or ')' after signal parameter identifier.");
return;
}
}
}
p_class->_signals.push_back(sig);
if (!_end_statement()) {
_set_error("Expected end of statement (signal)");
return;
}
} break;
case GDTokenizer::TK_PR_EXPORT: {
tokenizer->advance();
if (tokenizer->get_token() == GDTokenizer::TK_PARENTHESIS_OPEN) {
tokenizer->advance();
if (tokenizer->get_token() == GDTokenizer::TK_BUILT_IN_TYPE) {
Variant::Type type = tokenizer->get_token_type();
if (type == Variant::NIL) {
_set_error("Can't export null type.");
return;
}
current_export.type = type;
current_export.usage |= PROPERTY_USAGE_SCRIPT_VARIABLE;
tokenizer->advance();
String hint_prefix = "";
if (type == Variant::ARRAY && tokenizer->get_token() == GDTokenizer::TK_COMMA) {
tokenizer->advance();
while (tokenizer->get_token() == GDTokenizer::TK_BUILT_IN_TYPE) {
type = tokenizer->get_token_type();
tokenizer->advance();
if (type == Variant::ARRAY) {
hint_prefix += itos(Variant::ARRAY) + ":";
if (tokenizer->get_token() == GDTokenizer::TK_COMMA) {
tokenizer->advance();
}
} else {
hint_prefix += itos(type);
break;
}
}
}
if (tokenizer->get_token() == GDTokenizer::TK_COMMA) {
// hint expected next!
tokenizer->advance();
switch (type) {
case Variant::INT: {
if (tokenizer->get_token() == GDTokenizer::TK_IDENTIFIER && tokenizer->get_token_identifier() == "FLAGS") {
//current_export.hint=PROPERTY_HINT_ALL_FLAGS;
tokenizer->advance();
if (tokenizer->get_token() == GDTokenizer::TK_PARENTHESIS_CLOSE) {
break;
}
if (tokenizer->get_token() != GDTokenizer::TK_COMMA) {
_set_error("Expected ')' or ',' in bit flags hint.");
return;
}
current_export.hint = PROPERTY_HINT_FLAGS;
tokenizer->advance();
bool first = true;
while (true) {
if (tokenizer->get_token() != GDTokenizer::TK_CONSTANT || tokenizer->get_token_constant().get_type() != Variant::STRING) {
current_export = PropertyInfo();
_set_error("Expected a string constant in named bit flags hint.");
return;
}
String c = tokenizer->get_token_constant();
if (!first)
current_export.hint_string += ",";
else
first = false;
current_export.hint_string += c.xml_escape();
tokenizer->advance();
if (tokenizer->get_token() == GDTokenizer::TK_PARENTHESIS_CLOSE)
break;
if (tokenizer->get_token() != GDTokenizer::TK_COMMA) {
current_export = PropertyInfo();
_set_error("Expected ')' or ',' in named bit flags hint.");
return;
}
tokenizer->advance();
}
break;
}
if (tokenizer->get_token() == GDTokenizer::TK_CONSTANT && tokenizer->get_token_constant().get_type() == Variant::STRING) {
//enumeration
current_export.hint = PROPERTY_HINT_ENUM;
bool first = true;
while (true) {
if (tokenizer->get_token() != GDTokenizer::TK_CONSTANT || tokenizer->get_token_constant().get_type() != Variant::STRING) {
current_export = PropertyInfo();
_set_error("Expected a string constant in enumeration hint.");
return;
}
String c = tokenizer->get_token_constant();
if (!first)
current_export.hint_string += ",";
else
first = false;
current_export.hint_string += c.xml_escape();
tokenizer->advance();
if (tokenizer->get_token() == GDTokenizer::TK_PARENTHESIS_CLOSE)
break;
if (tokenizer->get_token() != GDTokenizer::TK_COMMA) {
current_export = PropertyInfo();
_set_error("Expected ')' or ',' in enumeration hint.");
return;
}
tokenizer->advance();
}
break;
}
}; //fallthrough to use the same
case Variant::REAL: {
if (tokenizer->get_token() == GDTokenizer::TK_IDENTIFIER && tokenizer->get_token_identifier() == "EASE") {
current_export.hint = PROPERTY_HINT_EXP_EASING;
tokenizer->advance();
if (tokenizer->get_token() != GDTokenizer::TK_PARENTHESIS_CLOSE) {
_set_error("Expected ')' in hint.");
return;
}
break;
}
// range
if (tokenizer->get_token() == GDTokenizer::TK_IDENTIFIER && tokenizer->get_token_identifier() == "EXP") {
current_export.hint = PROPERTY_HINT_EXP_RANGE;
tokenizer->advance();
if (tokenizer->get_token() == GDTokenizer::TK_PARENTHESIS_CLOSE)
break;
else if (tokenizer->get_token() != GDTokenizer::TK_COMMA) {
_set_error("Expected ')' or ',' in exponential range hint.");
return;
}
tokenizer->advance();
} else
current_export.hint = PROPERTY_HINT_RANGE;
float sign = 1.0;
if (tokenizer->get_token() == GDTokenizer::TK_OP_SUB) {
sign = -1;
tokenizer->advance();
}
if (tokenizer->get_token() != GDTokenizer::TK_CONSTANT || !tokenizer->get_token_constant().is_num()) {
current_export = PropertyInfo();
_set_error("Expected a range in numeric hint.");
return;
}
current_export.hint_string = rtos(sign * double(tokenizer->get_token_constant()));
tokenizer->advance();
if (tokenizer->get_token() == GDTokenizer::TK_PARENTHESIS_CLOSE) {
current_export.hint_string = "0," + current_export.hint_string;
break;
}
if (tokenizer->get_token() != GDTokenizer::TK_COMMA) {
current_export = PropertyInfo();
_set_error("Expected ',' or ')' in numeric range hint.");
return;
}
tokenizer->advance();
sign = 1.0;
if (tokenizer->get_token() == GDTokenizer::TK_OP_SUB) {
sign = -1;
tokenizer->advance();
}
if (tokenizer->get_token() != GDTokenizer::TK_CONSTANT || !tokenizer->get_token_constant().is_num()) {
current_export = PropertyInfo();
_set_error("Expected a number as upper bound in numeric range hint.");
return;
}
current_export.hint_string += "," + rtos(sign * double(tokenizer->get_token_constant()));
tokenizer->advance();
if (tokenizer->get_token() == GDTokenizer::TK_PARENTHESIS_CLOSE)
break;
if (tokenizer->get_token() != GDTokenizer::TK_COMMA) {
current_export = PropertyInfo();
_set_error("Expected ',' or ')' in numeric range hint.");
return;
}
tokenizer->advance();
sign = 1.0;
if (tokenizer->get_token() == GDTokenizer::TK_OP_SUB) {
sign = -1;
tokenizer->advance();
}
if (tokenizer->get_token() != GDTokenizer::TK_CONSTANT || !tokenizer->get_token_constant().is_num()) {
current_export = PropertyInfo();
_set_error("Expected a number as step in numeric range hint.");
return;
}
current_export.hint_string += "," + rtos(sign * double(tokenizer->get_token_constant()));
tokenizer->advance();
} break;
case Variant::STRING: {
if (tokenizer->get_token() == GDTokenizer::TK_CONSTANT && tokenizer->get_token_constant().get_type() == Variant::STRING) {
//enumeration
current_export.hint = PROPERTY_HINT_ENUM;
bool first = true;
while (true) {
if (tokenizer->get_token() != GDTokenizer::TK_CONSTANT || tokenizer->get_token_constant().get_type() != Variant::STRING) {
current_export = PropertyInfo();
_set_error("Expected a string constant in enumeration hint.");
return;
}
String c = tokenizer->get_token_constant();
if (!first)
current_export.hint_string += ",";
else
first = false;
current_export.hint_string += c.xml_escape();
tokenizer->advance();
if (tokenizer->get_token() == GDTokenizer::TK_PARENTHESIS_CLOSE)
break;
if (tokenizer->get_token() != GDTokenizer::TK_COMMA) {
current_export = PropertyInfo();
_set_error("Expected ')' or ',' in enumeration hint.");
return;
}
tokenizer->advance();
}
break;
}
if (tokenizer->get_token() == GDTokenizer::TK_IDENTIFIER && tokenizer->get_token_identifier() == "DIR") {
tokenizer->advance();
if (tokenizer->get_token() == GDTokenizer::TK_PARENTHESIS_CLOSE)
current_export.hint = PROPERTY_HINT_DIR;
else if (tokenizer->get_token() == GDTokenizer::TK_COMMA) {
tokenizer->advance();
if (tokenizer->get_token() != GDTokenizer::TK_IDENTIFIER || !(tokenizer->get_token_identifier() == "GLOBAL")) {
_set_error("Expected 'GLOBAL' after comma in directory hint.");
return;
}
if (!p_class->tool) {
_set_error("Global filesystem hints may only be used in tool scripts.");
return;
}
current_export.hint = PROPERTY_HINT_GLOBAL_DIR;
tokenizer->advance();
if (tokenizer->get_token() != GDTokenizer::TK_PARENTHESIS_CLOSE) {
_set_error("Expected ')' in hint.");
return;
}
} else {
_set_error("Expected ')' or ',' in hint.");
return;
}
break;
}
if (tokenizer->get_token() == GDTokenizer::TK_IDENTIFIER && tokenizer->get_token_identifier() == "FILE") {
current_export.hint = PROPERTY_HINT_FILE;
tokenizer->advance();
if (tokenizer->get_token() == GDTokenizer::TK_COMMA) {
tokenizer->advance();
if (tokenizer->get_token() == GDTokenizer::TK_IDENTIFIER && tokenizer->get_token_identifier() == "GLOBAL") {
if (!p_class->tool) {
_set_error("Global filesystem hints may only be used in tool scripts.");
return;
}
current_export.hint = PROPERTY_HINT_GLOBAL_FILE;
tokenizer->advance();
if (tokenizer->get_token() == GDTokenizer::TK_PARENTHESIS_CLOSE)
break;
else if (tokenizer->get_token() == GDTokenizer::TK_COMMA)
tokenizer->advance();
else {
_set_error("Expected ')' or ',' in hint.");
return;
}
}
if (tokenizer->get_token() != GDTokenizer::TK_CONSTANT || tokenizer->get_token_constant().get_type() != Variant::STRING) {
if (current_export.hint == PROPERTY_HINT_GLOBAL_FILE)
_set_error("Expected string constant with filter");
else
_set_error("Expected 'GLOBAL' or string constant with filter");
return;
}
current_export.hint_string = tokenizer->get_token_constant();
tokenizer->advance();
}
if (tokenizer->get_token() != GDTokenizer::TK_PARENTHESIS_CLOSE) {
_set_error("Expected ')' in hint.");
return;
}
break;
}
if (tokenizer->get_token() == GDTokenizer::TK_IDENTIFIER && tokenizer->get_token_identifier() == "MULTILINE") {
current_export.hint = PROPERTY_HINT_MULTILINE_TEXT;
tokenizer->advance();
if (tokenizer->get_token() != GDTokenizer::TK_PARENTHESIS_CLOSE) {
_set_error("Expected ')' in hint.");
return;
}
break;
}
} break;
case Variant::COLOR: {
if (tokenizer->get_token() != GDTokenizer::TK_IDENTIFIER) {
current_export = PropertyInfo();
_set_error("Color type hint expects RGB or RGBA as hints");
return;
}
String identifier = tokenizer->get_token_identifier();
if (identifier == "RGB") {
current_export.hint = PROPERTY_HINT_COLOR_NO_ALPHA;
} else if (identifier == "RGBA") {
//none
} else {
current_export = PropertyInfo();
_set_error("Color type hint expects RGB or RGBA as hints");
return;
}
tokenizer->advance();
} break;
default: {
current_export = PropertyInfo();
_set_error("Type '" + Variant::get_type_name(type) + "' can't take hints.");
return;
} break;
}
}
if (current_export.type == Variant::ARRAY && !hint_prefix.empty()) {
if (current_export.hint) {
hint_prefix += "/" + itos(current_export.hint);
}
current_export.hint_string = hint_prefix + ":" + current_export.hint_string;
current_export.hint = PROPERTY_HINT_NONE;
}
} else if (tokenizer->get_token() == GDTokenizer::TK_IDENTIFIER) {
String identifier = tokenizer->get_token_identifier();
if (!ClassDB::is_parent_class(identifier, "Resource")) {
current_export = PropertyInfo();
_set_error("Export hint not a type or resource.");
}
current_export.type = Variant::OBJECT;
current_export.hint = PROPERTY_HINT_RESOURCE_TYPE;
current_export.usage |= PROPERTY_USAGE_SCRIPT_VARIABLE;
current_export.hint_string = identifier;
tokenizer->advance();
}
if (tokenizer->get_token() != GDTokenizer::TK_PARENTHESIS_CLOSE) {
current_export = PropertyInfo();
_set_error("Expected ')' or ',' after export hint.");
return;
}
tokenizer->advance();
}
if (tokenizer->get_token() != GDTokenizer::TK_PR_VAR && tokenizer->get_token() != GDTokenizer::TK_PR_ONREADY && tokenizer->get_token() != GDTokenizer::TK_PR_REMOTE && tokenizer->get_token() != GDTokenizer::TK_PR_MASTER && tokenizer->get_token() != GDTokenizer::TK_PR_SLAVE && tokenizer->get_token() != GDTokenizer::TK_PR_SYNC) {
current_export = PropertyInfo();
_set_error("Expected 'var', 'onready', 'remote', 'master', 'slave' or 'sync'.");
return;
}
continue;
} break;
case GDTokenizer::TK_PR_ONREADY: {
//may be fallthrough from export, ignore if so
tokenizer->advance();
if (tokenizer->get_token() != GDTokenizer::TK_PR_VAR) {
_set_error("Expected 'var'.");
return;
}
continue;
} break;
case GDTokenizer::TK_PR_REMOTE: {
//may be fallthrough from export, ignore if so
tokenizer->advance();
if (current_export.type) {
if (tokenizer->get_token() != GDTokenizer::TK_PR_VAR) {
_set_error("Expected 'var'.");
return;
}
} else {
if (tokenizer->get_token() != GDTokenizer::TK_PR_VAR && tokenizer->get_token() != GDTokenizer::TK_PR_FUNCTION) {
_set_error("Expected 'var' or 'func'.");
return;
}
}
rpc_mode = ScriptInstance::RPC_MODE_REMOTE;
continue;
} break;
case GDTokenizer::TK_PR_MASTER: {
//may be fallthrough from export, ignore if so
tokenizer->advance();
if (current_export.type) {
if (tokenizer->get_token() != GDTokenizer::TK_PR_VAR) {
_set_error("Expected 'var'.");
return;
}
} else {
if (tokenizer->get_token() != GDTokenizer::TK_PR_VAR && tokenizer->get_token() != GDTokenizer::TK_PR_FUNCTION) {
_set_error("Expected 'var' or 'func'.");
return;
}
}
rpc_mode = ScriptInstance::RPC_MODE_MASTER;
continue;
} break;
case GDTokenizer::TK_PR_SLAVE: {
//may be fallthrough from export, ignore if so
tokenizer->advance();
if (current_export.type) {
if (tokenizer->get_token() != GDTokenizer::TK_PR_VAR) {
_set_error("Expected 'var'.");
return;
}
} else {
if (tokenizer->get_token() != GDTokenizer::TK_PR_VAR && tokenizer->get_token() != GDTokenizer::TK_PR_FUNCTION) {
_set_error("Expected 'var' or 'func'.");
return;
}
}
rpc_mode = ScriptInstance::RPC_MODE_SLAVE;
continue;
} break;
case GDTokenizer::TK_PR_SYNC: {
//may be fallthrough from export, ignore if so
tokenizer->advance();
if (tokenizer->get_token() != GDTokenizer::TK_PR_VAR && tokenizer->get_token() != GDTokenizer::TK_PR_FUNCTION) {
if (current_export.type)
_set_error("Expected 'var'.");
else
_set_error("Expected 'var' or 'func'.");
return;
}
rpc_mode = ScriptInstance::RPC_MODE_SYNC;
continue;
} break;
case GDTokenizer::TK_PR_VAR: {
//variale declaration and (eventual) initialization
ClassNode::Member member;
bool autoexport = tokenizer->get_token(-1) == GDTokenizer::TK_PR_EXPORT;
if (current_export.type != Variant::NIL) {
member._export = current_export;
current_export = PropertyInfo();
}
bool onready = tokenizer->get_token(-1) == GDTokenizer::TK_PR_ONREADY;
tokenizer->advance();
if (!tokenizer->is_token_literal(0, true)) {
_set_error("Expected identifier for member variable name.");
return;
}
member.identifier = tokenizer->get_token_literal();
member.expression = NULL;
member._export.name = member.identifier;
member.line = tokenizer->get_token_line();
member.rpc_mode = rpc_mode;
tokenizer->advance();
rpc_mode = ScriptInstance::RPC_MODE_DISABLED;
if (tokenizer->get_token() == GDTokenizer::TK_OP_ASSIGN) {
#ifdef DEBUG_ENABLED
int line = tokenizer->get_token_line();
#endif
tokenizer->advance();
Node *subexpr = NULL;
subexpr = _parse_and_reduce_expression(p_class, false, autoexport);
if (!subexpr) {
if (_recover_from_completion()) {
break;
}
return;
}
//discourage common error
if (!onready && subexpr->type == Node::TYPE_OPERATOR) {
OperatorNode *op = static_cast<OperatorNode *>(subexpr);
if (op->op == OperatorNode::OP_CALL && op->arguments[0]->type == Node::TYPE_SELF && op->arguments[1]->type == Node::TYPE_IDENTIFIER) {
IdentifierNode *id = static_cast<IdentifierNode *>(op->arguments[1]);
if (id->name == "get_node") {
_set_error("Use 'onready var " + String(member.identifier) + " = get_node(..)' instead");
return;
}
}
}
member.expression = subexpr;
if (autoexport) {
if (1) /*(subexpr->type==Node::TYPE_ARRAY) {
member._export.type=Variant::ARRAY;
} else if (subexpr->type==Node::TYPE_DICTIONARY) {
member._export.type=Variant::DICTIONARY;
} else*/ {
if (subexpr->type != Node::TYPE_CONSTANT) {
_set_error("Type-less export needs a constant expression assigned to infer type.");
return;
}
ConstantNode *cn = static_cast<ConstantNode *>(subexpr);
if (cn->value.get_type() == Variant::NIL) {
_set_error("Can't accept a null constant expression for infering export type.");
return;
}
member._export.type = cn->value.get_type();
member._export.usage |= PROPERTY_USAGE_SCRIPT_VARIABLE;
if (cn->value.get_type() == Variant::OBJECT) {
Object *obj = cn->value;
Resource *res = obj->cast_to<Resource>();
if (res == NULL) {
_set_error("Exported constant not a type or resource.");
return;
}
member._export.hint = PROPERTY_HINT_RESOURCE_TYPE;
member._export.hint_string = res->get_class();
}
}
}
#ifdef TOOLS_ENABLED
if (subexpr->type == Node::TYPE_CONSTANT && member._export.type != Variant::NIL) {
ConstantNode *cn = static_cast<ConstantNode *>(subexpr);
if (cn->value.get_type() != Variant::NIL) {
member.default_value = cn->value;
}
}
#endif
IdentifierNode *id = alloc_node<IdentifierNode>();
id->name = member.identifier;
OperatorNode *op = alloc_node<OperatorNode>();
op->op = OperatorNode::OP_INIT_ASSIGN;
op->arguments.push_back(id);
op->arguments.push_back(subexpr);
#ifdef DEBUG_ENABLED
NewLineNode *nl = alloc_node<NewLineNode>();
nl->line = line;
if (onready)
p_class->ready->statements.push_back(nl);
else
p_class->initializer->statements.push_back(nl);
#endif
if (onready)
p_class->ready->statements.push_back(op);
else
p_class->initializer->statements.push_back(op);
} else {
if (autoexport) {
_set_error("Type-less export needs a constant expression assigned to infer type.");
return;
}
}
if (tokenizer->get_token() == GDTokenizer::TK_PR_SETGET) {
tokenizer->advance();
if (tokenizer->get_token() != GDTokenizer::TK_COMMA) {
//just comma means using only getter
if (!tokenizer->is_token_literal()) {
_set_error("Expected identifier for setter function after 'setget'.");
}
member.setter = tokenizer->get_token_literal();
tokenizer->advance();
}
if (tokenizer->get_token() == GDTokenizer::TK_COMMA) {
//there is a getter
tokenizer->advance();
if (!tokenizer->is_token_literal()) {
_set_error("Expected identifier for getter function after ','.");
}
member.getter = tokenizer->get_token_literal();
tokenizer->advance();
}
}
p_class->variables.push_back(member);
if (!_end_statement()) {
_set_error("Expected end of statement (continue)");
return;
}
} break;
case GDTokenizer::TK_PR_CONST: {
//variale declaration and (eventual) initialization
ClassNode::Constant constant;
tokenizer->advance();
if (!tokenizer->is_token_literal(0, true)) {
_set_error("Expected name (identifier) for constant.");
return;
}
constant.identifier = tokenizer->get_token_literal();
tokenizer->advance();
if (tokenizer->get_token() != GDTokenizer::TK_OP_ASSIGN) {
_set_error("Constant expects assignment.");
return;
}
tokenizer->advance();
Node *subexpr = NULL;
subexpr = _parse_and_reduce_expression(p_class, true, true);
if (!subexpr) {
if (_recover_from_completion()) {
break;
}
return;
}
if (subexpr->type != Node::TYPE_CONSTANT) {
_set_error("Expected constant expression");
}
constant.expression = subexpr;
p_class->constant_expressions.push_back(constant);
if (!_end_statement()) {
_set_error("Expected end of statement (constant)");
return;
}
} break;
case GDTokenizer::TK_PR_ENUM: {
//mutiple constant declarations..
int last_assign = -1; // Incremented by 1 right before the assingment.
String enum_name;
Dictionary enum_dict;
tokenizer->advance();
if (tokenizer->is_token_literal(0, true)) {
enum_name = tokenizer->get_token_literal();
tokenizer->advance();
}
if (tokenizer->get_token() != GDTokenizer::TK_CURLY_BRACKET_OPEN) {
_set_error("Expected '{' in enum declaration");
return;
}
tokenizer->advance();
while (true) {
if (tokenizer->get_token() == GDTokenizer::TK_NEWLINE) {
tokenizer->advance(); // Ignore newlines
} else if (tokenizer->get_token() == GDTokenizer::TK_CURLY_BRACKET_CLOSE) {
tokenizer->advance();
break; // End of enum
} else if (!tokenizer->is_token_literal(0, true)) {
if (tokenizer->get_token() == GDTokenizer::TK_EOF) {
_set_error("Unexpected end of file.");
} else {
_set_error(String("Unexpected ") + GDTokenizer::get_token_name(tokenizer->get_token()) + ", expected identifier");
}
return;
} else { // tokenizer->is_token_literal(0, true)
ClassNode::Constant constant;
constant.identifier = tokenizer->get_token_literal();
tokenizer->advance();
if (tokenizer->get_token() == GDTokenizer::TK_OP_ASSIGN) {
tokenizer->advance();
Node *subexpr = NULL;
subexpr = _parse_and_reduce_expression(p_class, true, true);
if (!subexpr) {
if (_recover_from_completion()) {
break;
}
return;
}
if (subexpr->type != Node::TYPE_CONSTANT) {
_set_error("Expected constant expression");
}
const ConstantNode *subexpr_const = static_cast<const ConstantNode *>(subexpr);
if (subexpr_const->value.get_type() != Variant::INT) {
_set_error("Expected an int value for enum");
}
last_assign = subexpr_const->value;
constant.expression = subexpr;
} else {
last_assign = last_assign + 1;
ConstantNode *cn = alloc_node<ConstantNode>();
cn->value = last_assign;
constant.expression = cn;
}
if (tokenizer->get_token() == GDTokenizer::TK_COMMA) {
tokenizer->advance();
}
if (enum_name != "") {
const ConstantNode *cn = static_cast<const ConstantNode *>(constant.expression);
enum_dict[constant.identifier] = cn->value;
}
p_class->constant_expressions.push_back(constant);
}
}
if (enum_name != "") {
ClassNode::Constant enum_constant;
enum_constant.identifier = enum_name;
ConstantNode *cn = alloc_node<ConstantNode>();
cn->value = enum_dict;
enum_constant.expression = cn;
p_class->constant_expressions.push_back(enum_constant);
}
if (!_end_statement()) {
_set_error("Expected end of statement (enum)");
return;
}
} break;
case GDTokenizer::TK_CONSTANT: {
if (tokenizer->get_token_constant().get_type() == Variant::STRING) {
tokenizer->advance();
// Ignore
} else {
_set_error(String() + "Unexpected constant of type: " + Variant::get_type_name(tokenizer->get_token_constant().get_type()));
return;
}
} break;
default: {
_set_error(String() + "Unexpected token: " + tokenizer->get_token_name(tokenizer->get_token()) + ":" + tokenizer->get_token_identifier());
return;
} break;
}
}
}
void GDParser::_set_error(const String &p_error, int p_line, int p_column) {
if (error_set)
return; //allow no further errors
error = p_error;
error_line = p_line < 0 ? tokenizer->get_token_line() : p_line;
error_column = p_column < 0 ? tokenizer->get_token_column() : p_column;
error_set = true;
}
String GDParser::get_error() const {
return error;
}
int GDParser::get_error_line() const {
return error_line;
}
int GDParser::get_error_column() const {
return error_column;
}
Error GDParser::_parse(const String &p_base_path) {
base_path = p_base_path;
clear();
//assume class
ClassNode *main_class = alloc_node<ClassNode>();
main_class->initializer = alloc_node<BlockNode>();
main_class->initializer->parent_class = main_class;
main_class->ready = alloc_node<BlockNode>();
main_class->ready->parent_class = main_class;
current_class = main_class;
_parse_class(main_class);
if (tokenizer->get_token() == GDTokenizer::TK_ERROR) {
error_set = false;
_set_error("Parse Error: " + tokenizer->get_token_error());
}
if (error_set) {
return ERR_PARSE_ERROR;
}
return OK;
}
Error GDParser::parse_bytecode(const Vector<uint8_t> &p_bytecode, const String &p_base_path, const String &p_self_path) {
for_completion = false;
validating = false;
completion_type = COMPLETION_NONE;
completion_node = NULL;
completion_class = NULL;
completion_function = NULL;
completion_block = NULL;
completion_found = false;
current_block = NULL;
current_class = NULL;
current_function = NULL;
self_path = p_self_path;
GDTokenizerBuffer *tb = memnew(GDTokenizerBuffer);
tb->set_code_buffer(p_bytecode);
tokenizer = tb;
Error ret = _parse(p_base_path);
memdelete(tb);
tokenizer = NULL;
return ret;
}
Error GDParser::parse(const String &p_code, const String &p_base_path, bool p_just_validate, const String &p_self_path, bool p_for_completion) {
completion_type = COMPLETION_NONE;
completion_node = NULL;
completion_class = NULL;
completion_function = NULL;
completion_block = NULL;
completion_found = false;
current_block = NULL;
current_class = NULL;
current_function = NULL;
self_path = p_self_path;
GDTokenizerText *tt = memnew(GDTokenizerText);
tt->set_code(p_code);
validating = p_just_validate;
for_completion = p_for_completion;
tokenizer = tt;
Error ret = _parse(p_base_path);
memdelete(tt);
tokenizer = NULL;
return ret;
}
bool GDParser::is_tool_script() const {
return (head && head->type == Node::TYPE_CLASS && static_cast<const ClassNode *>(head)->tool);
}
const GDParser::Node *GDParser::get_parse_tree() const {
return head;
}
void GDParser::clear() {
while (list) {
Node *l = list;
list = list->next;
memdelete(l);
}
head = NULL;
list = NULL;
completion_type = COMPLETION_NONE;
completion_node = NULL;
completion_class = NULL;
completion_function = NULL;
completion_block = NULL;
current_block = NULL;
current_class = NULL;
completion_found = false;
rpc_mode = ScriptInstance::RPC_MODE_DISABLED;
current_function = NULL;
validating = false;
for_completion = false;
error_set = false;
tab_level.clear();
tab_level.push_back(0);
error_line = 0;
error_column = 0;
pending_newline = -1;
parenthesis = 0;
current_export.type = Variant::NIL;
error = "";
}
GDParser::CompletionType GDParser::get_completion_type() {
return completion_type;
}
StringName GDParser::get_completion_cursor() {
return completion_cursor;
}
int GDParser::get_completion_line() {
return completion_line;
}
Variant::Type GDParser::get_completion_built_in_constant() {
return completion_built_in_constant;
}
GDParser::Node *GDParser::get_completion_node() {
return completion_node;
}
GDParser::BlockNode *GDParser::get_completion_block() {
return completion_block;
}
GDParser::ClassNode *GDParser::get_completion_class() {
return completion_class;
}
GDParser::FunctionNode *GDParser::get_completion_function() {
return completion_function;
}
int GDParser::get_completion_argument_index() {
return completion_argument;
}
int GDParser::get_completion_identifier_is_function() {
return completion_ident_is_call;
}
GDParser::GDParser() {
head = NULL;
list = NULL;
tokenizer = NULL;
pending_newline = -1;
clear();
}
GDParser::~GDParser() {
clear();
}