1066 lines
41 KiB
GLSL
1066 lines
41 KiB
GLSL
#[versions]
|
|
|
|
primary = "#define MODE_DIRECT_LIGHT";
|
|
secondary = "#define MODE_BOUNCE_LIGHT";
|
|
dilate = "#define MODE_DILATE";
|
|
unocclude = "#define MODE_UNOCCLUDE";
|
|
light_probes = "#define MODE_LIGHT_PROBES";
|
|
denoise = "#define MODE_DENOISE";
|
|
pack_coeffs = "#define MODE_PACK_L1_COEFFS";
|
|
|
|
#[compute]
|
|
|
|
#version 450
|
|
|
|
#VERSION_DEFINES
|
|
|
|
#extension GL_EXT_samplerless_texture_functions : enable
|
|
|
|
// One 2D local group focusing in one layer at a time, though all
|
|
// in parallel (no barriers) makes more sense than a 3D local group
|
|
// as this can take more advantage of the cache for each group.
|
|
|
|
#ifdef MODE_LIGHT_PROBES
|
|
|
|
layout(local_size_x = 64, local_size_y = 1, local_size_z = 1) in;
|
|
|
|
#else
|
|
|
|
layout(local_size_x = 8, local_size_y = 8, local_size_z = 1) in;
|
|
|
|
#endif
|
|
|
|
#include "lm_common_inc.glsl"
|
|
|
|
#ifdef MODE_LIGHT_PROBES
|
|
|
|
layout(set = 1, binding = 0, std430) restrict buffer LightProbeData {
|
|
vec4 data[];
|
|
}
|
|
light_probes;
|
|
|
|
layout(set = 1, binding = 1) uniform texture2DArray source_light;
|
|
layout(set = 1, binding = 2) uniform texture2D environment;
|
|
#endif
|
|
|
|
#ifdef MODE_UNOCCLUDE
|
|
|
|
layout(rgba32f, set = 1, binding = 0) uniform restrict image2DArray position;
|
|
layout(rgba32f, set = 1, binding = 1) uniform restrict readonly image2DArray unocclude;
|
|
|
|
#endif
|
|
|
|
#if defined(MODE_DIRECT_LIGHT) || defined(MODE_BOUNCE_LIGHT)
|
|
|
|
layout(rgba16f, set = 1, binding = 0) uniform restrict writeonly image2DArray dest_light;
|
|
layout(set = 1, binding = 1) uniform texture2DArray source_light;
|
|
layout(set = 1, binding = 2) uniform texture2DArray source_position;
|
|
layout(set = 1, binding = 3) uniform texture2DArray source_normal;
|
|
layout(rgba16f, set = 1, binding = 4) uniform restrict image2DArray accum_light;
|
|
|
|
#endif
|
|
|
|
#ifdef MODE_BOUNCE_LIGHT
|
|
layout(set = 1, binding = 5) uniform texture2D environment;
|
|
#endif
|
|
|
|
#if defined(MODE_DILATE) || defined(MODE_DENOISE) || defined(MODE_PACK_L1_COEFFS)
|
|
layout(rgba16f, set = 1, binding = 0) uniform restrict writeonly image2DArray dest_light;
|
|
layout(set = 1, binding = 1) uniform texture2DArray source_light;
|
|
#endif
|
|
|
|
#ifdef MODE_DENOISE
|
|
layout(set = 1, binding = 2) uniform texture2DArray source_normal;
|
|
layout(set = 1, binding = 3) uniform DenoiseParams {
|
|
float spatial_bandwidth;
|
|
float light_bandwidth;
|
|
float albedo_bandwidth;
|
|
float normal_bandwidth;
|
|
|
|
int half_search_window;
|
|
float filter_strength;
|
|
}
|
|
denoise_params;
|
|
#endif
|
|
|
|
layout(push_constant, std430) uniform Params {
|
|
uint atlas_slice;
|
|
uint ray_count;
|
|
uint ray_from;
|
|
uint ray_to;
|
|
|
|
ivec2 region_ofs;
|
|
uint probe_count;
|
|
}
|
|
params;
|
|
|
|
//check it, but also return distance and barycentric coords (for uv lookup)
|
|
bool ray_hits_triangle(vec3 from, vec3 dir, float max_dist, vec3 p0, vec3 p1, vec3 p2, out float r_distance, out vec3 r_barycentric) {
|
|
const float EPSILON = 0.00001;
|
|
const vec3 e0 = p1 - p0;
|
|
const vec3 e1 = p0 - p2;
|
|
vec3 triangle_normal = cross(e1, e0);
|
|
|
|
float n_dot_dir = dot(triangle_normal, dir);
|
|
|
|
if (abs(n_dot_dir) < EPSILON) {
|
|
return false;
|
|
}
|
|
|
|
const vec3 e2 = (p0 - from) / n_dot_dir;
|
|
const vec3 i = cross(dir, e2);
|
|
|
|
r_barycentric.y = dot(i, e1);
|
|
r_barycentric.z = dot(i, e0);
|
|
r_barycentric.x = 1.0 - (r_barycentric.z + r_barycentric.y);
|
|
r_distance = dot(triangle_normal, e2);
|
|
|
|
return (r_distance > bake_params.bias) && (r_distance < max_dist) && all(greaterThanEqual(r_barycentric, vec3(0.0)));
|
|
}
|
|
|
|
const uint RAY_MISS = 0;
|
|
const uint RAY_FRONT = 1;
|
|
const uint RAY_BACK = 2;
|
|
const uint RAY_ANY = 3;
|
|
|
|
bool ray_box_test(vec3 p_from, vec3 p_inv_dir, vec3 p_box_min, vec3 p_box_max) {
|
|
vec3 t0 = (p_box_min - p_from) * p_inv_dir;
|
|
vec3 t1 = (p_box_max - p_from) * p_inv_dir;
|
|
vec3 tmin = min(t0, t1), tmax = max(t0, t1);
|
|
return max(tmin.x, max(tmin.y, tmin.z)) <= min(tmax.x, min(tmax.y, tmax.z));
|
|
}
|
|
|
|
#if CLUSTER_SIZE > 32
|
|
#define CLUSTER_TRIANGLE_ITERATION
|
|
#endif
|
|
|
|
uint trace_ray(vec3 p_from, vec3 p_to, bool p_any_hit, out float r_distance, out vec3 r_normal, out uint r_triangle, out vec3 r_barycentric) {
|
|
// World coordinates.
|
|
vec3 rel = p_to - p_from;
|
|
float rel_len = length(rel);
|
|
vec3 dir = normalize(rel);
|
|
vec3 inv_dir = 1.0 / dir;
|
|
|
|
// Cell coordinates.
|
|
vec3 from_cell = (p_from - bake_params.to_cell_offset) * bake_params.to_cell_size;
|
|
vec3 to_cell = (p_to - bake_params.to_cell_offset) * bake_params.to_cell_size;
|
|
|
|
// Prepare DDA.
|
|
vec3 rel_cell = to_cell - from_cell;
|
|
ivec3 icell = ivec3(from_cell);
|
|
ivec3 iendcell = ivec3(to_cell);
|
|
vec3 dir_cell = normalize(rel_cell);
|
|
vec3 delta = min(abs(1.0 / dir_cell), bake_params.grid_size); // Use bake_params.grid_size as max to prevent infinity values.
|
|
ivec3 step = ivec3(sign(rel_cell));
|
|
vec3 side = (sign(rel_cell) * (vec3(icell) - from_cell) + (sign(rel_cell) * 0.5) + 0.5) * delta;
|
|
|
|
uint iters = 0;
|
|
while (all(greaterThanEqual(icell, ivec3(0))) && all(lessThan(icell, ivec3(bake_params.grid_size))) && (iters < 1000)) {
|
|
uvec2 cell_data = texelFetch(grid, icell, 0).xy;
|
|
uint triangle_count = cell_data.x;
|
|
if (triangle_count > 0) {
|
|
uint hit = RAY_MISS;
|
|
float best_distance = 1e20;
|
|
uint cluster_start = cluster_indices.data[cell_data.y * 2];
|
|
uint cell_triangle_start = cluster_indices.data[cell_data.y * 2 + 1];
|
|
uint cluster_count = (triangle_count + CLUSTER_SIZE - 1) / CLUSTER_SIZE;
|
|
uint cluster_base_index = 0;
|
|
while (cluster_base_index < cluster_count) {
|
|
// To minimize divergence, all Ray-AABB tests on the clusters contained in the cell are performed
|
|
// before checking against the triangles. We do this 32 clusters at a time and store the intersected
|
|
// clusters on each bit of the 32-bit integer.
|
|
uint cluster_test_count = min(32, cluster_count - cluster_base_index);
|
|
uint cluster_hits = 0;
|
|
for (uint i = 0; i < cluster_test_count; i++) {
|
|
uint cluster_index = cluster_start + cluster_base_index + i;
|
|
ClusterAABB cluster_aabb = cluster_aabbs.data[cluster_index];
|
|
if (ray_box_test(p_from, inv_dir, cluster_aabb.min_bounds, cluster_aabb.max_bounds)) {
|
|
cluster_hits |= (1 << i);
|
|
}
|
|
}
|
|
|
|
// Check the triangles in any of the clusters that were intersected by toggling off the bits in the
|
|
// 32-bit integer counter until no bits are left.
|
|
while (cluster_hits > 0) {
|
|
uint cluster_index = findLSB(cluster_hits);
|
|
cluster_hits &= ~(1 << cluster_index);
|
|
cluster_index += cluster_base_index;
|
|
|
|
// Do the same divergence execution trick with triangles as well.
|
|
uint triangle_base_index = 0;
|
|
#ifdef CLUSTER_TRIANGLE_ITERATION
|
|
while (triangle_base_index < triangle_count)
|
|
#endif
|
|
{
|
|
uint triangle_start_index = cell_triangle_start + cluster_index * CLUSTER_SIZE + triangle_base_index;
|
|
uint triangle_test_count = min(CLUSTER_SIZE, triangle_count - triangle_base_index);
|
|
uint triangle_hits = 0;
|
|
for (uint i = 0; i < triangle_test_count; i++) {
|
|
uint triangle_index = triangle_indices.data[triangle_start_index + i];
|
|
if (ray_box_test(p_from, inv_dir, triangles.data[triangle_index].min_bounds, triangles.data[triangle_index].max_bounds)) {
|
|
triangle_hits |= (1 << i);
|
|
}
|
|
}
|
|
|
|
while (triangle_hits > 0) {
|
|
uint cluster_triangle_index = findLSB(triangle_hits);
|
|
triangle_hits &= ~(1 << cluster_triangle_index);
|
|
cluster_triangle_index += triangle_start_index;
|
|
|
|
uint triangle_index = triangle_indices.data[cluster_triangle_index];
|
|
Triangle triangle = triangles.data[triangle_index];
|
|
|
|
// Gather the triangle vertex positions.
|
|
vec3 vtx0 = vertices.data[triangle.indices.x].position;
|
|
vec3 vtx1 = vertices.data[triangle.indices.y].position;
|
|
vec3 vtx2 = vertices.data[triangle.indices.z].position;
|
|
vec3 normal = -normalize(cross((vtx0 - vtx1), (vtx0 - vtx2)));
|
|
bool backface = dot(normal, dir) >= 0.0;
|
|
float distance;
|
|
vec3 barycentric;
|
|
if (ray_hits_triangle(p_from, dir, rel_len, vtx0, vtx1, vtx2, distance, barycentric)) {
|
|
if (p_any_hit) {
|
|
// Return early if any hit was requested.
|
|
return RAY_ANY;
|
|
}
|
|
|
|
vec3 position = p_from + dir * distance;
|
|
vec3 hit_cell = (position - bake_params.to_cell_offset) * bake_params.to_cell_size;
|
|
if (icell != ivec3(hit_cell)) {
|
|
// It's possible for the ray to hit a triangle in a position outside the bounds of the cell
|
|
// if it's large enough to cover multiple ones. The hit must be ignored if this is the case.
|
|
continue;
|
|
}
|
|
|
|
if (!backface) {
|
|
// The case of meshes having both a front and back face in the same plane is more common than
|
|
// expected, so if this is a front-face, bias it closer to the ray origin, so it always wins
|
|
// over the back-face.
|
|
distance = max(bake_params.bias, distance - bake_params.bias);
|
|
}
|
|
|
|
if (distance < best_distance) {
|
|
hit = backface ? RAY_BACK : RAY_FRONT;
|
|
best_distance = distance;
|
|
r_distance = distance;
|
|
r_normal = normal;
|
|
r_triangle = triangle_index;
|
|
r_barycentric = barycentric;
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef CLUSTER_TRIANGLE_ITERATION
|
|
triangle_base_index += CLUSTER_SIZE;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
cluster_base_index += 32;
|
|
}
|
|
|
|
if (hit != RAY_MISS) {
|
|
return hit;
|
|
}
|
|
}
|
|
|
|
if (icell == iendcell) {
|
|
break;
|
|
}
|
|
|
|
// There should be only one axis updated at a time for DDA to work properly.
|
|
bvec3 mask = bvec3(true, false, false);
|
|
float m = side.x;
|
|
if (side.y < m) {
|
|
m = side.y;
|
|
mask = bvec3(false, true, false);
|
|
}
|
|
if (side.z < m) {
|
|
mask = bvec3(false, false, true);
|
|
}
|
|
side += vec3(mask) * delta;
|
|
icell += ivec3(vec3(mask)) * step;
|
|
iters++;
|
|
}
|
|
|
|
return RAY_MISS;
|
|
}
|
|
|
|
uint trace_ray_closest_hit_triangle(vec3 p_from, vec3 p_to, out uint r_triangle, out vec3 r_barycentric) {
|
|
float distance;
|
|
vec3 normal;
|
|
return trace_ray(p_from, p_to, false, distance, normal, r_triangle, r_barycentric);
|
|
}
|
|
|
|
uint trace_ray_closest_hit_distance(vec3 p_from, vec3 p_to, out float r_distance, out vec3 r_normal) {
|
|
uint triangle;
|
|
vec3 barycentric;
|
|
return trace_ray(p_from, p_to, false, r_distance, r_normal, triangle, barycentric);
|
|
}
|
|
|
|
uint trace_ray_any_hit(vec3 p_from, vec3 p_to) {
|
|
float distance;
|
|
vec3 normal;
|
|
uint triangle;
|
|
vec3 barycentric;
|
|
return trace_ray(p_from, p_to, true, distance, normal, triangle, barycentric);
|
|
}
|
|
|
|
// https://www.reedbeta.com/blog/hash-functions-for-gpu-rendering/
|
|
uint hash(uint value) {
|
|
uint state = value * 747796405u + 2891336453u;
|
|
uint word = ((state >> ((state >> 28u) + 4u)) ^ state) * 277803737u;
|
|
return (word >> 22u) ^ word;
|
|
}
|
|
|
|
uint random_seed(ivec3 seed) {
|
|
return hash(seed.x ^ hash(seed.y ^ hash(seed.z)));
|
|
}
|
|
|
|
// generates a random value in range [0.0, 1.0)
|
|
float randomize(inout uint value) {
|
|
value = hash(value);
|
|
return float(value / 4294967296.0);
|
|
}
|
|
|
|
const float PI = 3.14159265f;
|
|
|
|
// http://www.realtimerendering.com/raytracinggems/unofficial_RayTracingGems_v1.4.pdf (chapter 15)
|
|
vec3 generate_hemisphere_cosine_weighted_direction(inout uint noise) {
|
|
float noise1 = randomize(noise);
|
|
float noise2 = randomize(noise) * 2.0 * PI;
|
|
|
|
return vec3(sqrt(noise1) * cos(noise2), sqrt(noise1) * sin(noise2), sqrt(1.0 - noise1));
|
|
}
|
|
|
|
// Distribution generation adapted from "Generating uniformly distributed numbers on a sphere"
|
|
// <http://corysimon.github.io/articles/uniformdistn-on-sphere/>
|
|
vec3 generate_sphere_uniform_direction(inout uint noise) {
|
|
float theta = 2.0 * PI * randomize(noise);
|
|
float phi = acos(1.0 - 2.0 * randomize(noise));
|
|
return vec3(sin(phi) * cos(theta), sin(phi) * sin(theta), cos(phi));
|
|
}
|
|
|
|
vec3 generate_ray_dir_from_normal(vec3 normal, inout uint noise) {
|
|
vec3 v0 = abs(normal.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(0.0, 1.0, 0.0);
|
|
vec3 tangent = normalize(cross(v0, normal));
|
|
vec3 bitangent = normalize(cross(tangent, normal));
|
|
mat3 normal_mat = mat3(tangent, bitangent, normal);
|
|
return normal_mat * generate_hemisphere_cosine_weighted_direction(noise);
|
|
}
|
|
|
|
#if defined(MODE_DIRECT_LIGHT) || defined(MODE_BOUNCE_LIGHT) || defined(MODE_LIGHT_PROBES)
|
|
|
|
float get_omni_attenuation(float distance, float inv_range, float decay) {
|
|
float nd = distance * inv_range;
|
|
nd *= nd;
|
|
nd *= nd; // nd^4
|
|
nd = max(1.0 - nd, 0.0);
|
|
nd *= nd; // nd^2
|
|
return nd * pow(max(distance, 0.0001), -decay);
|
|
}
|
|
|
|
const int AA_SAMPLES = 16;
|
|
|
|
const vec2 halton_map[AA_SAMPLES] = vec2[](
|
|
vec2(0.5, 0.33333333),
|
|
vec2(0.25, 0.66666667),
|
|
vec2(0.75, 0.11111111),
|
|
vec2(0.125, 0.44444444),
|
|
vec2(0.625, 0.77777778),
|
|
vec2(0.375, 0.22222222),
|
|
vec2(0.875, 0.55555556),
|
|
vec2(0.0625, 0.88888889),
|
|
vec2(0.5625, 0.03703704),
|
|
vec2(0.3125, 0.37037037),
|
|
vec2(0.8125, 0.7037037),
|
|
vec2(0.1875, 0.14814815),
|
|
vec2(0.6875, 0.48148148),
|
|
vec2(0.4375, 0.81481481),
|
|
vec2(0.9375, 0.25925926),
|
|
vec2(0.03125, 0.59259259));
|
|
|
|
vec2 get_vogel_disk(float p_i, float p_rotation, float p_sample_count_sqrt) {
|
|
const float golden_angle = 2.4;
|
|
|
|
float r = sqrt(p_i + 0.5) / p_sample_count_sqrt;
|
|
float theta = p_i * golden_angle + p_rotation;
|
|
|
|
return vec2(cos(theta), sin(theta)) * r;
|
|
}
|
|
|
|
void trace_direct_light(vec3 p_position, vec3 p_normal, uint p_light_index, bool p_soft_shadowing, out vec3 r_light, out vec3 r_light_dir, inout uint r_noise, float p_texel_size) {
|
|
r_light = vec3(0.0f);
|
|
|
|
vec3 light_pos;
|
|
float dist;
|
|
float attenuation;
|
|
float soft_shadowing_disk_size;
|
|
Light light_data = lights.data[p_light_index];
|
|
if (light_data.type == LIGHT_TYPE_DIRECTIONAL) {
|
|
vec3 light_vec = light_data.direction;
|
|
light_pos = p_position - light_vec * length(bake_params.world_size);
|
|
r_light_dir = normalize(light_pos - p_position);
|
|
dist = length(bake_params.world_size);
|
|
attenuation = 1.0;
|
|
soft_shadowing_disk_size = light_data.size;
|
|
} else {
|
|
light_pos = light_data.position;
|
|
r_light_dir = normalize(light_pos - p_position);
|
|
dist = distance(p_position, light_pos);
|
|
if (dist > light_data.range) {
|
|
return;
|
|
}
|
|
|
|
soft_shadowing_disk_size = light_data.size / dist;
|
|
|
|
attenuation = get_omni_attenuation(dist, 1.0 / light_data.range, light_data.attenuation);
|
|
|
|
if (light_data.type == LIGHT_TYPE_SPOT) {
|
|
vec3 rel = normalize(p_position - light_pos);
|
|
float cos_spot_angle = light_data.cos_spot_angle;
|
|
float cos_angle = dot(rel, light_data.direction);
|
|
|
|
if (cos_angle < cos_spot_angle) {
|
|
return;
|
|
}
|
|
|
|
float scos = max(cos_angle, cos_spot_angle);
|
|
float spot_rim = max(0.0001, (1.0 - scos) / (1.0 - cos_spot_angle));
|
|
attenuation *= 1.0 - pow(spot_rim, light_data.inv_spot_attenuation);
|
|
}
|
|
}
|
|
|
|
attenuation *= max(0.0, dot(p_normal, r_light_dir));
|
|
if (attenuation <= 0.0001) {
|
|
return;
|
|
}
|
|
|
|
float penumbra = 0.0;
|
|
if (p_soft_shadowing) {
|
|
const bool use_soft_shadows = (light_data.size > 0.0);
|
|
const uint ray_count = AA_SAMPLES;
|
|
const uint total_ray_count = use_soft_shadows ? params.ray_count : ray_count;
|
|
const uint shadowing_rays_check_penumbra_denom = 2;
|
|
const uint shadowing_ray_count = max(1, params.ray_count / ray_count);
|
|
const float shadowing_ray_count_sqrt = sqrt(float(total_ray_count));
|
|
|
|
// Setup tangent pass to calculate AA samples over the current texel.
|
|
vec3 aux = p_normal.y < 0.777 ? vec3(0.0, 1.0, 0.0) : vec3(1.0, 0.0, 0.0);
|
|
vec3 tangent = normalize(cross(p_normal, aux));
|
|
vec3 bitan = normalize(cross(p_normal, tangent));
|
|
|
|
// Setup light tangent pass to calculate samples over disk aligned towards the light
|
|
vec3 light_to_point = -r_light_dir;
|
|
vec3 light_aux = light_to_point.y < 0.777 ? vec3(0.0, 1.0, 0.0) : vec3(1.0, 0.0, 0.0);
|
|
vec3 light_to_point_tan = normalize(cross(light_to_point, light_aux));
|
|
vec3 light_to_point_bitan = normalize(cross(light_to_point, light_to_point_tan));
|
|
|
|
uint hits = 0;
|
|
for (uint i = 0; i < ray_count; i++) {
|
|
// Create a random sample within the texel.
|
|
vec2 disk_sample = (halton_map[i] - vec2(0.5)) * p_texel_size * light_data.shadow_blur;
|
|
// Align the sample to world space.
|
|
vec3 disk_aligned = (disk_sample.x * tangent + disk_sample.y * bitan);
|
|
vec3 origin = p_position - disk_aligned;
|
|
vec3 light_dir = normalize(light_pos - origin);
|
|
|
|
if (use_soft_shadows) {
|
|
uint soft_shadow_hits = 0;
|
|
for (uint j = 0; j < shadowing_ray_count; j++) {
|
|
// Optimization:
|
|
// Once already traced an important proportion of rays, if all are hits or misses,
|
|
// assume we're not in the penumbra so we can infer the rest would have the same result.
|
|
if (j == shadowing_ray_count / shadowing_rays_check_penumbra_denom) {
|
|
if (soft_shadow_hits == j) {
|
|
// Assume totally lit
|
|
soft_shadow_hits = shadowing_ray_count;
|
|
break;
|
|
} else if (soft_shadow_hits == 0) {
|
|
// Assume totally dark
|
|
soft_shadow_hits = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
float a = randomize(r_noise) * 2.0 * PI;
|
|
float vogel_index = float(total_ray_count - 1 - (i * shadowing_ray_count + j)); // Start from (total_ray_count - 1) so we check the outer points first.
|
|
vec2 light_disk_sample = get_vogel_disk(vogel_index, a, shadowing_ray_count_sqrt) * soft_shadowing_disk_size * light_data.shadow_blur;
|
|
vec3 light_disk_to_point = normalize(light_to_point + light_disk_sample.x * light_to_point_tan + light_disk_sample.y * light_to_point_bitan);
|
|
// Offset the ray origin for AA, offset the light position for soft shadows.
|
|
if (trace_ray_any_hit(origin - light_disk_to_point * (bake_params.bias + length(disk_sample)), p_position - light_disk_to_point * dist) == RAY_MISS) {
|
|
soft_shadow_hits++;
|
|
}
|
|
}
|
|
hits += soft_shadow_hits;
|
|
} else {
|
|
// Offset the ray origin based on the disk. Also increase the bias for further samples to avoid bleeding.
|
|
if (trace_ray_any_hit(origin + light_dir * (bake_params.bias + length(disk_sample)), light_pos) == RAY_MISS) {
|
|
hits++;
|
|
}
|
|
}
|
|
}
|
|
penumbra = float(hits) / float(total_ray_count);
|
|
} else {
|
|
if (trace_ray_any_hit(p_position + r_light_dir * bake_params.bias, light_pos) == RAY_MISS) {
|
|
penumbra = 1.0;
|
|
}
|
|
}
|
|
|
|
r_light = light_data.color * light_data.energy * attenuation * penumbra;
|
|
}
|
|
|
|
#endif
|
|
|
|
#if defined(MODE_BOUNCE_LIGHT) || defined(MODE_LIGHT_PROBES)
|
|
|
|
vec3 trace_environment_color(vec3 ray_dir) {
|
|
vec3 sky_dir = normalize(mat3(bake_params.env_transform) * ray_dir);
|
|
vec2 st = vec2(atan(sky_dir.x, sky_dir.z), acos(sky_dir.y));
|
|
if (st.x < 0.0) {
|
|
st.x += PI * 2.0;
|
|
}
|
|
|
|
return textureLod(sampler2D(environment, linear_sampler), st / vec2(PI * 2.0, PI), 0.0).rgb;
|
|
}
|
|
|
|
vec3 trace_indirect_light(vec3 p_position, vec3 p_ray_dir, inout uint r_noise, float p_texel_size) {
|
|
// The lower limit considers the case where the lightmapper might have bounces disabled but light probes are requested.
|
|
vec3 position = p_position;
|
|
vec3 ray_dir = p_ray_dir;
|
|
uint max_depth = max(bake_params.bounces, 1);
|
|
vec3 throughput = vec3(1.0);
|
|
vec3 light = vec3(0.0);
|
|
for (uint depth = 0; depth < max_depth; depth++) {
|
|
uint tidx;
|
|
vec3 barycentric;
|
|
uint trace_result = trace_ray_closest_hit_triangle(position + ray_dir * bake_params.bias, position + ray_dir * length(bake_params.world_size), tidx, barycentric);
|
|
if (trace_result == RAY_FRONT) {
|
|
Vertex vert0 = vertices.data[triangles.data[tidx].indices.x];
|
|
Vertex vert1 = vertices.data[triangles.data[tidx].indices.y];
|
|
Vertex vert2 = vertices.data[triangles.data[tidx].indices.z];
|
|
vec3 uvw = vec3(barycentric.x * vert0.uv + barycentric.y * vert1.uv + barycentric.z * vert2.uv, float(triangles.data[tidx].slice));
|
|
position = barycentric.x * vert0.position + barycentric.y * vert1.position + barycentric.z * vert2.position;
|
|
|
|
vec3 norm0 = vec3(vert0.normal_xy, vert0.normal_z);
|
|
vec3 norm1 = vec3(vert1.normal_xy, vert1.normal_z);
|
|
vec3 norm2 = vec3(vert2.normal_xy, vert2.normal_z);
|
|
vec3 normal = barycentric.x * norm0 + barycentric.y * norm1 + barycentric.z * norm2;
|
|
|
|
vec3 direct_light = vec3(0.0f);
|
|
#ifdef USE_LIGHT_TEXTURE_FOR_BOUNCES
|
|
direct_light += textureLod(sampler2DArray(source_light, linear_sampler), uvw, 0.0).rgb;
|
|
#else
|
|
// Trace the lights directly. Significantly more expensive but more accurate in scenarios
|
|
// where the lightmap texture isn't reliable.
|
|
for (uint i = 0; i < bake_params.light_count; i++) {
|
|
vec3 light;
|
|
vec3 light_dir;
|
|
trace_direct_light(position, normal, i, false, light, light_dir, r_noise, p_texel_size);
|
|
direct_light += light * lights.data[i].indirect_energy;
|
|
}
|
|
|
|
direct_light *= bake_params.exposure_normalization;
|
|
#endif
|
|
|
|
vec3 albedo = textureLod(sampler2DArray(albedo_tex, linear_sampler), uvw, 0).rgb;
|
|
vec3 emissive = textureLod(sampler2DArray(emission_tex, linear_sampler), uvw, 0).rgb;
|
|
emissive *= bake_params.exposure_normalization;
|
|
|
|
light += throughput * emissive;
|
|
throughput *= albedo;
|
|
light += throughput * direct_light * bake_params.bounce_indirect_energy;
|
|
|
|
// Use Russian Roulette to determine a probability to terminate the bounce earlier as an optimization.
|
|
// <https://computergraphics.stackexchange.com/questions/2316/is-russian-roulette-really-the-answer>
|
|
float p = max(max(throughput.x, throughput.y), throughput.z);
|
|
if (randomize(r_noise) > p) {
|
|
break;
|
|
}
|
|
|
|
// Boost the throughput from the probability of the ray being terminated early.
|
|
throughput *= 1.0 / p;
|
|
|
|
// Generate a new ray direction for the next bounce from this surface's normal.
|
|
ray_dir = generate_ray_dir_from_normal(normal, r_noise);
|
|
} else if (trace_result == RAY_MISS) {
|
|
// Look for the environment color and stop bouncing.
|
|
light += throughput * trace_environment_color(ray_dir);
|
|
break;
|
|
} else {
|
|
// Ignore any other trace results.
|
|
break;
|
|
}
|
|
}
|
|
|
|
return light;
|
|
}
|
|
|
|
#endif
|
|
|
|
void main() {
|
|
// Check if invocation is out of bounds.
|
|
#ifdef MODE_LIGHT_PROBES
|
|
int probe_index = int(gl_GlobalInvocationID.x);
|
|
if (probe_index >= params.probe_count) {
|
|
return;
|
|
}
|
|
|
|
#else
|
|
ivec2 atlas_pos = ivec2(gl_GlobalInvocationID.xy) + params.region_ofs;
|
|
if (any(greaterThanEqual(atlas_pos, bake_params.atlas_size))) {
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
#ifdef MODE_DIRECT_LIGHT
|
|
|
|
vec3 normal = texelFetch(sampler2DArray(source_normal, linear_sampler), ivec3(atlas_pos, params.atlas_slice), 0).xyz;
|
|
if (length(normal) < 0.5) {
|
|
return; //empty texel, no process
|
|
}
|
|
vec3 position = texelFetch(sampler2DArray(source_position, linear_sampler), ivec3(atlas_pos, params.atlas_slice), 0).xyz;
|
|
vec4 neighbor_position = texelFetch(sampler2DArray(source_position, linear_sampler), ivec3(atlas_pos + ivec2(1, 0), params.atlas_slice), 0).xyzw;
|
|
|
|
if (neighbor_position.w < 0.001) {
|
|
// Empty texel, try again.
|
|
neighbor_position.xyz = texelFetch(sampler2DArray(source_position, linear_sampler), ivec3(atlas_pos + ivec2(-1, 0), params.atlas_slice), 0).xyz;
|
|
}
|
|
float texel_size_world_space = distance(position, neighbor_position.xyz);
|
|
|
|
vec3 light_for_texture = vec3(0.0);
|
|
vec3 light_for_bounces = vec3(0.0);
|
|
|
|
#ifdef USE_SH_LIGHTMAPS
|
|
vec4 sh_accum[4] = vec4[](
|
|
vec4(0.0, 0.0, 0.0, 1.0),
|
|
vec4(0.0, 0.0, 0.0, 1.0),
|
|
vec4(0.0, 0.0, 0.0, 1.0),
|
|
vec4(0.0, 0.0, 0.0, 1.0));
|
|
#endif
|
|
|
|
// Use atlas position and a prime number as the seed.
|
|
uint noise = random_seed(ivec3(atlas_pos, 43573547));
|
|
for (uint i = 0; i < bake_params.light_count; i++) {
|
|
vec3 light;
|
|
vec3 light_dir;
|
|
trace_direct_light(position, normal, i, true, light, light_dir, noise, texel_size_world_space);
|
|
|
|
if (lights.data[i].static_bake) {
|
|
light_for_texture += light;
|
|
|
|
#ifdef USE_SH_LIGHTMAPS
|
|
// These coefficients include the factored out SH evaluation, diffuse convolution, and final application, as well as the BRDF 1/PI and the spherical monte carlo factor.
|
|
// LO: 1/(2*sqrtPI) * 1/(2*sqrtPI) * PI * PI * 1/PI = 0.25
|
|
// L1: sqrt(3/(4*pi)) * sqrt(3/(4*pi)) * (PI*2/3) * (2 * PI) * 1/PI = 1.0
|
|
// Note: This only works because we aren't scaling, rotating, or combing harmonics, we are just directing applying them in the shader.
|
|
|
|
float c[4] = float[](
|
|
0.25, //l0
|
|
light_dir.y, //l1n1
|
|
light_dir.z, //l1n0
|
|
light_dir.x //l1p1
|
|
);
|
|
|
|
for (uint j = 0; j < 4; j++) {
|
|
sh_accum[j].rgb += light * c[j] * bake_params.exposure_normalization;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
light_for_bounces += light * lights.data[i].indirect_energy;
|
|
}
|
|
|
|
light_for_bounces *= bake_params.exposure_normalization;
|
|
imageStore(dest_light, ivec3(atlas_pos, params.atlas_slice), vec4(light_for_bounces, 1.0));
|
|
|
|
#ifdef USE_SH_LIGHTMAPS
|
|
// Keep for adding at the end.
|
|
imageStore(accum_light, ivec3(atlas_pos, params.atlas_slice * 4 + 0), sh_accum[0]);
|
|
imageStore(accum_light, ivec3(atlas_pos, params.atlas_slice * 4 + 1), sh_accum[1]);
|
|
imageStore(accum_light, ivec3(atlas_pos, params.atlas_slice * 4 + 2), sh_accum[2]);
|
|
imageStore(accum_light, ivec3(atlas_pos, params.atlas_slice * 4 + 3), sh_accum[3]);
|
|
#else
|
|
light_for_texture *= bake_params.exposure_normalization;
|
|
imageStore(accum_light, ivec3(atlas_pos, params.atlas_slice), vec4(light_for_texture, 1.0));
|
|
#endif
|
|
|
|
#endif
|
|
|
|
#ifdef MODE_BOUNCE_LIGHT
|
|
|
|
#ifdef USE_SH_LIGHTMAPS
|
|
vec4 sh_accum[4] = vec4[](
|
|
vec4(0.0, 0.0, 0.0, 1.0),
|
|
vec4(0.0, 0.0, 0.0, 1.0),
|
|
vec4(0.0, 0.0, 0.0, 1.0),
|
|
vec4(0.0, 0.0, 0.0, 1.0));
|
|
#else
|
|
vec3 light_accum = vec3(0.0);
|
|
#endif
|
|
|
|
// Retrieve starting normal and position.
|
|
vec3 normal = texelFetch(sampler2DArray(source_normal, linear_sampler), ivec3(atlas_pos, params.atlas_slice), 0).xyz;
|
|
if (length(normal) < 0.5) {
|
|
// The pixel is empty, skip processing it.
|
|
return;
|
|
}
|
|
|
|
vec3 position = texelFetch(sampler2DArray(source_position, linear_sampler), ivec3(atlas_pos, params.atlas_slice), 0).xyz;
|
|
int neighbor_offset = atlas_pos.x < bake_params.atlas_size.x - 1 ? 1 : -1;
|
|
vec3 neighbor_position = texelFetch(sampler2DArray(source_position, linear_sampler), ivec3(atlas_pos + ivec2(neighbor_offset, 0), params.atlas_slice), 0).xyz;
|
|
float texel_size_world_space = distance(position, neighbor_position);
|
|
uint noise = random_seed(ivec3(params.ray_from, atlas_pos));
|
|
for (uint i = params.ray_from; i < params.ray_to; i++) {
|
|
vec3 ray_dir = generate_ray_dir_from_normal(normal, noise);
|
|
vec3 light = trace_indirect_light(position, ray_dir, noise, texel_size_world_space);
|
|
|
|
#ifdef USE_SH_LIGHTMAPS
|
|
// These coefficients include the factored out SH evaluation, diffuse convolution, and final application, as well as the BRDF 1/PI and the spherical monte carlo factor.
|
|
// LO: 1/(2*sqrtPI) * 1/(2*sqrtPI) * PI * PI * 1/PI = 0.25
|
|
// L1: sqrt(3/(4*pi)) * sqrt(3/(4*pi)) * (PI*2/3) * (2 * PI) * 1/PI = 1.0
|
|
// Note: This only works because we aren't scaling, rotating, or combing harmonics, we are just directing applying them in the shader.
|
|
|
|
float c[4] = float[](
|
|
0.25, //l0
|
|
ray_dir.y, //l1n1
|
|
ray_dir.z, //l1n0
|
|
ray_dir.x //l1p1
|
|
);
|
|
|
|
for (uint j = 0; j < 4; j++) {
|
|
sh_accum[j].rgb += light * c[j];
|
|
}
|
|
#else
|
|
light_accum += light;
|
|
#endif
|
|
}
|
|
|
|
// Add the averaged result to the accumulated light texture.
|
|
#ifdef USE_SH_LIGHTMAPS
|
|
for (int i = 0; i < 4; i++) {
|
|
vec4 accum = imageLoad(accum_light, ivec3(atlas_pos, params.atlas_slice * 4 + i));
|
|
accum.rgb += sh_accum[i].rgb / float(params.ray_count);
|
|
imageStore(accum_light, ivec3(atlas_pos, params.atlas_slice * 4 + i), accum);
|
|
}
|
|
#else
|
|
vec4 accum = imageLoad(accum_light, ivec3(atlas_pos, params.atlas_slice));
|
|
accum.rgb += light_accum / float(params.ray_count);
|
|
imageStore(accum_light, ivec3(atlas_pos, params.atlas_slice), accum);
|
|
#endif
|
|
|
|
#endif
|
|
|
|
#ifdef MODE_UNOCCLUDE
|
|
|
|
//texel_size = 0.5;
|
|
//compute tangents
|
|
|
|
vec4 position_alpha = imageLoad(position, ivec3(atlas_pos, params.atlas_slice));
|
|
if (position_alpha.a < 0.5) {
|
|
return;
|
|
}
|
|
|
|
vec3 vertex_pos = position_alpha.xyz;
|
|
vec4 normal_tsize = imageLoad(unocclude, ivec3(atlas_pos, params.atlas_slice));
|
|
|
|
vec3 face_normal = normal_tsize.xyz;
|
|
float texel_size = normal_tsize.w;
|
|
|
|
vec3 v0 = abs(face_normal.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(0.0, 1.0, 0.0);
|
|
vec3 tangent = normalize(cross(v0, face_normal));
|
|
vec3 bitangent = normalize(cross(tangent, face_normal));
|
|
vec3 base_pos = vertex_pos + face_normal * bake_params.bias; // Raise a bit.
|
|
|
|
vec3 rays[4] = vec3[](tangent, bitangent, -tangent, -bitangent);
|
|
float min_d = 1e20;
|
|
for (int i = 0; i < 4; i++) {
|
|
vec3 ray_to = base_pos + rays[i] * texel_size;
|
|
float d;
|
|
vec3 norm;
|
|
|
|
if (trace_ray_closest_hit_distance(base_pos, ray_to, d, norm) == RAY_BACK) {
|
|
if (d < min_d) {
|
|
// This bias needs to be greater than the regular bias, because otherwise later, rays will go the other side when pointing back.
|
|
vertex_pos = base_pos + rays[i] * d + norm * bake_params.bias * 10.0;
|
|
min_d = d;
|
|
}
|
|
}
|
|
}
|
|
|
|
position_alpha.xyz = vertex_pos;
|
|
|
|
imageStore(position, ivec3(atlas_pos, params.atlas_slice), position_alpha);
|
|
|
|
#endif
|
|
|
|
#ifdef MODE_LIGHT_PROBES
|
|
|
|
vec3 position = probe_positions.data[probe_index].xyz;
|
|
|
|
vec4 probe_sh_accum[9] = vec4[](
|
|
vec4(0.0),
|
|
vec4(0.0),
|
|
vec4(0.0),
|
|
vec4(0.0),
|
|
vec4(0.0),
|
|
vec4(0.0),
|
|
vec4(0.0),
|
|
vec4(0.0),
|
|
vec4(0.0));
|
|
|
|
uint noise = random_seed(ivec3(params.ray_from, probe_index, 49502741 /* some prime */));
|
|
for (uint i = params.ray_from; i < params.ray_to; i++) {
|
|
vec3 ray_dir = generate_sphere_uniform_direction(noise);
|
|
vec3 light = trace_indirect_light(position, ray_dir, noise, 0.0);
|
|
|
|
float c[9] = float[](
|
|
0.282095, //l0
|
|
0.488603 * ray_dir.y, //l1n1
|
|
0.488603 * ray_dir.z, //l1n0
|
|
0.488603 * ray_dir.x, //l1p1
|
|
1.092548 * ray_dir.x * ray_dir.y, //l2n2
|
|
1.092548 * ray_dir.y * ray_dir.z, //l2n1
|
|
//0.315392 * (ray_dir.x * ray_dir.x + ray_dir.y * ray_dir.y + 2.0 * ray_dir.z * ray_dir.z), //l20
|
|
0.315392 * (3.0 * ray_dir.z * ray_dir.z - 1.0), //l20
|
|
1.092548 * ray_dir.x * ray_dir.z, //l2p1
|
|
0.546274 * (ray_dir.x * ray_dir.x - ray_dir.y * ray_dir.y) //l2p2
|
|
);
|
|
|
|
for (uint j = 0; j < 9; j++) {
|
|
probe_sh_accum[j].rgb += light * c[j];
|
|
}
|
|
}
|
|
|
|
if (params.ray_from > 0) {
|
|
for (uint j = 0; j < 9; j++) { //accum from existing
|
|
probe_sh_accum[j] += light_probes.data[probe_index * 9 + j];
|
|
}
|
|
}
|
|
|
|
if (params.ray_to == params.ray_count) {
|
|
for (uint j = 0; j < 9; j++) { //accum from existing
|
|
probe_sh_accum[j] *= 4.0 / float(params.ray_count);
|
|
}
|
|
}
|
|
|
|
for (uint j = 0; j < 9; j++) { //accum from existing
|
|
light_probes.data[probe_index * 9 + j] = probe_sh_accum[j];
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifdef MODE_DILATE
|
|
|
|
vec4 c = texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos, params.atlas_slice), 0);
|
|
//sides first, as they are closer
|
|
c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(-1, 0), params.atlas_slice), 0);
|
|
c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(0, 1), params.atlas_slice), 0);
|
|
c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(1, 0), params.atlas_slice), 0);
|
|
c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(0, -1), params.atlas_slice), 0);
|
|
//endpoints second
|
|
c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(-1, -1), params.atlas_slice), 0);
|
|
c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(-1, 1), params.atlas_slice), 0);
|
|
c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(1, -1), params.atlas_slice), 0);
|
|
c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(1, 1), params.atlas_slice), 0);
|
|
|
|
//far sides third
|
|
c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(-2, 0), params.atlas_slice), 0);
|
|
c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(0, 2), params.atlas_slice), 0);
|
|
c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(2, 0), params.atlas_slice), 0);
|
|
c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(0, -2), params.atlas_slice), 0);
|
|
|
|
//far-mid endpoints
|
|
c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(-2, -1), params.atlas_slice), 0);
|
|
c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(-2, 1), params.atlas_slice), 0);
|
|
c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(2, -1), params.atlas_slice), 0);
|
|
c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(2, 1), params.atlas_slice), 0);
|
|
|
|
c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(-1, -2), params.atlas_slice), 0);
|
|
c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(-1, 2), params.atlas_slice), 0);
|
|
c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(1, -2), params.atlas_slice), 0);
|
|
c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(1, 2), params.atlas_slice), 0);
|
|
//far endpoints
|
|
c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(-2, -2), params.atlas_slice), 0);
|
|
c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(-2, 2), params.atlas_slice), 0);
|
|
c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(2, -2), params.atlas_slice), 0);
|
|
c = c.a > 0.5 ? c : texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos + ivec2(2, 2), params.atlas_slice), 0);
|
|
|
|
imageStore(dest_light, ivec3(atlas_pos, params.atlas_slice), c);
|
|
|
|
#endif
|
|
|
|
#ifdef MODE_DENOISE
|
|
// Joint Non-local means (JNLM) denoiser.
|
|
//
|
|
// Based on YoctoImageDenoiser's JNLM implementation with corrections from "Nonlinearly Weighted First-order Regression for Denoising Monte Carlo Renderings".
|
|
//
|
|
// <https://github.com/ManuelPrandini/YoctoImageDenoiser/blob/06e19489dd64e47792acffde536393802ba48607/libs/yocto_extension/yocto_extension.cpp#L207>
|
|
// <https://benedikt-bitterli.me/nfor/nfor.pdf>
|
|
//
|
|
// MIT License
|
|
//
|
|
// Copyright (c) 2020 ManuelPrandini
|
|
//
|
|
// Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
// of this software and associated documentation files (the "Software"), to deal
|
|
// in the Software without restriction, including without limitation the rights
|
|
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
// copies of the Software, and to permit persons to whom the Software is
|
|
// furnished to do so, subject to the following conditions:
|
|
//
|
|
// The above copyright notice and this permission notice shall be included in all
|
|
// copies or substantial portions of the Software.
|
|
//
|
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
// SOFTWARE.
|
|
//
|
|
// Most of the constants below have been hand-picked to fit the common scenarios lightmaps
|
|
// are generated with, but they can be altered freely to experiment and achieve better results.
|
|
|
|
// Half the size of the patch window around each pixel that is weighted to compute the denoised pixel.
|
|
// A value of 1 represents a 3x3 window, a value of 2 a 5x5 window, etc.
|
|
const int HALF_PATCH_WINDOW = 3;
|
|
|
|
// Half the size of the search window around each pixel that is denoised and weighted to compute the denoised pixel.
|
|
const int HALF_SEARCH_WINDOW = denoise_params.half_search_window;
|
|
|
|
// For all of the following sigma values, smaller values will give less weight to pixels that have a bigger distance
|
|
// in the feature being evaluated. Therefore, smaller values are likely to cause more noise to appear, but will also
|
|
// cause less features to be erased in the process.
|
|
|
|
// Controls how much the spatial distance of the pixels influences the denoising weight.
|
|
const float SIGMA_SPATIAL = denoise_params.spatial_bandwidth;
|
|
|
|
// Controls how much the light color distance of the pixels influences the denoising weight.
|
|
const float SIGMA_LIGHT = denoise_params.light_bandwidth;
|
|
|
|
// Controls how much the albedo color distance of the pixels influences the denoising weight.
|
|
const float SIGMA_ALBEDO = denoise_params.albedo_bandwidth;
|
|
|
|
// Controls how much the normal vector distance of the pixels influences the denoising weight.
|
|
const float SIGMA_NORMAL = denoise_params.normal_bandwidth;
|
|
|
|
// Strength of the filter. The original paper recommends values around 10 to 15 times the Sigma parameter.
|
|
const float FILTER_VALUE = denoise_params.filter_strength * SIGMA_LIGHT;
|
|
|
|
// Formula constants.
|
|
const int PATCH_WINDOW_DIMENSION = (HALF_PATCH_WINDOW * 2 + 1);
|
|
const int PATCH_WINDOW_DIMENSION_SQUARE = (PATCH_WINDOW_DIMENSION * PATCH_WINDOW_DIMENSION);
|
|
const float TWO_SIGMA_SPATIAL_SQUARE = 2.0f * SIGMA_SPATIAL * SIGMA_SPATIAL;
|
|
const float TWO_SIGMA_LIGHT_SQUARE = 2.0f * SIGMA_LIGHT * SIGMA_LIGHT;
|
|
const float TWO_SIGMA_ALBEDO_SQUARE = 2.0f * SIGMA_ALBEDO * SIGMA_ALBEDO;
|
|
const float TWO_SIGMA_NORMAL_SQUARE = 2.0f * SIGMA_NORMAL * SIGMA_NORMAL;
|
|
const float FILTER_SQUARE_TWO_SIGMA_LIGHT_SQUARE = FILTER_VALUE * FILTER_VALUE * TWO_SIGMA_LIGHT_SQUARE;
|
|
const float EPSILON = 1e-6f;
|
|
|
|
#ifdef USE_SH_LIGHTMAPS
|
|
const uint slice_count = 4;
|
|
const uint slice_base = params.atlas_slice * slice_count;
|
|
#else
|
|
const uint slice_count = 1;
|
|
const uint slice_base = params.atlas_slice;
|
|
#endif
|
|
|
|
for (uint i = 0; i < slice_count; i++) {
|
|
uint lightmap_slice = slice_base + i;
|
|
vec3 denoised_rgb = vec3(0.0f);
|
|
vec4 input_light = texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos, lightmap_slice), 0);
|
|
vec3 input_albedo = texelFetch(sampler2DArray(albedo_tex, linear_sampler), ivec3(atlas_pos, params.atlas_slice), 0).rgb;
|
|
vec3 input_normal = texelFetch(sampler2DArray(source_normal, linear_sampler), ivec3(atlas_pos, params.atlas_slice), 0).xyz;
|
|
if (length(input_normal) > EPSILON) {
|
|
// Compute the denoised pixel if the normal is valid.
|
|
float sum_weights = 0.0f;
|
|
vec3 input_rgb = input_light.rgb;
|
|
for (int search_y = -HALF_SEARCH_WINDOW; search_y <= HALF_SEARCH_WINDOW; search_y++) {
|
|
for (int search_x = -HALF_SEARCH_WINDOW; search_x <= HALF_SEARCH_WINDOW; search_x++) {
|
|
ivec2 search_pos = atlas_pos + ivec2(search_x, search_y);
|
|
vec3 search_rgb = texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(search_pos, lightmap_slice), 0).rgb;
|
|
vec3 search_albedo = texelFetch(sampler2DArray(albedo_tex, linear_sampler), ivec3(search_pos, params.atlas_slice), 0).rgb;
|
|
vec3 search_normal = texelFetch(sampler2DArray(source_normal, linear_sampler), ivec3(search_pos, params.atlas_slice), 0).xyz;
|
|
float patch_square_dist = 0.0f;
|
|
for (int offset_y = -HALF_PATCH_WINDOW; offset_y <= HALF_PATCH_WINDOW; offset_y++) {
|
|
for (int offset_x = -HALF_PATCH_WINDOW; offset_x <= HALF_PATCH_WINDOW; offset_x++) {
|
|
ivec2 offset_input_pos = atlas_pos + ivec2(offset_x, offset_y);
|
|
ivec2 offset_search_pos = search_pos + ivec2(offset_x, offset_y);
|
|
vec3 offset_input_rgb = texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(offset_input_pos, lightmap_slice), 0).rgb;
|
|
vec3 offset_search_rgb = texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(offset_search_pos, lightmap_slice), 0).rgb;
|
|
vec3 offset_delta_rgb = offset_input_rgb - offset_search_rgb;
|
|
patch_square_dist += dot(offset_delta_rgb, offset_delta_rgb) - TWO_SIGMA_LIGHT_SQUARE;
|
|
}
|
|
}
|
|
|
|
patch_square_dist = max(0.0f, patch_square_dist / (3.0f * PATCH_WINDOW_DIMENSION_SQUARE));
|
|
|
|
float weight = 1.0f;
|
|
|
|
// Ignore weight if search position is out of bounds.
|
|
weight *= step(0, search_pos.x) * step(search_pos.x, bake_params.atlas_size.x - 1);
|
|
weight *= step(0, search_pos.y) * step(search_pos.y, bake_params.atlas_size.y - 1);
|
|
|
|
// Ignore weight if normal is zero length.
|
|
weight *= step(EPSILON, length(search_normal));
|
|
|
|
// Weight with pixel distance.
|
|
vec2 pixel_delta = vec2(search_x, search_y);
|
|
float pixel_square_dist = dot(pixel_delta, pixel_delta);
|
|
weight *= exp(-pixel_square_dist / TWO_SIGMA_SPATIAL_SQUARE);
|
|
|
|
// Weight with patch.
|
|
weight *= exp(-patch_square_dist / FILTER_SQUARE_TWO_SIGMA_LIGHT_SQUARE);
|
|
|
|
// Weight with albedo.
|
|
vec3 albedo_delta = input_albedo - search_albedo;
|
|
float albedo_square_dist = dot(albedo_delta, albedo_delta);
|
|
weight *= exp(-albedo_square_dist / TWO_SIGMA_ALBEDO_SQUARE);
|
|
|
|
// Weight with normal.
|
|
vec3 normal_delta = input_normal - search_normal;
|
|
float normal_square_dist = dot(normal_delta, normal_delta);
|
|
weight *= exp(-normal_square_dist / TWO_SIGMA_NORMAL_SQUARE);
|
|
|
|
denoised_rgb += weight * search_rgb;
|
|
sum_weights += weight;
|
|
}
|
|
}
|
|
|
|
denoised_rgb /= sum_weights;
|
|
} else {
|
|
// Ignore pixels where the normal is empty, just copy the light color.
|
|
denoised_rgb = input_light.rgb;
|
|
}
|
|
|
|
imageStore(dest_light, ivec3(atlas_pos, lightmap_slice), vec4(denoised_rgb, input_light.a));
|
|
}
|
|
#endif
|
|
|
|
#ifdef MODE_PACK_L1_COEFFS
|
|
vec4 base_coeff = texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos, params.atlas_slice * 4), 0);
|
|
|
|
for (int i = 1; i < 4; i++) {
|
|
vec4 c = texelFetch(sampler2DArray(source_light, linear_sampler), ivec3(atlas_pos, params.atlas_slice * 4 + i), 0);
|
|
|
|
if (abs(base_coeff.r) > 0.0) {
|
|
c.r /= (base_coeff.r * 8);
|
|
}
|
|
|
|
if (abs(base_coeff.g) > 0.0) {
|
|
c.g /= (base_coeff.g * 8);
|
|
}
|
|
|
|
if (abs(base_coeff.b) > 0.0) {
|
|
c.b /= (base_coeff.b * 8);
|
|
}
|
|
|
|
c.rgb += vec3(0.5);
|
|
c.rgb = clamp(c.rgb, vec3(0.0), vec3(1.0));
|
|
imageStore(dest_light, ivec3(atlas_pos, params.atlas_slice * 4 + i), c);
|
|
}
|
|
#endif
|
|
}
|