232 lines
6.8 KiB
C++
232 lines
6.8 KiB
C++
/**************************************************************************/
|
|
/* quat.h */
|
|
/**************************************************************************/
|
|
/* This file is part of: */
|
|
/* GODOT ENGINE */
|
|
/* https://godotengine.org */
|
|
/**************************************************************************/
|
|
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
|
|
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/**************************************************************************/
|
|
|
|
#ifndef QUAT_H
|
|
#define QUAT_H
|
|
|
|
#include "core/math/math_defs.h"
|
|
#include "core/math/math_funcs.h"
|
|
#include "core/math/vector3.h"
|
|
#include "core/ustring.h"
|
|
|
|
class _NO_DISCARD_CLASS_ Quat {
|
|
public:
|
|
real_t x, y, z, w;
|
|
|
|
_FORCE_INLINE_ real_t length_squared() const;
|
|
bool is_equal_approx(const Quat &p_quat) const;
|
|
real_t length() const;
|
|
void normalize();
|
|
Quat normalized() const;
|
|
bool is_normalized() const;
|
|
Quat inverse() const;
|
|
_FORCE_INLINE_ real_t dot(const Quat &p_q) const;
|
|
real_t angle_to(const Quat &p_to) const;
|
|
|
|
void set_euler_xyz(const Vector3 &p_euler);
|
|
Vector3 get_euler_xyz() const;
|
|
void set_euler_yxz(const Vector3 &p_euler);
|
|
Vector3 get_euler_yxz() const;
|
|
|
|
void set_euler(const Vector3 &p_euler) { set_euler_yxz(p_euler); }
|
|
Vector3 get_euler() const { return get_euler_yxz(); }
|
|
|
|
Quat slerp(const Quat &p_to, real_t p_weight) const;
|
|
Quat slerpni(const Quat &p_to, real_t p_weight) const;
|
|
Quat cubic_slerp(const Quat &p_b, const Quat &p_pre_a, const Quat &p_post_b, real_t p_weight) const;
|
|
|
|
void set_axis_angle(const Vector3 &p_axis, real_t p_angle);
|
|
_FORCE_INLINE_ void get_axis_angle(Vector3 &r_axis, real_t &r_angle) const {
|
|
r_angle = 2 * Math::acos(w);
|
|
real_t r = ((real_t)1) / Math::sqrt(1 - w * w);
|
|
r_axis.x = x * r;
|
|
r_axis.y = y * r;
|
|
r_axis.z = z * r;
|
|
}
|
|
|
|
void operator*=(const Quat &p_q);
|
|
Quat operator*(const Quat &p_q) const;
|
|
|
|
Quat operator*(const Vector3 &p_v) const {
|
|
return Quat(w * p_v.x + y * p_v.z - z * p_v.y,
|
|
w * p_v.y + z * p_v.x - x * p_v.z,
|
|
w * p_v.z + x * p_v.y - y * p_v.x,
|
|
-x * p_v.x - y * p_v.y - z * p_v.z);
|
|
}
|
|
|
|
_FORCE_INLINE_ Vector3 xform(const Vector3 &p_v) const {
|
|
#ifdef MATH_CHECKS
|
|
ERR_FAIL_COND_V_MSG(!is_normalized(), p_v, "The quaternion must be normalized.");
|
|
#endif
|
|
Vector3 u(x, y, z);
|
|
Vector3 uv = u.cross(p_v);
|
|
return p_v + ((uv * w) + u.cross(uv)) * ((real_t)2);
|
|
}
|
|
|
|
_FORCE_INLINE_ void operator+=(const Quat &p_q);
|
|
_FORCE_INLINE_ void operator-=(const Quat &p_q);
|
|
_FORCE_INLINE_ void operator*=(real_t p_s);
|
|
_FORCE_INLINE_ void operator/=(real_t p_s);
|
|
_FORCE_INLINE_ Quat operator+(const Quat &p_q2) const;
|
|
_FORCE_INLINE_ Quat operator-(const Quat &p_q2) const;
|
|
_FORCE_INLINE_ Quat operator-() const;
|
|
_FORCE_INLINE_ Quat operator*(real_t p_s) const;
|
|
_FORCE_INLINE_ Quat operator/(real_t p_s) const;
|
|
|
|
_FORCE_INLINE_ bool operator==(const Quat &p_quat) const;
|
|
_FORCE_INLINE_ bool operator!=(const Quat &p_quat) const;
|
|
|
|
operator String() const;
|
|
|
|
inline void set(real_t p_x, real_t p_y, real_t p_z, real_t p_w) {
|
|
x = p_x;
|
|
y = p_y;
|
|
z = p_z;
|
|
w = p_w;
|
|
}
|
|
inline Quat(real_t p_x, real_t p_y, real_t p_z, real_t p_w) :
|
|
x(p_x),
|
|
y(p_y),
|
|
z(p_z),
|
|
w(p_w) {
|
|
}
|
|
Quat(const Vector3 &p_axis, real_t p_angle) { set_axis_angle(p_axis, p_angle); }
|
|
|
|
Quat(const Vector3 &p_euler) { set_euler(p_euler); }
|
|
Quat(const Quat &p_q) :
|
|
x(p_q.x),
|
|
y(p_q.y),
|
|
z(p_q.z),
|
|
w(p_q.w) {
|
|
}
|
|
|
|
Quat &operator=(const Quat &p_q) {
|
|
x = p_q.x;
|
|
y = p_q.y;
|
|
z = p_q.z;
|
|
w = p_q.w;
|
|
return *this;
|
|
}
|
|
|
|
Quat(const Vector3 &p_v0, const Vector3 &p_v1) // shortest arc
|
|
{
|
|
Vector3 c = p_v0.cross(p_v1);
|
|
real_t d = p_v0.dot(p_v1);
|
|
|
|
if (d < -1 + (real_t)CMP_EPSILON) {
|
|
x = 0;
|
|
y = 1;
|
|
z = 0;
|
|
w = 0;
|
|
} else {
|
|
real_t s = Math::sqrt((1 + d) * 2);
|
|
real_t rs = 1 / s;
|
|
|
|
x = c.x * rs;
|
|
y = c.y * rs;
|
|
z = c.z * rs;
|
|
w = s * 0.5f;
|
|
}
|
|
}
|
|
|
|
inline Quat() :
|
|
x(0),
|
|
y(0),
|
|
z(0),
|
|
w(1) {
|
|
}
|
|
};
|
|
|
|
real_t Quat::dot(const Quat &p_q) const {
|
|
return x * p_q.x + y * p_q.y + z * p_q.z + w * p_q.w;
|
|
}
|
|
|
|
real_t Quat::length_squared() const {
|
|
return dot(*this);
|
|
}
|
|
|
|
void Quat::operator+=(const Quat &p_q) {
|
|
x += p_q.x;
|
|
y += p_q.y;
|
|
z += p_q.z;
|
|
w += p_q.w;
|
|
}
|
|
|
|
void Quat::operator-=(const Quat &p_q) {
|
|
x -= p_q.x;
|
|
y -= p_q.y;
|
|
z -= p_q.z;
|
|
w -= p_q.w;
|
|
}
|
|
|
|
void Quat::operator*=(real_t p_s) {
|
|
x *= p_s;
|
|
y *= p_s;
|
|
z *= p_s;
|
|
w *= p_s;
|
|
}
|
|
|
|
void Quat::operator/=(real_t p_s) {
|
|
*this *= 1 / p_s;
|
|
}
|
|
|
|
Quat Quat::operator+(const Quat &p_q2) const {
|
|
const Quat &q1 = *this;
|
|
return Quat(q1.x + p_q2.x, q1.y + p_q2.y, q1.z + p_q2.z, q1.w + p_q2.w);
|
|
}
|
|
|
|
Quat Quat::operator-(const Quat &p_q2) const {
|
|
const Quat &q1 = *this;
|
|
return Quat(q1.x - p_q2.x, q1.y - p_q2.y, q1.z - p_q2.z, q1.w - p_q2.w);
|
|
}
|
|
|
|
Quat Quat::operator-() const {
|
|
const Quat &q2 = *this;
|
|
return Quat(-q2.x, -q2.y, -q2.z, -q2.w);
|
|
}
|
|
|
|
Quat Quat::operator*(real_t p_s) const {
|
|
return Quat(x * p_s, y * p_s, z * p_s, w * p_s);
|
|
}
|
|
|
|
Quat Quat::operator/(real_t p_s) const {
|
|
return *this * (1 / p_s);
|
|
}
|
|
|
|
bool Quat::operator==(const Quat &p_quat) const {
|
|
return x == p_quat.x && y == p_quat.y && z == p_quat.z && w == p_quat.w;
|
|
}
|
|
|
|
bool Quat::operator!=(const Quat &p_quat) const {
|
|
return x != p_quat.x || y != p_quat.y || z != p_quat.z || w != p_quat.w;
|
|
}
|
|
|
|
#endif // QUAT_H
|