godot/scene/animation/tween.cpp
2022-04-02 00:31:40 +02:00

961 lines
27 KiB
C++

/*************************************************************************/
/* tween.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "tween.h"
#include "scene/animation/easing_equations.h"
#include "scene/main/node.h"
Tween::interpolater Tween::interpolaters[Tween::TRANS_MAX][Tween::EASE_MAX] = {
{ &linear::in, &linear::in, &linear::in, &linear::in }, // Linear is the same for each easing.
{ &sine::in, &sine::out, &sine::in_out, &sine::out_in },
{ &quint::in, &quint::out, &quint::in_out, &quint::out_in },
{ &quart::in, &quart::out, &quart::in_out, &quart::out_in },
{ &quad::in, &quad::out, &quad::in_out, &quad::out_in },
{ &expo::in, &expo::out, &expo::in_out, &expo::out_in },
{ &elastic::in, &elastic::out, &elastic::in_out, &elastic::out_in },
{ &cubic::in, &cubic::out, &cubic::in_out, &cubic::out_in },
{ &circ::in, &circ::out, &circ::in_out, &circ::out_in },
{ &bounce::in, &bounce::out, &bounce::in_out, &bounce::out_in },
{ &back::in, &back::out, &back::in_out, &back::out_in },
};
void Tweener::set_tween(Ref<Tween> p_tween) {
tween = p_tween;
}
void Tweener::clear_tween() {
tween.unref();
}
void Tweener::_bind_methods() {
ADD_SIGNAL(MethodInfo("finished"));
}
void Tween::start_tweeners() {
if (tweeners.is_empty()) {
dead = true;
ERR_FAIL_MSG("Tween without commands, aborting.");
}
for (Ref<Tweener> &tweener : tweeners.write[current_step]) {
tweener->start();
}
}
Ref<PropertyTweener> Tween::tween_property(Object *p_target, NodePath p_property, Variant p_to, float p_duration) {
ERR_FAIL_NULL_V(p_target, nullptr);
ERR_FAIL_COND_V_MSG(!valid, nullptr, "Tween invalid. Either finished or created outside scene tree.");
ERR_FAIL_COND_V_MSG(started, nullptr, "Can't append to a Tween that has started. Use stop() first.");
#ifdef DEBUG_ENABLED
Variant::Type property_type = p_target->get_indexed(p_property.get_as_property_path().get_subnames()).get_type();
ERR_FAIL_COND_V_MSG(property_type != p_to.get_type(), Ref<PropertyTweener>(), "Type mismatch between property and final value: " + Variant::get_type_name(property_type) + " and " + Variant::get_type_name(p_to.get_type()));
#endif
Ref<PropertyTweener> tweener = memnew(PropertyTweener(p_target, p_property, p_to, p_duration));
append(tweener);
return tweener;
}
Ref<IntervalTweener> Tween::tween_interval(float p_time) {
ERR_FAIL_COND_V_MSG(!valid, nullptr, "Tween invalid. Either finished or created outside scene tree.");
ERR_FAIL_COND_V_MSG(started, nullptr, "Can't append to a Tween that has started. Use stop() first.");
Ref<IntervalTweener> tweener = memnew(IntervalTweener(p_time));
append(tweener);
return tweener;
}
Ref<CallbackTweener> Tween::tween_callback(Callable p_callback) {
ERR_FAIL_COND_V_MSG(!valid, nullptr, "Tween invalid. Either finished or created outside scene tree.");
ERR_FAIL_COND_V_MSG(started, nullptr, "Can't append to a Tween that has started. Use stop() first.");
Ref<CallbackTweener> tweener = memnew(CallbackTweener(p_callback));
append(tweener);
return tweener;
}
Ref<MethodTweener> Tween::tween_method(Callable p_callback, Variant p_from, Variant p_to, float p_duration) {
ERR_FAIL_COND_V_MSG(!valid, nullptr, "Tween invalid. Either finished or created outside scene tree.");
ERR_FAIL_COND_V_MSG(started, nullptr, "Can't append to a Tween that has started. Use stop() first.");
Ref<MethodTweener> tweener = memnew(MethodTweener(p_callback, p_from, p_to, p_duration));
append(tweener);
return tweener;
}
void Tween::append(Ref<Tweener> p_tweener) {
p_tweener->set_tween(this);
if (parallel_enabled) {
current_step = MAX(current_step, 0);
} else {
current_step++;
}
parallel_enabled = default_parallel;
tweeners.resize(current_step + 1);
tweeners.write[current_step].push_back(p_tweener);
}
void Tween::stop() {
started = false;
running = false;
dead = false;
total_time = 0;
}
void Tween::pause() {
running = false;
}
void Tween::play() {
ERR_FAIL_COND_MSG(!valid, "Tween invalid. Either finished or created outside scene tree.");
ERR_FAIL_COND_MSG(dead, "Can't play finished Tween, use stop() first to reset its state.");
running = true;
}
void Tween::kill() {
running = false; // For the sake of is_running().
dead = true;
}
bool Tween::is_running() {
return running;
}
void Tween::set_valid(bool p_valid) {
valid = p_valid;
}
bool Tween::is_valid() {
return valid;
}
void Tween::clear() {
valid = false;
for (List<Ref<Tweener>> &step : tweeners) {
for (Ref<Tweener> &tweener : step) {
tweener->clear_tween();
}
}
tweeners.clear();
}
Ref<Tween> Tween::bind_node(Node *p_node) {
ERR_FAIL_NULL_V(p_node, this);
bound_node = p_node->get_instance_id();
is_bound = true;
return this;
}
Ref<Tween> Tween::set_process_mode(TweenProcessMode p_mode) {
process_mode = p_mode;
return this;
}
Tween::TweenProcessMode Tween::get_process_mode() {
return process_mode;
}
Ref<Tween> Tween::set_pause_mode(TweenPauseMode p_mode) {
pause_mode = p_mode;
return this;
}
Tween::TweenPauseMode Tween::get_pause_mode() {
return pause_mode;
}
Ref<Tween> Tween::set_parallel(bool p_parallel) {
default_parallel = p_parallel;
parallel_enabled = p_parallel;
return this;
}
Ref<Tween> Tween::set_loops(int p_loops) {
loops = p_loops;
return this;
}
Ref<Tween> Tween::set_speed_scale(float p_speed) {
speed_scale = p_speed;
return this;
}
Ref<Tween> Tween::set_trans(TransitionType p_trans) {
default_transition = p_trans;
return this;
}
Tween::TransitionType Tween::get_trans() {
return default_transition;
}
Ref<Tween> Tween::set_ease(EaseType p_ease) {
default_ease = p_ease;
return this;
}
Tween::EaseType Tween::get_ease() {
return default_ease;
}
Ref<Tween> Tween::parallel() {
parallel_enabled = true;
return this;
}
Ref<Tween> Tween::chain() {
parallel_enabled = false;
return this;
}
bool Tween::custom_step(float p_delta) {
bool r = running;
running = true;
bool ret = step(p_delta);
running = running && r; // Running might turn false when Tween finished.
return ret;
}
bool Tween::step(float p_delta) {
if (dead) {
return false;
}
if (!running) {
return true;
}
if (is_bound) {
Node *bound_node = get_bound_node();
if (bound_node) {
if (!bound_node->is_inside_tree()) {
return true;
}
} else {
return false;
}
}
if (!started) {
ERR_FAIL_COND_V_MSG(tweeners.is_empty(), false, "Tween started, but has no Tweeners.");
current_step = 0;
loops_done = 0;
total_time = 0;
start_tweeners();
started = true;
}
float rem_delta = p_delta * speed_scale;
bool step_active = false;
total_time += rem_delta;
while (rem_delta > 0 && running) {
float step_delta = rem_delta;
step_active = false;
#ifdef DEBUG_ENABLED
float prev_delta = rem_delta;
#endif
for (Ref<Tweener> &tweener : tweeners.write[current_step]) {
// Modified inside Tweener.step().
float temp_delta = rem_delta;
// Turns to true if any Tweener returns true (i.e. is still not finished).
step_active = tweener->step(temp_delta) || step_active;
step_delta = MIN(temp_delta, step_delta);
}
rem_delta = step_delta;
if (!step_active) {
emit_signal(SNAME("step_finished"), current_step);
current_step++;
if (current_step == tweeners.size()) {
loops_done++;
if (loops_done == loops) {
running = false;
dead = true;
emit_signal(SNAME("finished"));
} else {
emit_signal(SNAME("loop_finished"), loops_done);
current_step = 0;
start_tweeners();
}
} else {
start_tweeners();
}
}
#ifdef DEBUG_ENABLED
if (Math::is_equal_approx(rem_delta, prev_delta) && running && loops <= 0) {
ERR_FAIL_V_MSG(false, "Infinite loop detected. Check set_loops() description for more info.");
}
#endif
}
return true;
}
bool Tween::can_process(bool p_tree_paused) const {
if (is_bound && pause_mode == TWEEN_PAUSE_BOUND) {
Node *bound_node = get_bound_node();
if (bound_node) {
return bound_node->can_process();
}
}
return !p_tree_paused || pause_mode == TWEEN_PAUSE_PROCESS;
}
Node *Tween::get_bound_node() const {
if (is_bound) {
return Object::cast_to<Node>(ObjectDB::get_instance(bound_node));
} else {
return nullptr;
}
}
float Tween::get_total_time() const {
return total_time;
}
real_t Tween::run_equation(TransitionType p_trans_type, EaseType p_ease_type, real_t p_time, real_t p_initial, real_t p_delta, real_t p_duration) {
if (p_duration == 0) {
// Special case to avoid dividing by 0 in equations.
return p_initial + p_delta;
}
interpolater func = interpolaters[p_trans_type][p_ease_type];
return func(p_time, p_initial, p_delta, p_duration);
}
Variant Tween::interpolate_variant(Variant p_initial_val, Variant p_delta_val, float p_time, float p_duration, TransitionType p_trans, EaseType p_ease) {
ERR_FAIL_INDEX_V(p_trans, TransitionType::TRANS_MAX, Variant());
ERR_FAIL_INDEX_V(p_ease, EaseType::EASE_MAX, Variant());
// Helper macro to run equation on sub-elements of the value (e.g. x and y of Vector2).
#define APPLY_EQUATION(element) \
r.element = run_equation(p_trans, p_ease, p_time, i.element, d.element, p_duration);
switch (p_initial_val.get_type()) {
case Variant::BOOL: {
return (run_equation(p_trans, p_ease, p_time, p_initial_val, p_delta_val, p_duration)) >= 0.5;
}
case Variant::INT: {
return (int)run_equation(p_trans, p_ease, p_time, (int)p_initial_val, (int)p_delta_val, p_duration);
}
case Variant::FLOAT: {
return run_equation(p_trans, p_ease, p_time, (real_t)p_initial_val, (real_t)p_delta_val, p_duration);
}
case Variant::VECTOR2: {
Vector2 i = p_initial_val;
Vector2 d = p_delta_val;
Vector2 r;
APPLY_EQUATION(x);
APPLY_EQUATION(y);
return r;
}
case Variant::VECTOR2I: {
Vector2i i = p_initial_val;
Vector2i d = p_delta_val;
Vector2i r;
APPLY_EQUATION(x);
APPLY_EQUATION(y);
return r;
}
case Variant::RECT2: {
Rect2 i = p_initial_val;
Rect2 d = p_delta_val;
Rect2 r;
APPLY_EQUATION(position.x);
APPLY_EQUATION(position.y);
APPLY_EQUATION(size.x);
APPLY_EQUATION(size.y);
return r;
}
case Variant::RECT2I: {
Rect2i i = p_initial_val;
Rect2i d = p_delta_val;
Rect2i r;
APPLY_EQUATION(position.x);
APPLY_EQUATION(position.y);
APPLY_EQUATION(size.x);
APPLY_EQUATION(size.y);
return r;
}
case Variant::VECTOR3: {
Vector3 i = p_initial_val;
Vector3 d = p_delta_val;
Vector3 r;
APPLY_EQUATION(x);
APPLY_EQUATION(y);
APPLY_EQUATION(z);
return r;
}
case Variant::VECTOR3I: {
Vector3i i = p_initial_val;
Vector3i d = p_delta_val;
Vector3i r;
APPLY_EQUATION(x);
APPLY_EQUATION(y);
APPLY_EQUATION(z);
return r;
}
case Variant::TRANSFORM2D: {
Transform2D i = p_initial_val;
Transform2D d = p_delta_val;
Transform2D r;
APPLY_EQUATION(elements[0][0]);
APPLY_EQUATION(elements[0][1]);
APPLY_EQUATION(elements[1][0]);
APPLY_EQUATION(elements[1][1]);
APPLY_EQUATION(elements[2][0]);
APPLY_EQUATION(elements[2][1]);
return r;
}
case Variant::QUATERNION: {
Quaternion i = p_initial_val;
Quaternion d = p_delta_val;
Quaternion r;
APPLY_EQUATION(x);
APPLY_EQUATION(y);
APPLY_EQUATION(z);
APPLY_EQUATION(w);
return r;
}
case Variant::AABB: {
AABB i = p_initial_val;
AABB d = p_delta_val;
AABB r;
APPLY_EQUATION(position.x);
APPLY_EQUATION(position.y);
APPLY_EQUATION(position.z);
APPLY_EQUATION(size.x);
APPLY_EQUATION(size.y);
APPLY_EQUATION(size.z);
return r;
}
case Variant::BASIS: {
Basis i = p_initial_val;
Basis d = p_delta_val;
Basis r;
APPLY_EQUATION(elements[0][0]);
APPLY_EQUATION(elements[0][1]);
APPLY_EQUATION(elements[0][2]);
APPLY_EQUATION(elements[1][0]);
APPLY_EQUATION(elements[1][1]);
APPLY_EQUATION(elements[1][2]);
APPLY_EQUATION(elements[2][0]);
APPLY_EQUATION(elements[2][1]);
APPLY_EQUATION(elements[2][2]);
return r;
}
case Variant::TRANSFORM3D: {
Transform3D i = p_initial_val;
Transform3D d = p_delta_val;
Transform3D r;
APPLY_EQUATION(basis.elements[0][0]);
APPLY_EQUATION(basis.elements[0][1]);
APPLY_EQUATION(basis.elements[0][2]);
APPLY_EQUATION(basis.elements[1][0]);
APPLY_EQUATION(basis.elements[1][1]);
APPLY_EQUATION(basis.elements[1][2]);
APPLY_EQUATION(basis.elements[2][0]);
APPLY_EQUATION(basis.elements[2][1]);
APPLY_EQUATION(basis.elements[2][2]);
APPLY_EQUATION(origin.x);
APPLY_EQUATION(origin.y);
APPLY_EQUATION(origin.z);
return r;
}
case Variant::COLOR: {
Color i = p_initial_val;
Color d = p_delta_val;
Color r;
APPLY_EQUATION(r);
APPLY_EQUATION(g);
APPLY_EQUATION(b);
APPLY_EQUATION(a);
return r;
}
default: {
return p_initial_val;
}
};
#undef APPLY_EQUATION
}
Variant Tween::calculate_delta_value(Variant p_intial_val, Variant p_final_val) {
ERR_FAIL_COND_V_MSG(p_intial_val.get_type() != p_final_val.get_type(), p_intial_val, "Type mismatch between initial and final value: " + Variant::get_type_name(p_intial_val.get_type()) + " and " + Variant::get_type_name(p_final_val.get_type()));
switch (p_intial_val.get_type()) {
case Variant::BOOL: {
return (int)p_final_val - (int)p_intial_val;
}
case Variant::RECT2: {
Rect2 i = p_intial_val;
Rect2 f = p_final_val;
return Rect2(f.position - i.position, f.size - i.size);
}
case Variant::RECT2I: {
Rect2i i = p_intial_val;
Rect2i f = p_final_val;
return Rect2i(f.position - i.position, f.size - i.size);
}
case Variant::TRANSFORM2D: {
Transform2D i = p_intial_val;
Transform2D f = p_final_val;
return Transform2D(f.elements[0][0] - i.elements[0][0],
f.elements[0][1] - i.elements[0][1],
f.elements[1][0] - i.elements[1][0],
f.elements[1][1] - i.elements[1][1],
f.elements[2][0] - i.elements[2][0],
f.elements[2][1] - i.elements[2][1]);
}
case Variant::AABB: {
AABB i = p_intial_val;
AABB f = p_final_val;
return AABB(f.position - i.position, f.size - i.size);
}
case Variant::BASIS: {
Basis i = p_intial_val;
Basis f = p_final_val;
return Basis(f.elements[0][0] - i.elements[0][0],
f.elements[0][1] - i.elements[0][1],
f.elements[0][2] - i.elements[0][2],
f.elements[1][0] - i.elements[1][0],
f.elements[1][1] - i.elements[1][1],
f.elements[1][2] - i.elements[1][2],
f.elements[2][0] - i.elements[2][0],
f.elements[2][1] - i.elements[2][1],
f.elements[2][2] - i.elements[2][2]);
}
case Variant::TRANSFORM3D: {
Transform3D i = p_intial_val;
Transform3D f = p_final_val;
return Transform3D(f.basis.elements[0][0] - i.basis.elements[0][0],
f.basis.elements[0][1] - i.basis.elements[0][1],
f.basis.elements[0][2] - i.basis.elements[0][2],
f.basis.elements[1][0] - i.basis.elements[1][0],
f.basis.elements[1][1] - i.basis.elements[1][1],
f.basis.elements[1][2] - i.basis.elements[1][2],
f.basis.elements[2][0] - i.basis.elements[2][0],
f.basis.elements[2][1] - i.basis.elements[2][1],
f.basis.elements[2][2] - i.basis.elements[2][2],
f.origin.x - i.origin.x,
f.origin.y - i.origin.y,
f.origin.z - i.origin.z);
}
default: {
return Variant::evaluate(Variant::OP_SUBTRACT, p_final_val, p_intial_val);
}
};
}
void Tween::_bind_methods() {
ClassDB::bind_method(D_METHOD("tween_property", "object", "property", "final_val", "duration"), &Tween::tween_property);
ClassDB::bind_method(D_METHOD("tween_interval", "time"), &Tween::tween_interval);
ClassDB::bind_method(D_METHOD("tween_callback", "callback"), &Tween::tween_callback);
ClassDB::bind_method(D_METHOD("tween_method", "method", "from", "to", "duration"), &Tween::tween_method);
ClassDB::bind_method(D_METHOD("custom_step", "delta"), &Tween::custom_step);
ClassDB::bind_method(D_METHOD("stop"), &Tween::stop);
ClassDB::bind_method(D_METHOD("pause"), &Tween::pause);
ClassDB::bind_method(D_METHOD("play"), &Tween::play);
ClassDB::bind_method(D_METHOD("kill"), &Tween::kill);
ClassDB::bind_method(D_METHOD("get_total_elapsed_time"), &Tween::get_total_time);
ClassDB::bind_method(D_METHOD("is_running"), &Tween::is_running);
ClassDB::bind_method(D_METHOD("is_valid"), &Tween::is_valid);
ClassDB::bind_method(D_METHOD("bind_node", "node"), &Tween::bind_node);
ClassDB::bind_method(D_METHOD("set_process_mode", "mode"), &Tween::set_process_mode);
ClassDB::bind_method(D_METHOD("set_pause_mode", "mode"), &Tween::set_pause_mode);
ClassDB::bind_method(D_METHOD("set_parallel", "parallel"), &Tween::set_parallel, DEFVAL(true));
ClassDB::bind_method(D_METHOD("set_loops", "loops"), &Tween::set_loops, DEFVAL(0));
ClassDB::bind_method(D_METHOD("set_speed_scale", "speed"), &Tween::set_speed_scale);
ClassDB::bind_method(D_METHOD("set_trans", "trans"), &Tween::set_trans);
ClassDB::bind_method(D_METHOD("set_ease", "ease"), &Tween::set_ease);
ClassDB::bind_method(D_METHOD("parallel"), &Tween::parallel);
ClassDB::bind_method(D_METHOD("chain"), &Tween::chain);
ClassDB::bind_method(D_METHOD("interpolate_value", "initial_value", "delta_value", "elapsed_time", "duration", "trans_type", "ease_type"), &Tween::interpolate_variant);
ADD_SIGNAL(MethodInfo("step_finished", PropertyInfo(Variant::INT, "idx")));
ADD_SIGNAL(MethodInfo("loop_finished", PropertyInfo(Variant::INT, "loop_count")));
ADD_SIGNAL(MethodInfo("finished"));
BIND_ENUM_CONSTANT(TWEEN_PROCESS_PHYSICS);
BIND_ENUM_CONSTANT(TWEEN_PROCESS_IDLE);
BIND_ENUM_CONSTANT(TWEEN_PAUSE_BOUND);
BIND_ENUM_CONSTANT(TWEEN_PAUSE_STOP);
BIND_ENUM_CONSTANT(TWEEN_PAUSE_PROCESS);
BIND_ENUM_CONSTANT(TRANS_LINEAR);
BIND_ENUM_CONSTANT(TRANS_SINE);
BIND_ENUM_CONSTANT(TRANS_QUINT);
BIND_ENUM_CONSTANT(TRANS_QUART);
BIND_ENUM_CONSTANT(TRANS_QUAD);
BIND_ENUM_CONSTANT(TRANS_EXPO);
BIND_ENUM_CONSTANT(TRANS_ELASTIC);
BIND_ENUM_CONSTANT(TRANS_CUBIC);
BIND_ENUM_CONSTANT(TRANS_CIRC);
BIND_ENUM_CONSTANT(TRANS_BOUNCE);
BIND_ENUM_CONSTANT(TRANS_BACK);
BIND_ENUM_CONSTANT(EASE_IN);
BIND_ENUM_CONSTANT(EASE_OUT);
BIND_ENUM_CONSTANT(EASE_IN_OUT);
BIND_ENUM_CONSTANT(EASE_OUT_IN);
}
Ref<PropertyTweener> PropertyTweener::from(Variant p_value) {
initial_val = p_value;
do_continue = false;
return this;
}
Ref<PropertyTweener> PropertyTweener::from_current() {
do_continue = false;
return this;
}
Ref<PropertyTweener> PropertyTweener::as_relative() {
relative = true;
return this;
}
Ref<PropertyTweener> PropertyTweener::set_trans(Tween::TransitionType p_trans) {
trans_type = p_trans;
return this;
}
Ref<PropertyTweener> PropertyTweener::set_ease(Tween::EaseType p_ease) {
ease_type = p_ease;
return this;
}
Ref<PropertyTweener> PropertyTweener::set_delay(float p_delay) {
delay = p_delay;
return this;
}
void PropertyTweener::start() {
elapsed_time = 0;
finished = false;
Object *target_instance = ObjectDB::get_instance(target);
if (!target_instance) {
WARN_PRINT("Target object freed before starting, aborting Tweener.");
return;
}
if (do_continue) {
initial_val = target_instance->get_indexed(property);
}
if (relative) {
final_val = Variant::evaluate(Variant::Operator::OP_ADD, initial_val, base_final_val);
}
delta_val = tween->calculate_delta_value(initial_val, final_val);
}
bool PropertyTweener::step(float &r_delta) {
if (finished) {
// This is needed in case there's a parallel Tweener with longer duration.
return false;
}
Object *target_instance = ObjectDB::get_instance(target);
if (!target_instance) {
return false;
}
elapsed_time += r_delta;
if (elapsed_time < delay) {
r_delta = 0;
return true;
}
float time = MIN(elapsed_time - delay, duration);
if (time < duration) {
target_instance->set_indexed(property, tween->interpolate_variant(initial_val, delta_val, time, duration, trans_type, ease_type));
r_delta = 0;
return true;
} else {
target_instance->set_indexed(property, final_val);
finished = true;
r_delta = elapsed_time - delay - duration;
emit_signal(SNAME("finished"));
return false;
}
}
void PropertyTweener::set_tween(Ref<Tween> p_tween) {
tween = p_tween;
if (trans_type == Tween::TRANS_MAX) {
trans_type = tween->get_trans();
}
if (ease_type == Tween::EASE_MAX) {
ease_type = tween->get_ease();
}
}
void PropertyTweener::_bind_methods() {
ClassDB::bind_method(D_METHOD("from", "value"), &PropertyTweener::from);
ClassDB::bind_method(D_METHOD("from_current"), &PropertyTweener::from_current);
ClassDB::bind_method(D_METHOD("as_relative"), &PropertyTweener::as_relative);
ClassDB::bind_method(D_METHOD("set_trans", "trans"), &PropertyTweener::set_trans);
ClassDB::bind_method(D_METHOD("set_ease", "ease"), &PropertyTweener::set_ease);
ClassDB::bind_method(D_METHOD("set_delay", "delay"), &PropertyTweener::set_delay);
}
PropertyTweener::PropertyTweener(Object *p_target, NodePath p_property, Variant p_to, float p_duration) {
target = p_target->get_instance_id();
property = p_property.get_as_property_path().get_subnames();
initial_val = p_target->get_indexed(property);
base_final_val = p_to;
final_val = base_final_val;
duration = p_duration;
}
PropertyTweener::PropertyTweener() {
ERR_FAIL_MSG("Can't create empty PropertyTweener. Use get_tree().tween_property() or tween_property() instead.");
}
void IntervalTweener::start() {
elapsed_time = 0;
finished = false;
}
bool IntervalTweener::step(float &r_delta) {
if (finished) {
return false;
}
elapsed_time += r_delta;
if (elapsed_time < duration) {
r_delta = 0;
return true;
} else {
finished = true;
r_delta = elapsed_time - duration;
emit_signal(SNAME("finished"));
return false;
}
}
IntervalTweener::IntervalTweener(float p_time) {
duration = p_time;
}
IntervalTweener::IntervalTweener() {
ERR_FAIL_MSG("Can't create empty IntervalTweener. Use get_tree().tween_interval() instead.");
}
Ref<CallbackTweener> CallbackTweener::set_delay(float p_delay) {
delay = p_delay;
return this;
}
void CallbackTweener::start() {
elapsed_time = 0;
finished = false;
}
bool CallbackTweener::step(float &r_delta) {
if (finished) {
return false;
}
elapsed_time += r_delta;
if (elapsed_time >= delay) {
Variant result;
Callable::CallError ce;
callback.call(nullptr, 0, result, ce);
if (ce.error != Callable::CallError::CALL_OK) {
ERR_FAIL_V_MSG(false, "Error calling method from CallbackTweener: " + Variant::get_call_error_text(this, callback.get_method(), nullptr, 0, ce));
}
finished = true;
r_delta = elapsed_time - delay;
emit_signal(SNAME("finished"));
return false;
}
r_delta = 0;
return true;
}
void CallbackTweener::_bind_methods() {
ClassDB::bind_method(D_METHOD("set_delay", "delay"), &CallbackTweener::set_delay);
}
CallbackTweener::CallbackTweener(Callable p_callback) {
callback = p_callback;
}
CallbackTweener::CallbackTweener() {
ERR_FAIL_MSG("Can't create empty CallbackTweener. Use get_tree().tween_callback() instead.");
}
Ref<MethodTweener> MethodTweener::set_delay(float p_delay) {
delay = p_delay;
return this;
}
Ref<MethodTweener> MethodTweener::set_trans(Tween::TransitionType p_trans) {
trans_type = p_trans;
return this;
}
Ref<MethodTweener> MethodTweener::set_ease(Tween::EaseType p_ease) {
ease_type = p_ease;
return this;
}
void MethodTweener::start() {
elapsed_time = 0;
finished = false;
}
bool MethodTweener::step(float &r_delta) {
if (finished) {
return false;
}
elapsed_time += r_delta;
if (elapsed_time < delay) {
r_delta = 0;
return true;
}
Variant current_val;
float time = MIN(elapsed_time - delay, duration);
if (time < duration) {
current_val = tween->interpolate_variant(initial_val, delta_val, time, duration, trans_type, ease_type);
} else {
current_val = final_val;
}
const Variant **argptr = (const Variant **)alloca(sizeof(Variant *));
argptr[0] = &current_val;
Variant result;
Callable::CallError ce;
callback.call(argptr, 1, result, ce);
if (ce.error != Callable::CallError::CALL_OK) {
ERR_FAIL_V_MSG(false, "Error calling method from MethodTweener: " + Variant::get_call_error_text(this, callback.get_method(), argptr, 1, ce));
}
if (time < duration) {
r_delta = 0;
return true;
} else {
finished = true;
r_delta = elapsed_time - delay - duration;
emit_signal(SNAME("finished"));
return false;
}
}
void MethodTweener::set_tween(Ref<Tween> p_tween) {
tween = p_tween;
if (trans_type == Tween::TRANS_MAX) {
trans_type = tween->get_trans();
}
if (ease_type == Tween::EASE_MAX) {
ease_type = tween->get_ease();
}
}
void MethodTweener::_bind_methods() {
ClassDB::bind_method(D_METHOD("set_delay", "delay"), &MethodTweener::set_delay);
ClassDB::bind_method(D_METHOD("set_trans", "trans"), &MethodTweener::set_trans);
ClassDB::bind_method(D_METHOD("set_ease", "ease"), &MethodTweener::set_ease);
}
MethodTweener::MethodTweener(Callable p_callback, Variant p_from, Variant p_to, float p_duration) {
callback = p_callback;
initial_val = p_from;
delta_val = tween->calculate_delta_value(p_from, p_to);
final_val = p_to;
duration = p_duration;
}
MethodTweener::MethodTweener() {
ERR_FAIL_MSG("Can't create empty MethodTweener. Use get_tree().tween_method() instead.");
}