godot/thirdparty/bullet/Bullet3OpenCL/NarrowphaseCollision/kernels/satClipHullContacts.cl
Rémi Verschelde e12c89e8c9 bullet: Streamline bundling, remove extraneous src/ folder
Document version and how to extract sources in thirdparty/README.md.
Drop unnecessary CMake and Premake files.
Simplify SCsub, drop unused one.
2018-01-13 14:08:45 +01:00

1889 lines
55 KiB
Common Lisp

#define TRIANGLE_NUM_CONVEX_FACES 5
#pragma OPENCL EXTENSION cl_amd_printf : enable
#pragma OPENCL EXTENSION cl_khr_local_int32_base_atomics : enable
#pragma OPENCL EXTENSION cl_khr_global_int32_base_atomics : enable
#pragma OPENCL EXTENSION cl_khr_local_int32_extended_atomics : enable
#pragma OPENCL EXTENSION cl_khr_global_int32_extended_atomics : enable
#ifdef cl_ext_atomic_counters_32
#pragma OPENCL EXTENSION cl_ext_atomic_counters_32 : enable
#else
#define counter32_t volatile __global int*
#endif
#define GET_GROUP_IDX get_group_id(0)
#define GET_LOCAL_IDX get_local_id(0)
#define GET_GLOBAL_IDX get_global_id(0)
#define GET_GROUP_SIZE get_local_size(0)
#define GET_NUM_GROUPS get_num_groups(0)
#define GROUP_LDS_BARRIER barrier(CLK_LOCAL_MEM_FENCE)
#define GROUP_MEM_FENCE mem_fence(CLK_LOCAL_MEM_FENCE)
#define AtomInc(x) atom_inc(&(x))
#define AtomInc1(x, out) out = atom_inc(&(x))
#define AppendInc(x, out) out = atomic_inc(x)
#define AtomAdd(x, value) atom_add(&(x), value)
#define AtomCmpxhg(x, cmp, value) atom_cmpxchg( &(x), cmp, value )
#define AtomXhg(x, value) atom_xchg ( &(x), value )
#define max2 max
#define min2 min
typedef unsigned int u32;
#include "Bullet3Collision/NarrowPhaseCollision/shared/b3Contact4Data.h"
#include "Bullet3Collision/NarrowPhaseCollision/shared/b3ConvexPolyhedronData.h"
#include "Bullet3Collision/NarrowPhaseCollision/shared/b3Collidable.h"
#include "Bullet3Collision/NarrowPhaseCollision/shared/b3RigidBodyData.h"
#define GET_NPOINTS(x) (x).m_worldNormalOnB.w
#define SELECT_UINT4( b, a, condition ) select( b,a,condition )
#define make_float4 (float4)
#define make_float2 (float2)
#define make_uint4 (uint4)
#define make_int4 (int4)
#define make_uint2 (uint2)
#define make_int2 (int2)
__inline
float fastDiv(float numerator, float denominator)
{
return native_divide(numerator, denominator);
// return numerator/denominator;
}
__inline
float4 fastDiv4(float4 numerator, float4 denominator)
{
return native_divide(numerator, denominator);
}
__inline
float4 cross3(float4 a, float4 b)
{
return cross(a,b);
}
//#define dot3F4 dot
__inline
float dot3F4(float4 a, float4 b)
{
float4 a1 = make_float4(a.xyz,0.f);
float4 b1 = make_float4(b.xyz,0.f);
return dot(a1, b1);
}
__inline
float4 fastNormalize4(float4 v)
{
return fast_normalize(v);
}
///////////////////////////////////////
// Quaternion
///////////////////////////////////////
typedef float4 Quaternion;
__inline
Quaternion qtMul(Quaternion a, Quaternion b);
__inline
Quaternion qtNormalize(Quaternion in);
__inline
float4 qtRotate(Quaternion q, float4 vec);
__inline
Quaternion qtInvert(Quaternion q);
__inline
Quaternion qtMul(Quaternion a, Quaternion b)
{
Quaternion ans;
ans = cross3( a, b );
ans += a.w*b+b.w*a;
// ans.w = a.w*b.w - (a.x*b.x+a.y*b.y+a.z*b.z);
ans.w = a.w*b.w - dot3F4(a, b);
return ans;
}
__inline
Quaternion qtNormalize(Quaternion in)
{
return fastNormalize4(in);
// in /= length( in );
// return in;
}
__inline
float4 qtRotate(Quaternion q, float4 vec)
{
Quaternion qInv = qtInvert( q );
float4 vcpy = vec;
vcpy.w = 0.f;
float4 out = qtMul(qtMul(q,vcpy),qInv);
return out;
}
__inline
Quaternion qtInvert(Quaternion q)
{
return (Quaternion)(-q.xyz, q.w);
}
__inline
float4 qtInvRotate(const Quaternion q, float4 vec)
{
return qtRotate( qtInvert( q ), vec );
}
__inline
float4 transform(const float4* p, const float4* translation, const Quaternion* orientation)
{
return qtRotate( *orientation, *p ) + (*translation);
}
__inline
float4 normalize3(const float4 a)
{
float4 n = make_float4(a.x, a.y, a.z, 0.f);
return fastNormalize4( n );
}
__inline float4 lerp3(const float4 a,const float4 b, float t)
{
return make_float4( a.x + (b.x - a.x) * t,
a.y + (b.y - a.y) * t,
a.z + (b.z - a.z) * t,
0.f);
}
// Clips a face to the back of a plane, return the number of vertices out, stored in ppVtxOut
int clipFaceGlobal(__global const float4* pVtxIn, int numVertsIn, float4 planeNormalWS,float planeEqWS, __global float4* ppVtxOut)
{
int ve;
float ds, de;
int numVertsOut = 0;
//double-check next test
if (numVertsIn < 2)
return 0;
float4 firstVertex=pVtxIn[numVertsIn-1];
float4 endVertex = pVtxIn[0];
ds = dot3F4(planeNormalWS,firstVertex)+planeEqWS;
for (ve = 0; ve < numVertsIn; ve++)
{
endVertex=pVtxIn[ve];
de = dot3F4(planeNormalWS,endVertex)+planeEqWS;
if (ds<0)
{
if (de<0)
{
// Start < 0, end < 0, so output endVertex
ppVtxOut[numVertsOut++] = endVertex;
}
else
{
// Start < 0, end >= 0, so output intersection
ppVtxOut[numVertsOut++] = lerp3(firstVertex, endVertex,(ds * 1.f/(ds - de)) );
}
}
else
{
if (de<0)
{
// Start >= 0, end < 0 so output intersection and end
ppVtxOut[numVertsOut++] = lerp3(firstVertex, endVertex,(ds * 1.f/(ds - de)) );
ppVtxOut[numVertsOut++] = endVertex;
}
}
firstVertex = endVertex;
ds = de;
}
return numVertsOut;
}
// Clips a face to the back of a plane, return the number of vertices out, stored in ppVtxOut
int clipFace(const float4* pVtxIn, int numVertsIn, float4 planeNormalWS,float planeEqWS, float4* ppVtxOut)
{
int ve;
float ds, de;
int numVertsOut = 0;
//double-check next test
if (numVertsIn < 2)
return 0;
float4 firstVertex=pVtxIn[numVertsIn-1];
float4 endVertex = pVtxIn[0];
ds = dot3F4(planeNormalWS,firstVertex)+planeEqWS;
for (ve = 0; ve < numVertsIn; ve++)
{
endVertex=pVtxIn[ve];
de = dot3F4(planeNormalWS,endVertex)+planeEqWS;
if (ds<0)
{
if (de<0)
{
// Start < 0, end < 0, so output endVertex
ppVtxOut[numVertsOut++] = endVertex;
}
else
{
// Start < 0, end >= 0, so output intersection
ppVtxOut[numVertsOut++] = lerp3(firstVertex, endVertex,(ds * 1.f/(ds - de)) );
}
}
else
{
if (de<0)
{
// Start >= 0, end < 0 so output intersection and end
ppVtxOut[numVertsOut++] = lerp3(firstVertex, endVertex,(ds * 1.f/(ds - de)) );
ppVtxOut[numVertsOut++] = endVertex;
}
}
firstVertex = endVertex;
ds = de;
}
return numVertsOut;
}
int clipFaceAgainstHull(const float4 separatingNormal, __global const b3ConvexPolyhedronData_t* hullA,
const float4 posA, const Quaternion ornA, float4* worldVertsB1, int numWorldVertsB1,
float4* worldVertsB2, int capacityWorldVertsB2,
const float minDist, float maxDist,
__global const float4* vertices,
__global const b3GpuFace_t* faces,
__global const int* indices,
float4* contactsOut,
int contactCapacity)
{
int numContactsOut = 0;
float4* pVtxIn = worldVertsB1;
float4* pVtxOut = worldVertsB2;
int numVertsIn = numWorldVertsB1;
int numVertsOut = 0;
int closestFaceA=-1;
{
float dmin = FLT_MAX;
for(int face=0;face<hullA->m_numFaces;face++)
{
const float4 Normal = make_float4(
faces[hullA->m_faceOffset+face].m_plane.x,
faces[hullA->m_faceOffset+face].m_plane.y,
faces[hullA->m_faceOffset+face].m_plane.z,0.f);
const float4 faceANormalWS = qtRotate(ornA,Normal);
float d = dot3F4(faceANormalWS,separatingNormal);
if (d < dmin)
{
dmin = d;
closestFaceA = face;
}
}
}
if (closestFaceA<0)
return numContactsOut;
b3GpuFace_t polyA = faces[hullA->m_faceOffset+closestFaceA];
// clip polygon to back of planes of all faces of hull A that are adjacent to witness face
int numVerticesA = polyA.m_numIndices;
for(int e0=0;e0<numVerticesA;e0++)
{
const float4 a = vertices[hullA->m_vertexOffset+indices[polyA.m_indexOffset+e0]];
const float4 b = vertices[hullA->m_vertexOffset+indices[polyA.m_indexOffset+((e0+1)%numVerticesA)]];
const float4 edge0 = a - b;
const float4 WorldEdge0 = qtRotate(ornA,edge0);
float4 planeNormalA = make_float4(polyA.m_plane.x,polyA.m_plane.y,polyA.m_plane.z,0.f);
float4 worldPlaneAnormal1 = qtRotate(ornA,planeNormalA);
float4 planeNormalWS1 = -cross3(WorldEdge0,worldPlaneAnormal1);
float4 worldA1 = transform(&a,&posA,&ornA);
float planeEqWS1 = -dot3F4(worldA1,planeNormalWS1);
float4 planeNormalWS = planeNormalWS1;
float planeEqWS=planeEqWS1;
//clip face
//clipFace(*pVtxIn, *pVtxOut,planeNormalWS,planeEqWS);
numVertsOut = clipFace(pVtxIn, numVertsIn, planeNormalWS,planeEqWS, pVtxOut);
//btSwap(pVtxIn,pVtxOut);
float4* tmp = pVtxOut;
pVtxOut = pVtxIn;
pVtxIn = tmp;
numVertsIn = numVertsOut;
numVertsOut = 0;
}
// only keep points that are behind the witness face
{
float4 localPlaneNormal = make_float4(polyA.m_plane.x,polyA.m_plane.y,polyA.m_plane.z,0.f);
float localPlaneEq = polyA.m_plane.w;
float4 planeNormalWS = qtRotate(ornA,localPlaneNormal);
float planeEqWS=localPlaneEq-dot3F4(planeNormalWS,posA);
for (int i=0;i<numVertsIn;i++)
{
float depth = dot3F4(planeNormalWS,pVtxIn[i])+planeEqWS;
if (depth <=minDist)
{
depth = minDist;
}
if (depth <=maxDist)
{
float4 pointInWorld = pVtxIn[i];
//resultOut.addContactPoint(separatingNormal,point,depth);
contactsOut[numContactsOut++] = make_float4(pointInWorld.x,pointInWorld.y,pointInWorld.z,depth);
}
}
}
return numContactsOut;
}
int clipFaceAgainstHullLocalA(const float4 separatingNormal, const b3ConvexPolyhedronData_t* hullA,
const float4 posA, const Quaternion ornA, float4* worldVertsB1, int numWorldVertsB1,
float4* worldVertsB2, int capacityWorldVertsB2,
const float minDist, float maxDist,
const float4* verticesA,
const b3GpuFace_t* facesA,
const int* indicesA,
__global const float4* verticesB,
__global const b3GpuFace_t* facesB,
__global const int* indicesB,
float4* contactsOut,
int contactCapacity)
{
int numContactsOut = 0;
float4* pVtxIn = worldVertsB1;
float4* pVtxOut = worldVertsB2;
int numVertsIn = numWorldVertsB1;
int numVertsOut = 0;
int closestFaceA=-1;
{
float dmin = FLT_MAX;
for(int face=0;face<hullA->m_numFaces;face++)
{
const float4 Normal = make_float4(
facesA[hullA->m_faceOffset+face].m_plane.x,
facesA[hullA->m_faceOffset+face].m_plane.y,
facesA[hullA->m_faceOffset+face].m_plane.z,0.f);
const float4 faceANormalWS = qtRotate(ornA,Normal);
float d = dot3F4(faceANormalWS,separatingNormal);
if (d < dmin)
{
dmin = d;
closestFaceA = face;
}
}
}
if (closestFaceA<0)
return numContactsOut;
b3GpuFace_t polyA = facesA[hullA->m_faceOffset+closestFaceA];
// clip polygon to back of planes of all faces of hull A that are adjacent to witness face
int numVerticesA = polyA.m_numIndices;
for(int e0=0;e0<numVerticesA;e0++)
{
const float4 a = verticesA[hullA->m_vertexOffset+indicesA[polyA.m_indexOffset+e0]];
const float4 b = verticesA[hullA->m_vertexOffset+indicesA[polyA.m_indexOffset+((e0+1)%numVerticesA)]];
const float4 edge0 = a - b;
const float4 WorldEdge0 = qtRotate(ornA,edge0);
float4 planeNormalA = make_float4(polyA.m_plane.x,polyA.m_plane.y,polyA.m_plane.z,0.f);
float4 worldPlaneAnormal1 = qtRotate(ornA,planeNormalA);
float4 planeNormalWS1 = -cross3(WorldEdge0,worldPlaneAnormal1);
float4 worldA1 = transform(&a,&posA,&ornA);
float planeEqWS1 = -dot3F4(worldA1,planeNormalWS1);
float4 planeNormalWS = planeNormalWS1;
float planeEqWS=planeEqWS1;
//clip face
//clipFace(*pVtxIn, *pVtxOut,planeNormalWS,planeEqWS);
numVertsOut = clipFace(pVtxIn, numVertsIn, planeNormalWS,planeEqWS, pVtxOut);
//btSwap(pVtxIn,pVtxOut);
float4* tmp = pVtxOut;
pVtxOut = pVtxIn;
pVtxIn = tmp;
numVertsIn = numVertsOut;
numVertsOut = 0;
}
// only keep points that are behind the witness face
{
float4 localPlaneNormal = make_float4(polyA.m_plane.x,polyA.m_plane.y,polyA.m_plane.z,0.f);
float localPlaneEq = polyA.m_plane.w;
float4 planeNormalWS = qtRotate(ornA,localPlaneNormal);
float planeEqWS=localPlaneEq-dot3F4(planeNormalWS,posA);
for (int i=0;i<numVertsIn;i++)
{
float depth = dot3F4(planeNormalWS,pVtxIn[i])+planeEqWS;
if (depth <=minDist)
{
depth = minDist;
}
if (depth <=maxDist)
{
float4 pointInWorld = pVtxIn[i];
//resultOut.addContactPoint(separatingNormal,point,depth);
contactsOut[numContactsOut++] = make_float4(pointInWorld.x,pointInWorld.y,pointInWorld.z,depth);
}
}
}
return numContactsOut;
}
int clipHullAgainstHull(const float4 separatingNormal,
__global const b3ConvexPolyhedronData_t* hullA, __global const b3ConvexPolyhedronData_t* hullB,
const float4 posA, const Quaternion ornA,const float4 posB, const Quaternion ornB,
float4* worldVertsB1, float4* worldVertsB2, int capacityWorldVerts,
const float minDist, float maxDist,
__global const float4* vertices,
__global const b3GpuFace_t* faces,
__global const int* indices,
float4* localContactsOut,
int localContactCapacity)
{
int numContactsOut = 0;
int numWorldVertsB1= 0;
int closestFaceB=-1;
float dmax = -FLT_MAX;
{
for(int face=0;face<hullB->m_numFaces;face++)
{
const float4 Normal = make_float4(faces[hullB->m_faceOffset+face].m_plane.x,
faces[hullB->m_faceOffset+face].m_plane.y, faces[hullB->m_faceOffset+face].m_plane.z,0.f);
const float4 WorldNormal = qtRotate(ornB, Normal);
float d = dot3F4(WorldNormal,separatingNormal);
if (d > dmax)
{
dmax = d;
closestFaceB = face;
}
}
}
{
const b3GpuFace_t polyB = faces[hullB->m_faceOffset+closestFaceB];
const int numVertices = polyB.m_numIndices;
for(int e0=0;e0<numVertices;e0++)
{
const float4 b = vertices[hullB->m_vertexOffset+indices[polyB.m_indexOffset+e0]];
worldVertsB1[numWorldVertsB1++] = transform(&b,&posB,&ornB);
}
}
if (closestFaceB>=0)
{
numContactsOut = clipFaceAgainstHull(separatingNormal, hullA,
posA,ornA,
worldVertsB1,numWorldVertsB1,worldVertsB2,capacityWorldVerts, minDist, maxDist,vertices,
faces,
indices,localContactsOut,localContactCapacity);
}
return numContactsOut;
}
int clipHullAgainstHullLocalA(const float4 separatingNormal,
const b3ConvexPolyhedronData_t* hullA, __global const b3ConvexPolyhedronData_t* hullB,
const float4 posA, const Quaternion ornA,const float4 posB, const Quaternion ornB,
float4* worldVertsB1, float4* worldVertsB2, int capacityWorldVerts,
const float minDist, float maxDist,
const float4* verticesA,
const b3GpuFace_t* facesA,
const int* indicesA,
__global const float4* verticesB,
__global const b3GpuFace_t* facesB,
__global const int* indicesB,
float4* localContactsOut,
int localContactCapacity)
{
int numContactsOut = 0;
int numWorldVertsB1= 0;
int closestFaceB=-1;
float dmax = -FLT_MAX;
{
for(int face=0;face<hullB->m_numFaces;face++)
{
const float4 Normal = make_float4(facesB[hullB->m_faceOffset+face].m_plane.x,
facesB[hullB->m_faceOffset+face].m_plane.y, facesB[hullB->m_faceOffset+face].m_plane.z,0.f);
const float4 WorldNormal = qtRotate(ornB, Normal);
float d = dot3F4(WorldNormal,separatingNormal);
if (d > dmax)
{
dmax = d;
closestFaceB = face;
}
}
}
{
const b3GpuFace_t polyB = facesB[hullB->m_faceOffset+closestFaceB];
const int numVertices = polyB.m_numIndices;
for(int e0=0;e0<numVertices;e0++)
{
const float4 b = verticesB[hullB->m_vertexOffset+indicesB[polyB.m_indexOffset+e0]];
worldVertsB1[numWorldVertsB1++] = transform(&b,&posB,&ornB);
}
}
if (closestFaceB>=0)
{
numContactsOut = clipFaceAgainstHullLocalA(separatingNormal, hullA,
posA,ornA,
worldVertsB1,numWorldVertsB1,worldVertsB2,capacityWorldVerts, minDist, maxDist,
verticesA,facesA,indicesA,
verticesB,facesB,indicesB,
localContactsOut,localContactCapacity);
}
return numContactsOut;
}
#define PARALLEL_SUM(v, n) for(int j=1; j<n; j++) v[0] += v[j];
#define PARALLEL_DO(execution, n) for(int ie=0; ie<n; ie++){execution;}
#define REDUCE_MAX(v, n) {int i=0;\
for(int offset=0; offset<n; offset++) v[i] = (v[i].y > v[i+offset].y)? v[i]: v[i+offset]; }
#define REDUCE_MIN(v, n) {int i=0;\
for(int offset=0; offset<n; offset++) v[i] = (v[i].y < v[i+offset].y)? v[i]: v[i+offset]; }
int extractManifoldSequentialGlobal(__global const float4* p, int nPoints, float4 nearNormal, int4* contactIdx)
{
if( nPoints == 0 )
return 0;
if (nPoints <=4)
return nPoints;
if (nPoints >64)
nPoints = 64;
float4 center = make_float4(0.f);
{
for (int i=0;i<nPoints;i++)
center += p[i];
center /= (float)nPoints;
}
// sample 4 directions
float4 aVector = p[0] - center;
float4 u = cross3( nearNormal, aVector );
float4 v = cross3( nearNormal, u );
u = normalize3( u );
v = normalize3( v );
//keep point with deepest penetration
float minW= FLT_MAX;
int minIndex=-1;
float4 maxDots;
maxDots.x = FLT_MIN;
maxDots.y = FLT_MIN;
maxDots.z = FLT_MIN;
maxDots.w = FLT_MIN;
// idx, distance
for(int ie = 0; ie<nPoints; ie++ )
{
if (p[ie].w<minW)
{
minW = p[ie].w;
minIndex=ie;
}
float f;
float4 r = p[ie]-center;
f = dot3F4( u, r );
if (f<maxDots.x)
{
maxDots.x = f;
contactIdx[0].x = ie;
}
f = dot3F4( -u, r );
if (f<maxDots.y)
{
maxDots.y = f;
contactIdx[0].y = ie;
}
f = dot3F4( v, r );
if (f<maxDots.z)
{
maxDots.z = f;
contactIdx[0].z = ie;
}
f = dot3F4( -v, r );
if (f<maxDots.w)
{
maxDots.w = f;
contactIdx[0].w = ie;
}
}
if (contactIdx[0].x != minIndex && contactIdx[0].y != minIndex && contactIdx[0].z != minIndex && contactIdx[0].w != minIndex)
{
//replace the first contact with minimum (todo: replace contact with least penetration)
contactIdx[0].x = minIndex;
}
return 4;
}
int extractManifoldSequentialGlobalFake(__global const float4* p, int nPoints, float4 nearNormal, int* contactIdx)
{
contactIdx[0] = 0;
contactIdx[1] = 1;
contactIdx[2] = 2;
contactIdx[3] = 3;
if( nPoints == 0 ) return 0;
nPoints = min2( nPoints, 4 );
return nPoints;
}
int extractManifoldSequential(const float4* p, int nPoints, float4 nearNormal, int* contactIdx)
{
if( nPoints == 0 ) return 0;
nPoints = min2( nPoints, 64 );
float4 center = make_float4(0.f);
{
float4 v[64];
for (int i=0;i<nPoints;i++)
v[i] = p[i];
//memcpy( v, p, nPoints*sizeof(float4) );
PARALLEL_SUM( v, nPoints );
center = v[0]/(float)nPoints;
}
{ // sample 4 directions
if( nPoints < 4 )
{
for(int i=0; i<nPoints; i++)
contactIdx[i] = i;
return nPoints;
}
float4 aVector = p[0] - center;
float4 u = cross3( nearNormal, aVector );
float4 v = cross3( nearNormal, u );
u = normalize3( u );
v = normalize3( v );
int idx[4];
float2 max00 = make_float2(0,FLT_MAX);
{
// idx, distance
{
{
int4 a[64];
for(int ie = 0; ie<nPoints; ie++ )
{
float f;
float4 r = p[ie]-center;
f = dot3F4( u, r );
a[ie].x = ((*(u32*)&f) & 0xffffff00) | (0xff & ie);
f = dot3F4( -u, r );
a[ie].y = ((*(u32*)&f) & 0xffffff00) | (0xff & ie);
f = dot3F4( v, r );
a[ie].z = ((*(u32*)&f) & 0xffffff00) | (0xff & ie);
f = dot3F4( -v, r );
a[ie].w = ((*(u32*)&f) & 0xffffff00) | (0xff & ie);
}
for(int ie=0; ie<nPoints; ie++)
{
a[0].x = (a[0].x > a[ie].x )? a[0].x: a[ie].x;
a[0].y = (a[0].y > a[ie].y )? a[0].y: a[ie].y;
a[0].z = (a[0].z > a[ie].z )? a[0].z: a[ie].z;
a[0].w = (a[0].w > a[ie].w )? a[0].w: a[ie].w;
}
idx[0] = (int)a[0].x & 0xff;
idx[1] = (int)a[0].y & 0xff;
idx[2] = (int)a[0].z & 0xff;
idx[3] = (int)a[0].w & 0xff;
}
}
{
float2 h[64];
PARALLEL_DO( h[ie] = make_float2((float)ie, p[ie].w), nPoints );
REDUCE_MIN( h, nPoints );
max00 = h[0];
}
}
contactIdx[0] = idx[0];
contactIdx[1] = idx[1];
contactIdx[2] = idx[2];
contactIdx[3] = idx[3];
return 4;
}
}
__kernel void extractManifoldAndAddContactKernel(__global const int4* pairs,
__global const b3RigidBodyData_t* rigidBodies,
__global const float4* closestPointsWorld,
__global const float4* separatingNormalsWorld,
__global const int* contactCounts,
__global const int* contactOffsets,
__global struct b3Contact4Data* restrict contactsOut,
counter32_t nContactsOut,
int contactCapacity,
int numPairs,
int pairIndex
)
{
int idx = get_global_id(0);
if (idx<numPairs)
{
float4 normal = separatingNormalsWorld[idx];
int nPoints = contactCounts[idx];
__global const float4* pointsIn = &closestPointsWorld[contactOffsets[idx]];
float4 localPoints[64];
for (int i=0;i<nPoints;i++)
{
localPoints[i] = pointsIn[i];
}
int contactIdx[4];// = {-1,-1,-1,-1};
contactIdx[0] = -1;
contactIdx[1] = -1;
contactIdx[2] = -1;
contactIdx[3] = -1;
int nContacts = extractManifoldSequential(localPoints, nPoints, normal, contactIdx);
int dstIdx;
AppendInc( nContactsOut, dstIdx );
if (dstIdx<contactCapacity)
{
__global struct b3Contact4Data* c = contactsOut + dstIdx;
c->m_worldNormalOnB = -normal;
c->m_restituitionCoeffCmp = (0.f*0xffff);c->m_frictionCoeffCmp = (0.7f*0xffff);
c->m_batchIdx = idx;
int bodyA = pairs[pairIndex].x;
int bodyB = pairs[pairIndex].y;
c->m_bodyAPtrAndSignBit = rigidBodies[bodyA].m_invMass==0 ? -bodyA:bodyA;
c->m_bodyBPtrAndSignBit = rigidBodies[bodyB].m_invMass==0 ? -bodyB:bodyB;
c->m_childIndexA = -1;
c->m_childIndexB = -1;
for (int i=0;i<nContacts;i++)
{
c->m_worldPosB[i] = localPoints[contactIdx[i]];
}
GET_NPOINTS(*c) = nContacts;
}
}
}
void trInverse(float4 translationIn, Quaternion orientationIn,
float4* translationOut, Quaternion* orientationOut)
{
*orientationOut = qtInvert(orientationIn);
*translationOut = qtRotate(*orientationOut, -translationIn);
}
void trMul(float4 translationA, Quaternion orientationA,
float4 translationB, Quaternion orientationB,
float4* translationOut, Quaternion* orientationOut)
{
*orientationOut = qtMul(orientationA,orientationB);
*translationOut = transform(&translationB,&translationA,&orientationA);
}
__kernel void clipHullHullKernel( __global int4* pairs,
__global const b3RigidBodyData_t* rigidBodies,
__global const b3Collidable_t* collidables,
__global const b3ConvexPolyhedronData_t* convexShapes,
__global const float4* vertices,
__global const float4* uniqueEdges,
__global const b3GpuFace_t* faces,
__global const int* indices,
__global const float4* separatingNormals,
__global const int* hasSeparatingAxis,
__global struct b3Contact4Data* restrict globalContactsOut,
counter32_t nGlobalContactsOut,
int numPairs,
int contactCapacity)
{
int i = get_global_id(0);
int pairIndex = i;
float4 worldVertsB1[64];
float4 worldVertsB2[64];
int capacityWorldVerts = 64;
float4 localContactsOut[64];
int localContactCapacity=64;
float minDist = -1e30f;
float maxDist = 0.02f;
if (i<numPairs)
{
int bodyIndexA = pairs[i].x;
int bodyIndexB = pairs[i].y;
int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx;
int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx;
if (hasSeparatingAxis[i])
{
int shapeIndexA = collidables[collidableIndexA].m_shapeIndex;
int shapeIndexB = collidables[collidableIndexB].m_shapeIndex;
int numLocalContactsOut = clipHullAgainstHull(separatingNormals[i],
&convexShapes[shapeIndexA], &convexShapes[shapeIndexB],
rigidBodies[bodyIndexA].m_pos,rigidBodies[bodyIndexA].m_quat,
rigidBodies[bodyIndexB].m_pos,rigidBodies[bodyIndexB].m_quat,
worldVertsB1,worldVertsB2,capacityWorldVerts,
minDist, maxDist,
vertices,faces,indices,
localContactsOut,localContactCapacity);
if (numLocalContactsOut>0)
{
float4 normal = -separatingNormals[i];
int nPoints = numLocalContactsOut;
float4* pointsIn = localContactsOut;
int contactIdx[4];// = {-1,-1,-1,-1};
contactIdx[0] = -1;
contactIdx[1] = -1;
contactIdx[2] = -1;
contactIdx[3] = -1;
int nReducedContacts = extractManifoldSequential(pointsIn, nPoints, normal, contactIdx);
int mprContactIndex = pairs[pairIndex].z;
int dstIdx = mprContactIndex;
if (dstIdx<0)
{
AppendInc( nGlobalContactsOut, dstIdx );
}
if (dstIdx<contactCapacity)
{
pairs[pairIndex].z = dstIdx;
__global struct b3Contact4Data* c = globalContactsOut+ dstIdx;
c->m_worldNormalOnB = -normal;
c->m_restituitionCoeffCmp = (0.f*0xffff);c->m_frictionCoeffCmp = (0.7f*0xffff);
c->m_batchIdx = pairIndex;
int bodyA = pairs[pairIndex].x;
int bodyB = pairs[pairIndex].y;
c->m_bodyAPtrAndSignBit = rigidBodies[bodyA].m_invMass==0?-bodyA:bodyA;
c->m_bodyBPtrAndSignBit = rigidBodies[bodyB].m_invMass==0?-bodyB:bodyB;
c->m_childIndexA = -1;
c->m_childIndexB = -1;
for (int i=0;i<nReducedContacts;i++)
{
//this condition means: overwrite contact point, unless at index i==0 we have a valid 'mpr' contact
if (i>0||(mprContactIndex<0))
{
c->m_worldPosB[i] = pointsIn[contactIdx[i]];
}
}
GET_NPOINTS(*c) = nReducedContacts;
}
}// if (numContactsOut>0)
}// if (hasSeparatingAxis[i])
}// if (i<numPairs)
}
__kernel void clipCompoundsHullHullKernel( __global const int4* gpuCompoundPairs,
__global const b3RigidBodyData_t* rigidBodies,
__global const b3Collidable_t* collidables,
__global const b3ConvexPolyhedronData_t* convexShapes,
__global const float4* vertices,
__global const float4* uniqueEdges,
__global const b3GpuFace_t* faces,
__global const int* indices,
__global const b3GpuChildShape_t* gpuChildShapes,
__global const float4* gpuCompoundSepNormalsOut,
__global const int* gpuHasCompoundSepNormalsOut,
__global struct b3Contact4Data* restrict globalContactsOut,
counter32_t nGlobalContactsOut,
int numCompoundPairs, int maxContactCapacity)
{
int i = get_global_id(0);
int pairIndex = i;
float4 worldVertsB1[64];
float4 worldVertsB2[64];
int capacityWorldVerts = 64;
float4 localContactsOut[64];
int localContactCapacity=64;
float minDist = -1e30f;
float maxDist = 0.02f;
if (i<numCompoundPairs)
{
if (gpuHasCompoundSepNormalsOut[i])
{
int bodyIndexA = gpuCompoundPairs[i].x;
int bodyIndexB = gpuCompoundPairs[i].y;
int childShapeIndexA = gpuCompoundPairs[i].z;
int childShapeIndexB = gpuCompoundPairs[i].w;
int collidableIndexA = -1;
int collidableIndexB = -1;
float4 ornA = rigidBodies[bodyIndexA].m_quat;
float4 posA = rigidBodies[bodyIndexA].m_pos;
float4 ornB = rigidBodies[bodyIndexB].m_quat;
float4 posB = rigidBodies[bodyIndexB].m_pos;
if (childShapeIndexA >= 0)
{
collidableIndexA = gpuChildShapes[childShapeIndexA].m_shapeIndex;
float4 childPosA = gpuChildShapes[childShapeIndexA].m_childPosition;
float4 childOrnA = gpuChildShapes[childShapeIndexA].m_childOrientation;
float4 newPosA = qtRotate(ornA,childPosA)+posA;
float4 newOrnA = qtMul(ornA,childOrnA);
posA = newPosA;
ornA = newOrnA;
} else
{
collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx;
}
if (childShapeIndexB>=0)
{
collidableIndexB = gpuChildShapes[childShapeIndexB].m_shapeIndex;
float4 childPosB = gpuChildShapes[childShapeIndexB].m_childPosition;
float4 childOrnB = gpuChildShapes[childShapeIndexB].m_childOrientation;
float4 newPosB = transform(&childPosB,&posB,&ornB);
float4 newOrnB = qtMul(ornB,childOrnB);
posB = newPosB;
ornB = newOrnB;
} else
{
collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx;
}
int shapeIndexA = collidables[collidableIndexA].m_shapeIndex;
int shapeIndexB = collidables[collidableIndexB].m_shapeIndex;
int numLocalContactsOut = clipHullAgainstHull(gpuCompoundSepNormalsOut[i],
&convexShapes[shapeIndexA], &convexShapes[shapeIndexB],
posA,ornA,
posB,ornB,
worldVertsB1,worldVertsB2,capacityWorldVerts,
minDist, maxDist,
vertices,faces,indices,
localContactsOut,localContactCapacity);
if (numLocalContactsOut>0)
{
float4 normal = -gpuCompoundSepNormalsOut[i];
int nPoints = numLocalContactsOut;
float4* pointsIn = localContactsOut;
int contactIdx[4];// = {-1,-1,-1,-1};
contactIdx[0] = -1;
contactIdx[1] = -1;
contactIdx[2] = -1;
contactIdx[3] = -1;
int nReducedContacts = extractManifoldSequential(pointsIn, nPoints, normal, contactIdx);
int dstIdx;
AppendInc( nGlobalContactsOut, dstIdx );
if ((dstIdx+nReducedContacts) < maxContactCapacity)
{
__global struct b3Contact4Data* c = globalContactsOut+ dstIdx;
c->m_worldNormalOnB = -normal;
c->m_restituitionCoeffCmp = (0.f*0xffff);c->m_frictionCoeffCmp = (0.7f*0xffff);
c->m_batchIdx = pairIndex;
int bodyA = gpuCompoundPairs[pairIndex].x;
int bodyB = gpuCompoundPairs[pairIndex].y;
c->m_bodyAPtrAndSignBit = rigidBodies[bodyA].m_invMass==0?-bodyA:bodyA;
c->m_bodyBPtrAndSignBit = rigidBodies[bodyB].m_invMass==0?-bodyB:bodyB;
c->m_childIndexA = childShapeIndexA;
c->m_childIndexB = childShapeIndexB;
for (int i=0;i<nReducedContacts;i++)
{
c->m_worldPosB[i] = pointsIn[contactIdx[i]];
}
GET_NPOINTS(*c) = nReducedContacts;
}
}// if (numContactsOut>0)
}// if (gpuHasCompoundSepNormalsOut[i])
}// if (i<numCompoundPairs)
}
__kernel void sphereSphereCollisionKernel( __global const int4* pairs,
__global const b3RigidBodyData_t* rigidBodies,
__global const b3Collidable_t* collidables,
__global const float4* separatingNormals,
__global const int* hasSeparatingAxis,
__global struct b3Contact4Data* restrict globalContactsOut,
counter32_t nGlobalContactsOut,
int contactCapacity,
int numPairs)
{
int i = get_global_id(0);
int pairIndex = i;
if (i<numPairs)
{
int bodyIndexA = pairs[i].x;
int bodyIndexB = pairs[i].y;
int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx;
int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx;
if (collidables[collidableIndexA].m_shapeType == SHAPE_SPHERE &&
collidables[collidableIndexB].m_shapeType == SHAPE_SPHERE)
{
//sphere-sphere
float radiusA = collidables[collidableIndexA].m_radius;
float radiusB = collidables[collidableIndexB].m_radius;
float4 posA = rigidBodies[bodyIndexA].m_pos;
float4 posB = rigidBodies[bodyIndexB].m_pos;
float4 diff = posA-posB;
float len = length(diff);
///iff distance positive, don't generate a new contact
if ( len <= (radiusA+radiusB))
{
///distance (negative means penetration)
float dist = len - (radiusA+radiusB);
float4 normalOnSurfaceB = make_float4(1.f,0.f,0.f,0.f);
if (len > 0.00001)
{
normalOnSurfaceB = diff / len;
}
float4 contactPosB = posB + normalOnSurfaceB*radiusB;
contactPosB.w = dist;
int dstIdx;
AppendInc( nGlobalContactsOut, dstIdx );
if (dstIdx < contactCapacity)
{
__global struct b3Contact4Data* c = &globalContactsOut[dstIdx];
c->m_worldNormalOnB = -normalOnSurfaceB;
c->m_restituitionCoeffCmp = (0.f*0xffff);c->m_frictionCoeffCmp = (0.7f*0xffff);
c->m_batchIdx = pairIndex;
int bodyA = pairs[pairIndex].x;
int bodyB = pairs[pairIndex].y;
c->m_bodyAPtrAndSignBit = rigidBodies[bodyA].m_invMass==0?-bodyA:bodyA;
c->m_bodyBPtrAndSignBit = rigidBodies[bodyB].m_invMass==0?-bodyB:bodyB;
c->m_worldPosB[0] = contactPosB;
c->m_childIndexA = -1;
c->m_childIndexB = -1;
GET_NPOINTS(*c) = 1;
}//if (dstIdx < numPairs)
}//if ( len <= (radiusA+radiusB))
}//SHAPE_SPHERE SHAPE_SPHERE
}//if (i<numPairs)
}
__kernel void clipHullHullConcaveConvexKernel( __global int4* concavePairsIn,
__global const b3RigidBodyData_t* rigidBodies,
__global const b3Collidable_t* collidables,
__global const b3ConvexPolyhedronData_t* convexShapes,
__global const float4* vertices,
__global const float4* uniqueEdges,
__global const b3GpuFace_t* faces,
__global const int* indices,
__global const b3GpuChildShape_t* gpuChildShapes,
__global const float4* separatingNormals,
__global struct b3Contact4Data* restrict globalContactsOut,
counter32_t nGlobalContactsOut,
int contactCapacity,
int numConcavePairs)
{
int i = get_global_id(0);
int pairIndex = i;
float4 worldVertsB1[64];
float4 worldVertsB2[64];
int capacityWorldVerts = 64;
float4 localContactsOut[64];
int localContactCapacity=64;
float minDist = -1e30f;
float maxDist = 0.02f;
if (i<numConcavePairs)
{
//negative value means that the pair is invalid
if (concavePairsIn[i].w<0)
return;
int bodyIndexA = concavePairsIn[i].x;
int bodyIndexB = concavePairsIn[i].y;
int f = concavePairsIn[i].z;
int childShapeIndexA = f;
int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx;
int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx;
int shapeIndexA = collidables[collidableIndexA].m_shapeIndex;
int shapeIndexB = collidables[collidableIndexB].m_shapeIndex;
///////////////////////////////////////////////////////////////
bool overlap = false;
b3ConvexPolyhedronData_t convexPolyhedronA;
//add 3 vertices of the triangle
convexPolyhedronA.m_numVertices = 3;
convexPolyhedronA.m_vertexOffset = 0;
float4 localCenter = make_float4(0.f,0.f,0.f,0.f);
b3GpuFace_t face = faces[convexShapes[shapeIndexA].m_faceOffset+f];
float4 verticesA[3];
for (int i=0;i<3;i++)
{
int index = indices[face.m_indexOffset+i];
float4 vert = vertices[convexShapes[shapeIndexA].m_vertexOffset+index];
verticesA[i] = vert;
localCenter += vert;
}
float dmin = FLT_MAX;
int localCC=0;
//a triangle has 3 unique edges
convexPolyhedronA.m_numUniqueEdges = 3;
convexPolyhedronA.m_uniqueEdgesOffset = 0;
float4 uniqueEdgesA[3];
uniqueEdgesA[0] = (verticesA[1]-verticesA[0]);
uniqueEdgesA[1] = (verticesA[2]-verticesA[1]);
uniqueEdgesA[2] = (verticesA[0]-verticesA[2]);
convexPolyhedronA.m_faceOffset = 0;
float4 normal = make_float4(face.m_plane.x,face.m_plane.y,face.m_plane.z,0.f);
b3GpuFace_t facesA[TRIANGLE_NUM_CONVEX_FACES];
int indicesA[3+3+2+2+2];
int curUsedIndices=0;
int fidx=0;
//front size of triangle
{
facesA[fidx].m_indexOffset=curUsedIndices;
indicesA[0] = 0;
indicesA[1] = 1;
indicesA[2] = 2;
curUsedIndices+=3;
float c = face.m_plane.w;
facesA[fidx].m_plane.x = normal.x;
facesA[fidx].m_plane.y = normal.y;
facesA[fidx].m_plane.z = normal.z;
facesA[fidx].m_plane.w = c;
facesA[fidx].m_numIndices=3;
}
fidx++;
//back size of triangle
{
facesA[fidx].m_indexOffset=curUsedIndices;
indicesA[3]=2;
indicesA[4]=1;
indicesA[5]=0;
curUsedIndices+=3;
float c = dot3F4(normal,verticesA[0]);
float c1 = -face.m_plane.w;
facesA[fidx].m_plane.x = -normal.x;
facesA[fidx].m_plane.y = -normal.y;
facesA[fidx].m_plane.z = -normal.z;
facesA[fidx].m_plane.w = c;
facesA[fidx].m_numIndices=3;
}
fidx++;
bool addEdgePlanes = true;
if (addEdgePlanes)
{
int numVertices=3;
int prevVertex = numVertices-1;
for (int i=0;i<numVertices;i++)
{
float4 v0 = verticesA[i];
float4 v1 = verticesA[prevVertex];
float4 edgeNormal = normalize(cross(normal,v1-v0));
float c = -dot3F4(edgeNormal,v0);
facesA[fidx].m_numIndices = 2;
facesA[fidx].m_indexOffset=curUsedIndices;
indicesA[curUsedIndices++]=i;
indicesA[curUsedIndices++]=prevVertex;
facesA[fidx].m_plane.x = edgeNormal.x;
facesA[fidx].m_plane.y = edgeNormal.y;
facesA[fidx].m_plane.z = edgeNormal.z;
facesA[fidx].m_plane.w = c;
fidx++;
prevVertex = i;
}
}
convexPolyhedronA.m_numFaces = TRIANGLE_NUM_CONVEX_FACES;
convexPolyhedronA.m_localCenter = localCenter*(1.f/3.f);
float4 posA = rigidBodies[bodyIndexA].m_pos;
posA.w = 0.f;
float4 posB = rigidBodies[bodyIndexB].m_pos;
posB.w = 0.f;
float4 ornA = rigidBodies[bodyIndexA].m_quat;
float4 ornB =rigidBodies[bodyIndexB].m_quat;
float4 sepAxis = separatingNormals[i];
int shapeTypeB = collidables[collidableIndexB].m_shapeType;
int childShapeIndexB =-1;
if (shapeTypeB==SHAPE_COMPOUND_OF_CONVEX_HULLS)
{
///////////////////
///compound shape support
childShapeIndexB = concavePairsIn[pairIndex].w;
int childColIndexB = gpuChildShapes[childShapeIndexB].m_shapeIndex;
shapeIndexB = collidables[childColIndexB].m_shapeIndex;
float4 childPosB = gpuChildShapes[childShapeIndexB].m_childPosition;
float4 childOrnB = gpuChildShapes[childShapeIndexB].m_childOrientation;
float4 newPosB = transform(&childPosB,&posB,&ornB);
float4 newOrnB = qtMul(ornB,childOrnB);
posB = newPosB;
ornB = newOrnB;
}
////////////////////////////////////////
int numLocalContactsOut = clipHullAgainstHullLocalA(sepAxis,
&convexPolyhedronA, &convexShapes[shapeIndexB],
posA,ornA,
posB,ornB,
worldVertsB1,worldVertsB2,capacityWorldVerts,
minDist, maxDist,
&verticesA,&facesA,&indicesA,
vertices,faces,indices,
localContactsOut,localContactCapacity);
if (numLocalContactsOut>0)
{
float4 normal = -separatingNormals[i];
int nPoints = numLocalContactsOut;
float4* pointsIn = localContactsOut;
int contactIdx[4];// = {-1,-1,-1,-1};
contactIdx[0] = -1;
contactIdx[1] = -1;
contactIdx[2] = -1;
contactIdx[3] = -1;
int nReducedContacts = extractManifoldSequential(pointsIn, nPoints, normal, contactIdx);
int dstIdx;
AppendInc( nGlobalContactsOut, dstIdx );
if (dstIdx<contactCapacity)
{
__global struct b3Contact4Data* c = globalContactsOut+ dstIdx;
c->m_worldNormalOnB = -normal;
c->m_restituitionCoeffCmp = (0.f*0xffff);c->m_frictionCoeffCmp = (0.7f*0xffff);
c->m_batchIdx = pairIndex;
int bodyA = concavePairsIn[pairIndex].x;
int bodyB = concavePairsIn[pairIndex].y;
c->m_bodyAPtrAndSignBit = rigidBodies[bodyA].m_invMass==0?-bodyA:bodyA;
c->m_bodyBPtrAndSignBit = rigidBodies[bodyB].m_invMass==0?-bodyB:bodyB;
c->m_childIndexA = childShapeIndexA;
c->m_childIndexB = childShapeIndexB;
for (int i=0;i<nReducedContacts;i++)
{
c->m_worldPosB[i] = pointsIn[contactIdx[i]];
}
GET_NPOINTS(*c) = nReducedContacts;
}
}// if (numContactsOut>0)
}// if (i<numPairs)
}
int findClippingFaces(const float4 separatingNormal,
__global const b3ConvexPolyhedronData_t* hullA, __global const b3ConvexPolyhedronData_t* hullB,
const float4 posA, const Quaternion ornA,const float4 posB, const Quaternion ornB,
__global float4* worldVertsA1,
__global float4* worldNormalsA1,
__global float4* worldVertsB1,
int capacityWorldVerts,
const float minDist, float maxDist,
__global const float4* vertices,
__global const b3GpuFace_t* faces,
__global const int* indices,
__global int4* clippingFaces, int pairIndex)
{
int numContactsOut = 0;
int numWorldVertsB1= 0;
int closestFaceB=-1;
float dmax = -FLT_MAX;
{
for(int face=0;face<hullB->m_numFaces;face++)
{
const float4 Normal = make_float4(faces[hullB->m_faceOffset+face].m_plane.x,
faces[hullB->m_faceOffset+face].m_plane.y, faces[hullB->m_faceOffset+face].m_plane.z,0.f);
const float4 WorldNormal = qtRotate(ornB, Normal);
float d = dot3F4(WorldNormal,separatingNormal);
if (d > dmax)
{
dmax = d;
closestFaceB = face;
}
}
}
{
const b3GpuFace_t polyB = faces[hullB->m_faceOffset+closestFaceB];
const int numVertices = polyB.m_numIndices;
for(int e0=0;e0<numVertices;e0++)
{
const float4 b = vertices[hullB->m_vertexOffset+indices[polyB.m_indexOffset+e0]];
worldVertsB1[pairIndex*capacityWorldVerts+numWorldVertsB1++] = transform(&b,&posB,&ornB);
}
}
int closestFaceA=-1;
{
float dmin = FLT_MAX;
for(int face=0;face<hullA->m_numFaces;face++)
{
const float4 Normal = make_float4(
faces[hullA->m_faceOffset+face].m_plane.x,
faces[hullA->m_faceOffset+face].m_plane.y,
faces[hullA->m_faceOffset+face].m_plane.z,
0.f);
const float4 faceANormalWS = qtRotate(ornA,Normal);
float d = dot3F4(faceANormalWS,separatingNormal);
if (d < dmin)
{
dmin = d;
closestFaceA = face;
worldNormalsA1[pairIndex] = faceANormalWS;
}
}
}
int numVerticesA = faces[hullA->m_faceOffset+closestFaceA].m_numIndices;
for(int e0=0;e0<numVerticesA;e0++)
{
const float4 a = vertices[hullA->m_vertexOffset+indices[faces[hullA->m_faceOffset+closestFaceA].m_indexOffset+e0]];
worldVertsA1[pairIndex*capacityWorldVerts+e0] = transform(&a, &posA,&ornA);
}
clippingFaces[pairIndex].x = closestFaceA;
clippingFaces[pairIndex].y = closestFaceB;
clippingFaces[pairIndex].z = numVerticesA;
clippingFaces[pairIndex].w = numWorldVertsB1;
return numContactsOut;
}
int clipFaces(__global float4* worldVertsA1,
__global float4* worldNormalsA1,
__global float4* worldVertsB1,
__global float4* worldVertsB2,
int capacityWorldVertsB2,
const float minDist, float maxDist,
__global int4* clippingFaces,
int pairIndex)
{
int numContactsOut = 0;
int closestFaceA = clippingFaces[pairIndex].x;
int closestFaceB = clippingFaces[pairIndex].y;
int numVertsInA = clippingFaces[pairIndex].z;
int numVertsInB = clippingFaces[pairIndex].w;
int numVertsOut = 0;
if (closestFaceA<0)
return numContactsOut;
__global float4* pVtxIn = &worldVertsB1[pairIndex*capacityWorldVertsB2];
__global float4* pVtxOut = &worldVertsB2[pairIndex*capacityWorldVertsB2];
// clip polygon to back of planes of all faces of hull A that are adjacent to witness face
for(int e0=0;e0<numVertsInA;e0++)
{
const float4 aw = worldVertsA1[pairIndex*capacityWorldVertsB2+e0];
const float4 bw = worldVertsA1[pairIndex*capacityWorldVertsB2+((e0+1)%numVertsInA)];
const float4 WorldEdge0 = aw - bw;
float4 worldPlaneAnormal1 = worldNormalsA1[pairIndex];
float4 planeNormalWS1 = -cross3(WorldEdge0,worldPlaneAnormal1);
float4 worldA1 = aw;
float planeEqWS1 = -dot3F4(worldA1,planeNormalWS1);
float4 planeNormalWS = planeNormalWS1;
float planeEqWS=planeEqWS1;
numVertsOut = clipFaceGlobal(pVtxIn, numVertsInB, planeNormalWS,planeEqWS, pVtxOut);
__global float4* tmp = pVtxOut;
pVtxOut = pVtxIn;
pVtxIn = tmp;
numVertsInB = numVertsOut;
numVertsOut = 0;
}
//float4 planeNormalWS = worldNormalsA1[pairIndex];
//float planeEqWS=-dot3F4(planeNormalWS,worldVertsA1[pairIndex*capacityWorldVertsB2]);
/*for (int i=0;i<numVertsInB;i++)
{
pVtxOut[i] = pVtxIn[i];
}*/
//numVertsInB=0;
float4 planeNormalWS = worldNormalsA1[pairIndex];
float planeEqWS=-dot3F4(planeNormalWS,worldVertsA1[pairIndex*capacityWorldVertsB2]);
for (int i=0;i<numVertsInB;i++)
{
float depth = dot3F4(planeNormalWS,pVtxIn[i])+planeEqWS;
if (depth <=minDist)
{
depth = minDist;
}
if (depth <=maxDist)
{
float4 pointInWorld = pVtxIn[i];
pVtxOut[numContactsOut++] = make_float4(pointInWorld.x,pointInWorld.y,pointInWorld.z,depth);
}
}
clippingFaces[pairIndex].w =numContactsOut;
return numContactsOut;
}
__kernel void findClippingFacesKernel( __global const int4* pairs,
__global const b3RigidBodyData_t* rigidBodies,
__global const b3Collidable_t* collidables,
__global const b3ConvexPolyhedronData_t* convexShapes,
__global const float4* vertices,
__global const float4* uniqueEdges,
__global const b3GpuFace_t* faces,
__global const int* indices,
__global const float4* separatingNormals,
__global const int* hasSeparatingAxis,
__global int4* clippingFacesOut,
__global float4* worldVertsA1,
__global float4* worldNormalsA1,
__global float4* worldVertsB1,
int capacityWorldVerts,
int numPairs
)
{
int i = get_global_id(0);
int pairIndex = i;
float minDist = -1e30f;
float maxDist = 0.02f;
if (i<numPairs)
{
if (hasSeparatingAxis[i])
{
int bodyIndexA = pairs[i].x;
int bodyIndexB = pairs[i].y;
int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx;
int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx;
int shapeIndexA = collidables[collidableIndexA].m_shapeIndex;
int shapeIndexB = collidables[collidableIndexB].m_shapeIndex;
int numLocalContactsOut = findClippingFaces(separatingNormals[i],
&convexShapes[shapeIndexA], &convexShapes[shapeIndexB],
rigidBodies[bodyIndexA].m_pos,rigidBodies[bodyIndexA].m_quat,
rigidBodies[bodyIndexB].m_pos,rigidBodies[bodyIndexB].m_quat,
worldVertsA1,
worldNormalsA1,
worldVertsB1,capacityWorldVerts,
minDist, maxDist,
vertices,faces,indices,
clippingFacesOut,i);
}// if (hasSeparatingAxis[i])
}// if (i<numPairs)
}
__kernel void clipFacesAndFindContactsKernel( __global const float4* separatingNormals,
__global const int* hasSeparatingAxis,
__global int4* clippingFacesOut,
__global float4* worldVertsA1,
__global float4* worldNormalsA1,
__global float4* worldVertsB1,
__global float4* worldVertsB2,
int vertexFaceCapacity,
int numPairs,
int debugMode
)
{
int i = get_global_id(0);
int pairIndex = i;
float minDist = -1e30f;
float maxDist = 0.02f;
if (i<numPairs)
{
if (hasSeparatingAxis[i])
{
// int bodyIndexA = pairs[i].x;
// int bodyIndexB = pairs[i].y;
int numLocalContactsOut = 0;
int capacityWorldVertsB2 = vertexFaceCapacity;
__global float4* pVtxIn = &worldVertsB1[pairIndex*capacityWorldVertsB2];
__global float4* pVtxOut = &worldVertsB2[pairIndex*capacityWorldVertsB2];
{
__global int4* clippingFaces = clippingFacesOut;
int closestFaceA = clippingFaces[pairIndex].x;
int closestFaceB = clippingFaces[pairIndex].y;
int numVertsInA = clippingFaces[pairIndex].z;
int numVertsInB = clippingFaces[pairIndex].w;
int numVertsOut = 0;
if (closestFaceA>=0)
{
// clip polygon to back of planes of all faces of hull A that are adjacent to witness face
for(int e0=0;e0<numVertsInA;e0++)
{
const float4 aw = worldVertsA1[pairIndex*capacityWorldVertsB2+e0];
const float4 bw = worldVertsA1[pairIndex*capacityWorldVertsB2+((e0+1)%numVertsInA)];
const float4 WorldEdge0 = aw - bw;
float4 worldPlaneAnormal1 = worldNormalsA1[pairIndex];
float4 planeNormalWS1 = -cross3(WorldEdge0,worldPlaneAnormal1);
float4 worldA1 = aw;
float planeEqWS1 = -dot3F4(worldA1,planeNormalWS1);
float4 planeNormalWS = planeNormalWS1;
float planeEqWS=planeEqWS1;
numVertsOut = clipFaceGlobal(pVtxIn, numVertsInB, planeNormalWS,planeEqWS, pVtxOut);
__global float4* tmp = pVtxOut;
pVtxOut = pVtxIn;
pVtxIn = tmp;
numVertsInB = numVertsOut;
numVertsOut = 0;
}
float4 planeNormalWS = worldNormalsA1[pairIndex];
float planeEqWS=-dot3F4(planeNormalWS,worldVertsA1[pairIndex*capacityWorldVertsB2]);
for (int i=0;i<numVertsInB;i++)
{
float depth = dot3F4(planeNormalWS,pVtxIn[i])+planeEqWS;
if (depth <=minDist)
{
depth = minDist;
}
if (depth <=maxDist)
{
float4 pointInWorld = pVtxIn[i];
pVtxOut[numLocalContactsOut++] = make_float4(pointInWorld.x,pointInWorld.y,pointInWorld.z,depth);
}
}
}
clippingFaces[pairIndex].w =numLocalContactsOut;
}
for (int i=0;i<numLocalContactsOut;i++)
pVtxIn[i] = pVtxOut[i];
}// if (hasSeparatingAxis[i])
}// if (i<numPairs)
}
__kernel void newContactReductionKernel( __global int4* pairs,
__global const b3RigidBodyData_t* rigidBodies,
__global const float4* separatingNormals,
__global const int* hasSeparatingAxis,
__global struct b3Contact4Data* globalContactsOut,
__global int4* clippingFaces,
__global float4* worldVertsB2,
volatile __global int* nGlobalContactsOut,
int vertexFaceCapacity,
int contactCapacity,
int numPairs
)
{
int i = get_global_id(0);
int pairIndex = i;
int4 contactIdx;
contactIdx=make_int4(0,1,2,3);
if (i<numPairs)
{
if (hasSeparatingAxis[i])
{
int nPoints = clippingFaces[pairIndex].w;
if (nPoints>0)
{
__global float4* pointsIn = &worldVertsB2[pairIndex*vertexFaceCapacity];
float4 normal = -separatingNormals[i];
int nReducedContacts = extractManifoldSequentialGlobal(pointsIn, nPoints, normal, &contactIdx);
int mprContactIndex = pairs[pairIndex].z;
int dstIdx = mprContactIndex;
if (dstIdx<0)
{
AppendInc( nGlobalContactsOut, dstIdx );
}
//#if 0
if (dstIdx < contactCapacity)
{
__global struct b3Contact4Data* c = &globalContactsOut[dstIdx];
c->m_worldNormalOnB = -normal;
c->m_restituitionCoeffCmp = (0.f*0xffff);c->m_frictionCoeffCmp = (0.7f*0xffff);
c->m_batchIdx = pairIndex;
int bodyA = pairs[pairIndex].x;
int bodyB = pairs[pairIndex].y;
pairs[pairIndex].w = dstIdx;
c->m_bodyAPtrAndSignBit = rigidBodies[bodyA].m_invMass==0?-bodyA:bodyA;
c->m_bodyBPtrAndSignBit = rigidBodies[bodyB].m_invMass==0?-bodyB:bodyB;
c->m_childIndexA =-1;
c->m_childIndexB =-1;
switch (nReducedContacts)
{
case 4:
c->m_worldPosB[3] = pointsIn[contactIdx.w];
case 3:
c->m_worldPosB[2] = pointsIn[contactIdx.z];
case 2:
c->m_worldPosB[1] = pointsIn[contactIdx.y];
case 1:
if (mprContactIndex<0)//test
c->m_worldPosB[0] = pointsIn[contactIdx.x];
default:
{
}
};
GET_NPOINTS(*c) = nReducedContacts;
}
//#endif
}// if (numContactsOut>0)
}// if (hasSeparatingAxis[i])
}// if (i<numPairs)
}