9308 lines
289 KiB
C++
9308 lines
289 KiB
C++
#ifndef TINYEXR_H_
|
|
#define TINYEXR_H_
|
|
/*
|
|
Copyright (c) 2014 - 2021, Syoyo Fujita and many contributors.
|
|
All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are met:
|
|
* Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
* Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
* Neither the name of the Syoyo Fujita nor the
|
|
names of its contributors may be used to endorse or promote products
|
|
derived from this software without specific prior written permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
|
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
|
|
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
|
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
// TinyEXR contains some OpenEXR code, which is licensed under ------------
|
|
|
|
///////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Copyright (c) 2002, Industrial Light & Magic, a division of Lucas
|
|
// Digital Ltd. LLC
|
|
//
|
|
// All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following disclaimer
|
|
// in the documentation and/or other materials provided with the
|
|
// distribution.
|
|
// * Neither the name of Industrial Light & Magic nor the names of
|
|
// its contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
///////////////////////////////////////////////////////////////////////////
|
|
|
|
// End of OpenEXR license -------------------------------------------------
|
|
|
|
|
|
//
|
|
//
|
|
// Do this:
|
|
// #define TINYEXR_IMPLEMENTATION
|
|
// before you include this file in *one* C or C++ file to create the
|
|
// implementation.
|
|
//
|
|
// // i.e. it should look like this:
|
|
// #include ...
|
|
// #include ...
|
|
// #include ...
|
|
// #define TINYEXR_IMPLEMENTATION
|
|
// #include "tinyexr.h"
|
|
//
|
|
//
|
|
|
|
#include <stddef.h> // for size_t
|
|
#include <stdint.h> // guess stdint.h is available(C99)
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
#if defined(_M_IX86) || defined(_M_X64) || defined(__i386__) || \
|
|
defined(__i386) || defined(__i486__) || defined(__i486) || \
|
|
defined(i386) || defined(__ia64__) || defined(__x86_64__)
|
|
#define TINYEXR_X86_OR_X64_CPU 1
|
|
#else
|
|
#define TINYEXR_X86_OR_X64_CPU 0
|
|
#endif
|
|
|
|
#if (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) || TINYEXR_X86_OR_X64_CPU
|
|
#define TINYEXR_LITTLE_ENDIAN 1
|
|
#else
|
|
#define TINYEXR_LITTLE_ENDIAN 0
|
|
#endif
|
|
|
|
// Use miniz or not to decode ZIP format pixel. Linking with zlib
|
|
// required if this flag is 0 and TINYEXR_USE_STB_ZLIB is 0.
|
|
#ifndef TINYEXR_USE_MINIZ
|
|
#define TINYEXR_USE_MINIZ (1)
|
|
#endif
|
|
|
|
// Use the ZIP implementation of stb_image.h and stb_image_write.h.
|
|
#ifndef TINYEXR_USE_STB_ZLIB
|
|
#define TINYEXR_USE_STB_ZLIB (0)
|
|
#endif
|
|
|
|
// Use nanozlib.
|
|
#ifndef TINYEXR_USE_NANOZLIB
|
|
#define TINYEXR_USE_NANOZLIB (0)
|
|
#endif
|
|
|
|
// Disable PIZ compression when applying cpplint.
|
|
#ifndef TINYEXR_USE_PIZ
|
|
#define TINYEXR_USE_PIZ (1)
|
|
#endif
|
|
|
|
#ifndef TINYEXR_USE_ZFP
|
|
#define TINYEXR_USE_ZFP (0) // TinyEXR extension.
|
|
// http://computation.llnl.gov/projects/floating-point-compression
|
|
#endif
|
|
|
|
#ifndef TINYEXR_USE_THREAD
|
|
#define TINYEXR_USE_THREAD (0) // No threaded loading.
|
|
// http://computation.llnl.gov/projects/floating-point-compression
|
|
#endif
|
|
|
|
#ifndef TINYEXR_USE_OPENMP
|
|
#ifdef _OPENMP
|
|
#define TINYEXR_USE_OPENMP (1)
|
|
#else
|
|
#define TINYEXR_USE_OPENMP (0)
|
|
#endif
|
|
#endif
|
|
|
|
#define TINYEXR_SUCCESS (0)
|
|
#define TINYEXR_ERROR_INVALID_MAGIC_NUMBER (-1)
|
|
#define TINYEXR_ERROR_INVALID_EXR_VERSION (-2)
|
|
#define TINYEXR_ERROR_INVALID_ARGUMENT (-3)
|
|
#define TINYEXR_ERROR_INVALID_DATA (-4)
|
|
#define TINYEXR_ERROR_INVALID_FILE (-5)
|
|
#define TINYEXR_ERROR_INVALID_PARAMETER (-6)
|
|
#define TINYEXR_ERROR_CANT_OPEN_FILE (-7)
|
|
#define TINYEXR_ERROR_UNSUPPORTED_FORMAT (-8)
|
|
#define TINYEXR_ERROR_INVALID_HEADER (-9)
|
|
#define TINYEXR_ERROR_UNSUPPORTED_FEATURE (-10)
|
|
#define TINYEXR_ERROR_CANT_WRITE_FILE (-11)
|
|
#define TINYEXR_ERROR_SERIALIZATION_FAILED (-12)
|
|
#define TINYEXR_ERROR_LAYER_NOT_FOUND (-13)
|
|
#define TINYEXR_ERROR_DATA_TOO_LARGE (-14)
|
|
|
|
// @note { OpenEXR file format: http://www.openexr.com/openexrfilelayout.pdf }
|
|
|
|
// pixel type: possible values are: UINT = 0 HALF = 1 FLOAT = 2
|
|
#define TINYEXR_PIXELTYPE_UINT (0)
|
|
#define TINYEXR_PIXELTYPE_HALF (1)
|
|
#define TINYEXR_PIXELTYPE_FLOAT (2)
|
|
|
|
#define TINYEXR_MAX_HEADER_ATTRIBUTES (1024)
|
|
#define TINYEXR_MAX_CUSTOM_ATTRIBUTES (128)
|
|
|
|
#define TINYEXR_COMPRESSIONTYPE_NONE (0)
|
|
#define TINYEXR_COMPRESSIONTYPE_RLE (1)
|
|
#define TINYEXR_COMPRESSIONTYPE_ZIPS (2)
|
|
#define TINYEXR_COMPRESSIONTYPE_ZIP (3)
|
|
#define TINYEXR_COMPRESSIONTYPE_PIZ (4)
|
|
#define TINYEXR_COMPRESSIONTYPE_ZFP (128) // TinyEXR extension
|
|
|
|
#define TINYEXR_ZFP_COMPRESSIONTYPE_RATE (0)
|
|
#define TINYEXR_ZFP_COMPRESSIONTYPE_PRECISION (1)
|
|
#define TINYEXR_ZFP_COMPRESSIONTYPE_ACCURACY (2)
|
|
|
|
#define TINYEXR_TILE_ONE_LEVEL (0)
|
|
#define TINYEXR_TILE_MIPMAP_LEVELS (1)
|
|
#define TINYEXR_TILE_RIPMAP_LEVELS (2)
|
|
|
|
#define TINYEXR_TILE_ROUND_DOWN (0)
|
|
#define TINYEXR_TILE_ROUND_UP (1)
|
|
|
|
typedef struct TEXRVersion {
|
|
int version; // this must be 2
|
|
// tile format image;
|
|
// not zero for only a single-part "normal" tiled file (according to spec.)
|
|
int tiled;
|
|
int long_name; // long name attribute
|
|
// deep image(EXR 2.0);
|
|
// for a multi-part file, indicates that at least one part is of type deep* (according to spec.)
|
|
int non_image;
|
|
int multipart; // multi-part(EXR 2.0)
|
|
} EXRVersion;
|
|
|
|
typedef struct TEXRAttribute {
|
|
char name[256]; // name and type are up to 255 chars long.
|
|
char type[256];
|
|
unsigned char *value; // uint8_t*
|
|
int size;
|
|
int pad0;
|
|
} EXRAttribute;
|
|
|
|
typedef struct TEXRChannelInfo {
|
|
char name[256]; // less than 255 bytes long
|
|
int pixel_type;
|
|
int x_sampling;
|
|
int y_sampling;
|
|
unsigned char p_linear;
|
|
unsigned char pad[3];
|
|
} EXRChannelInfo;
|
|
|
|
typedef struct TEXRTile {
|
|
int offset_x;
|
|
int offset_y;
|
|
int level_x;
|
|
int level_y;
|
|
|
|
int width; // actual width in a tile.
|
|
int height; // actual height int a tile.
|
|
|
|
unsigned char **images; // image[channels][pixels]
|
|
} EXRTile;
|
|
|
|
typedef struct TEXRBox2i {
|
|
int min_x;
|
|
int min_y;
|
|
int max_x;
|
|
int max_y;
|
|
} EXRBox2i;
|
|
|
|
typedef struct TEXRHeader {
|
|
float pixel_aspect_ratio;
|
|
int line_order;
|
|
EXRBox2i data_window;
|
|
EXRBox2i display_window;
|
|
float screen_window_center[2];
|
|
float screen_window_width;
|
|
|
|
int chunk_count;
|
|
|
|
// Properties for tiled format(`tiledesc`).
|
|
int tiled;
|
|
int tile_size_x;
|
|
int tile_size_y;
|
|
int tile_level_mode;
|
|
int tile_rounding_mode;
|
|
|
|
int long_name;
|
|
// for a single-part file, agree with the version field bit 11
|
|
// for a multi-part file, it is consistent with the type of part
|
|
int non_image;
|
|
int multipart;
|
|
unsigned int header_len;
|
|
|
|
// Custom attributes(exludes required attributes(e.g. `channels`,
|
|
// `compression`, etc)
|
|
int num_custom_attributes;
|
|
EXRAttribute *custom_attributes; // array of EXRAttribute. size =
|
|
// `num_custom_attributes`.
|
|
|
|
EXRChannelInfo *channels; // [num_channels]
|
|
|
|
int *pixel_types; // Loaded pixel type(TINYEXR_PIXELTYPE_*) of `images` for
|
|
// each channel. This is overwritten with `requested_pixel_types` when
|
|
// loading.
|
|
int num_channels;
|
|
|
|
int compression_type; // compression type(TINYEXR_COMPRESSIONTYPE_*)
|
|
int *requested_pixel_types; // Filled initially by
|
|
// ParseEXRHeaderFrom(Meomory|File), then users
|
|
// can edit it(only valid for HALF pixel type
|
|
// channel)
|
|
// name attribute required for multipart files;
|
|
// must be unique and non empty (according to spec.);
|
|
// use EXRSetNameAttr for setting value;
|
|
// max 255 character allowed - excluding terminating zero
|
|
char name[256];
|
|
} EXRHeader;
|
|
|
|
typedef struct TEXRMultiPartHeader {
|
|
int num_headers;
|
|
EXRHeader *headers;
|
|
|
|
} EXRMultiPartHeader;
|
|
|
|
typedef struct TEXRImage {
|
|
EXRTile *tiles; // Tiled pixel data. The application must reconstruct image
|
|
// from tiles manually. NULL if scanline format.
|
|
struct TEXRImage* next_level; // NULL if scanline format or image is the last level.
|
|
int level_x; // x level index
|
|
int level_y; // y level index
|
|
|
|
unsigned char **images; // image[channels][pixels]. NULL if tiled format.
|
|
|
|
int width;
|
|
int height;
|
|
int num_channels;
|
|
|
|
// Properties for tile format.
|
|
int num_tiles;
|
|
|
|
} EXRImage;
|
|
|
|
typedef struct TEXRMultiPartImage {
|
|
int num_images;
|
|
EXRImage *images;
|
|
|
|
} EXRMultiPartImage;
|
|
|
|
typedef struct TDeepImage {
|
|
const char **channel_names;
|
|
float ***image; // image[channels][scanlines][samples]
|
|
int **offset_table; // offset_table[scanline][offsets]
|
|
int num_channels;
|
|
int width;
|
|
int height;
|
|
int pad0;
|
|
} DeepImage;
|
|
|
|
// @deprecated { For backward compatibility. Not recommended to use. }
|
|
// Loads single-frame OpenEXR image. Assume EXR image contains A(single channel
|
|
// alpha) or RGB(A) channels.
|
|
// Application must free image data as returned by `out_rgba`
|
|
// Result image format is: float x RGBA x width x hight
|
|
// Returns negative value and may set error string in `err` when there's an
|
|
// error
|
|
extern int LoadEXR(float **out_rgba, int *width, int *height,
|
|
const char *filename, const char **err);
|
|
|
|
// Loads single-frame OpenEXR image by specifying layer name. Assume EXR image
|
|
// contains A(single channel alpha) or RGB(A) channels. Application must free
|
|
// image data as returned by `out_rgba` Result image format is: float x RGBA x
|
|
// width x hight Returns negative value and may set error string in `err` when
|
|
// there's an error When the specified layer name is not found in the EXR file,
|
|
// the function will return `TINYEXR_ERROR_LAYER_NOT_FOUND`.
|
|
extern int LoadEXRWithLayer(float **out_rgba, int *width, int *height,
|
|
const char *filename, const char *layer_name,
|
|
const char **err);
|
|
|
|
//
|
|
// Get layer infos from EXR file.
|
|
//
|
|
// @param[out] layer_names List of layer names. Application must free memory
|
|
// after using this.
|
|
// @param[out] num_layers The number of layers
|
|
// @param[out] err Error string(will be filled when the function returns error
|
|
// code). Free it using FreeEXRErrorMessage after using this value.
|
|
//
|
|
// @return TINYEXR_SUCCEES upon success.
|
|
//
|
|
extern int EXRLayers(const char *filename, const char **layer_names[],
|
|
int *num_layers, const char **err);
|
|
|
|
// @deprecated
|
|
// Simple wrapper API for ParseEXRHeaderFromFile.
|
|
// checking given file is a EXR file(by just look up header)
|
|
// @return TINYEXR_SUCCEES for EXR image, TINYEXR_ERROR_INVALID_HEADER for
|
|
// others
|
|
extern int IsEXR(const char *filename);
|
|
|
|
// Simple wrapper API for ParseEXRHeaderFromMemory.
|
|
// Check if given data is a EXR image(by just looking up a header section)
|
|
// @return TINYEXR_SUCCEES for EXR image, TINYEXR_ERROR_INVALID_HEADER for
|
|
// others
|
|
extern int IsEXRFromMemory(const unsigned char *memory, size_t size);
|
|
|
|
// @deprecated
|
|
// Saves single-frame OpenEXR image to a buffer. Assume EXR image contains RGB(A) channels.
|
|
// components must be 1(Grayscale), 3(RGB) or 4(RGBA).
|
|
// Input image format is: `float x width x height`, or `float x RGB(A) x width x
|
|
// hight`
|
|
// Save image as fp16(HALF) format when `save_as_fp16` is positive non-zero
|
|
// value.
|
|
// Save image as fp32(FLOAT) format when `save_as_fp16` is 0.
|
|
// Use ZIP compression by default.
|
|
// `buffer` is the pointer to write EXR data.
|
|
// Memory for `buffer` is allocated internally in SaveEXRToMemory.
|
|
// Returns the data size of EXR file when the value is positive(up to 2GB EXR data).
|
|
// Returns negative value and may set error string in `err` when there's an
|
|
// error
|
|
extern int SaveEXRToMemory(const float *data, const int width, const int height,
|
|
const int components, const int save_as_fp16,
|
|
unsigned char **buffer, const char **err);
|
|
|
|
// @deprecated { Not recommended, but handy to use. }
|
|
// Saves single-frame OpenEXR image to a buffer. Assume EXR image contains RGB(A) channels.
|
|
// components must be 1(Grayscale), 3(RGB) or 4(RGBA).
|
|
// Input image format is: `float x width x height`, or `float x RGB(A) x width x
|
|
// hight`
|
|
// Save image as fp16(HALF) format when `save_as_fp16` is positive non-zero
|
|
// value.
|
|
// Save image as fp32(FLOAT) format when `save_as_fp16` is 0.
|
|
// Use ZIP compression by default.
|
|
// Returns TINYEXR_SUCCEES(0) when success.
|
|
// Returns negative value and may set error string in `err` when there's an
|
|
// error
|
|
extern int SaveEXR(const float *data, const int width, const int height,
|
|
const int components, const int save_as_fp16,
|
|
const char *filename, const char **err);
|
|
|
|
// Returns the number of resolution levels of the image (including the base)
|
|
extern int EXRNumLevels(const EXRImage* exr_image);
|
|
|
|
// Initialize EXRHeader struct
|
|
extern void InitEXRHeader(EXRHeader *exr_header);
|
|
|
|
// Set name attribute of EXRHeader struct (it makes a copy)
|
|
extern void EXRSetNameAttr(EXRHeader *exr_header, const char* name);
|
|
|
|
// Initialize EXRImage struct
|
|
extern void InitEXRImage(EXRImage *exr_image);
|
|
|
|
// Frees internal data of EXRHeader struct
|
|
extern int FreeEXRHeader(EXRHeader *exr_header);
|
|
|
|
// Frees internal data of EXRImage struct
|
|
extern int FreeEXRImage(EXRImage *exr_image);
|
|
|
|
// Frees error message
|
|
extern void FreeEXRErrorMessage(const char *msg);
|
|
|
|
// Parse EXR version header of a file.
|
|
extern int ParseEXRVersionFromFile(EXRVersion *version, const char *filename);
|
|
|
|
// Parse EXR version header from memory-mapped EXR data.
|
|
extern int ParseEXRVersionFromMemory(EXRVersion *version,
|
|
const unsigned char *memory, size_t size);
|
|
|
|
// Parse single-part OpenEXR header from a file and initialize `EXRHeader`.
|
|
// When there was an error message, Application must free `err` with
|
|
// FreeEXRErrorMessage()
|
|
extern int ParseEXRHeaderFromFile(EXRHeader *header, const EXRVersion *version,
|
|
const char *filename, const char **err);
|
|
|
|
// Parse single-part OpenEXR header from a memory and initialize `EXRHeader`.
|
|
// When there was an error message, Application must free `err` with
|
|
// FreeEXRErrorMessage()
|
|
extern int ParseEXRHeaderFromMemory(EXRHeader *header,
|
|
const EXRVersion *version,
|
|
const unsigned char *memory, size_t size,
|
|
const char **err);
|
|
|
|
// Parse multi-part OpenEXR headers from a file and initialize `EXRHeader*`
|
|
// array.
|
|
// When there was an error message, Application must free `err` with
|
|
// FreeEXRErrorMessage()
|
|
extern int ParseEXRMultipartHeaderFromFile(EXRHeader ***headers,
|
|
int *num_headers,
|
|
const EXRVersion *version,
|
|
const char *filename,
|
|
const char **err);
|
|
|
|
// Parse multi-part OpenEXR headers from a memory and initialize `EXRHeader*`
|
|
// array
|
|
// When there was an error message, Application must free `err` with
|
|
// FreeEXRErrorMessage()
|
|
extern int ParseEXRMultipartHeaderFromMemory(EXRHeader ***headers,
|
|
int *num_headers,
|
|
const EXRVersion *version,
|
|
const unsigned char *memory,
|
|
size_t size, const char **err);
|
|
|
|
// Loads single-part OpenEXR image from a file.
|
|
// Application must setup `ParseEXRHeaderFromFile` before calling this function.
|
|
// Application can free EXRImage using `FreeEXRImage`
|
|
// Returns negative value and may set error string in `err` when there's an
|
|
// error
|
|
// When there was an error message, Application must free `err` with
|
|
// FreeEXRErrorMessage()
|
|
extern int LoadEXRImageFromFile(EXRImage *image, const EXRHeader *header,
|
|
const char *filename, const char **err);
|
|
|
|
// Loads single-part OpenEXR image from a memory.
|
|
// Application must setup `EXRHeader` with
|
|
// `ParseEXRHeaderFromMemory` before calling this function.
|
|
// Application can free EXRImage using `FreeEXRImage`
|
|
// Returns negative value and may set error string in `err` when there's an
|
|
// error
|
|
// When there was an error message, Application must free `err` with
|
|
// FreeEXRErrorMessage()
|
|
extern int LoadEXRImageFromMemory(EXRImage *image, const EXRHeader *header,
|
|
const unsigned char *memory,
|
|
const size_t size, const char **err);
|
|
|
|
// Loads multi-part OpenEXR image from a file.
|
|
// Application must setup `ParseEXRMultipartHeaderFromFile` before calling this
|
|
// function.
|
|
// Application can free EXRImage using `FreeEXRImage`
|
|
// Returns negative value and may set error string in `err` when there's an
|
|
// error
|
|
// When there was an error message, Application must free `err` with
|
|
// FreeEXRErrorMessage()
|
|
extern int LoadEXRMultipartImageFromFile(EXRImage *images,
|
|
const EXRHeader **headers,
|
|
unsigned int num_parts,
|
|
const char *filename,
|
|
const char **err);
|
|
|
|
// Loads multi-part OpenEXR image from a memory.
|
|
// Application must setup `EXRHeader*` array with
|
|
// `ParseEXRMultipartHeaderFromMemory` before calling this function.
|
|
// Application can free EXRImage using `FreeEXRImage`
|
|
// Returns negative value and may set error string in `err` when there's an
|
|
// error
|
|
// When there was an error message, Application must free `err` with
|
|
// FreeEXRErrorMessage()
|
|
extern int LoadEXRMultipartImageFromMemory(EXRImage *images,
|
|
const EXRHeader **headers,
|
|
unsigned int num_parts,
|
|
const unsigned char *memory,
|
|
const size_t size, const char **err);
|
|
|
|
// Saves multi-channel, single-frame OpenEXR image to a file.
|
|
// Returns negative value and may set error string in `err` when there's an
|
|
// error
|
|
// When there was an error message, Application must free `err` with
|
|
// FreeEXRErrorMessage()
|
|
extern int SaveEXRImageToFile(const EXRImage *image,
|
|
const EXRHeader *exr_header, const char *filename,
|
|
const char **err);
|
|
|
|
// Saves multi-channel, single-frame OpenEXR image to a memory.
|
|
// Image is compressed using EXRImage.compression value.
|
|
// Return the number of bytes if success.
|
|
// Return zero and will set error string in `err` when there's an
|
|
// error.
|
|
// When there was an error message, Application must free `err` with
|
|
// FreeEXRErrorMessage()
|
|
extern size_t SaveEXRImageToMemory(const EXRImage *image,
|
|
const EXRHeader *exr_header,
|
|
unsigned char **memory, const char **err);
|
|
|
|
// Saves multi-channel, multi-frame OpenEXR image to a memory.
|
|
// Image is compressed using EXRImage.compression value.
|
|
// File global attributes (eg. display_window) must be set in the first header.
|
|
// Returns negative value and may set error string in `err` when there's an
|
|
// error
|
|
// When there was an error message, Application must free `err` with
|
|
// FreeEXRErrorMessage()
|
|
extern int SaveEXRMultipartImageToFile(const EXRImage *images,
|
|
const EXRHeader **exr_headers,
|
|
unsigned int num_parts,
|
|
const char *filename, const char **err);
|
|
|
|
// Saves multi-channel, multi-frame OpenEXR image to a memory.
|
|
// Image is compressed using EXRImage.compression value.
|
|
// File global attributes (eg. display_window) must be set in the first header.
|
|
// Return the number of bytes if success.
|
|
// Return zero and will set error string in `err` when there's an
|
|
// error.
|
|
// When there was an error message, Application must free `err` with
|
|
// FreeEXRErrorMessage()
|
|
extern size_t SaveEXRMultipartImageToMemory(const EXRImage *images,
|
|
const EXRHeader **exr_headers,
|
|
unsigned int num_parts,
|
|
unsigned char **memory, const char **err);
|
|
// Loads single-frame OpenEXR deep image.
|
|
// Application must free memory of variables in DeepImage(image, offset_table)
|
|
// Returns negative value and may set error string in `err` when there's an
|
|
// error
|
|
// When there was an error message, Application must free `err` with
|
|
// FreeEXRErrorMessage()
|
|
extern int LoadDeepEXR(DeepImage *out_image, const char *filename,
|
|
const char **err);
|
|
|
|
// NOT YET IMPLEMENTED:
|
|
// Saves single-frame OpenEXR deep image.
|
|
// Returns negative value and may set error string in `err` when there's an
|
|
// error
|
|
// extern int SaveDeepEXR(const DeepImage *in_image, const char *filename,
|
|
// const char **err);
|
|
|
|
// NOT YET IMPLEMENTED:
|
|
// Loads multi-part OpenEXR deep image.
|
|
// Application must free memory of variables in DeepImage(image, offset_table)
|
|
// extern int LoadMultiPartDeepEXR(DeepImage **out_image, int num_parts, const
|
|
// char *filename,
|
|
// const char **err);
|
|
|
|
// For emscripten.
|
|
// Loads single-frame OpenEXR image from memory. Assume EXR image contains
|
|
// RGB(A) channels.
|
|
// Returns negative value and may set error string in `err` when there's an
|
|
// error
|
|
// When there was an error message, Application must free `err` with
|
|
// FreeEXRErrorMessage()
|
|
extern int LoadEXRFromMemory(float **out_rgba, int *width, int *height,
|
|
const unsigned char *memory, size_t size,
|
|
const char **err);
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|
|
|
|
#endif // TINYEXR_H_
|
|
|
|
#ifdef TINYEXR_IMPLEMENTATION
|
|
#ifndef TINYEXR_IMPLEMENTATION_DEFINED
|
|
#define TINYEXR_IMPLEMENTATION_DEFINED
|
|
|
|
#ifdef _WIN32
|
|
|
|
#ifndef WIN32_LEAN_AND_MEAN
|
|
#define WIN32_LEAN_AND_MEAN
|
|
#endif
|
|
#ifndef NOMINMAX
|
|
#define NOMINMAX
|
|
#endif
|
|
#include <windows.h> // for UTF-8 and memory-mapping
|
|
|
|
#if !defined(WINAPI_FAMILY) || (WINAPI_FAMILY == WINAPI_FAMILY_DESKTOP_APP)
|
|
#define TINYEXR_USE_WIN32_MMAP (1)
|
|
#endif
|
|
|
|
#elif defined(__linux__) || defined(__unix__)
|
|
#include <fcntl.h> // for open()
|
|
#include <sys/mman.h> // for memory-mapping
|
|
#include <sys/stat.h> // for stat
|
|
#include <unistd.h> // for close()
|
|
#define TINYEXR_USE_POSIX_MMAP (1)
|
|
#endif
|
|
|
|
#include <algorithm>
|
|
#include <cstdio>
|
|
#include <cstdlib>
|
|
#include <cstring>
|
|
#include <sstream>
|
|
|
|
//#include <iostream> // debug
|
|
|
|
#include <limits>
|
|
#include <string>
|
|
#include <vector>
|
|
#include <set>
|
|
|
|
// https://stackoverflow.com/questions/5047971/how-do-i-check-for-c11-support
|
|
#if __cplusplus > 199711L || (defined(_MSC_VER) && _MSC_VER >= 1900)
|
|
#define TINYEXR_HAS_CXX11 (1)
|
|
// C++11
|
|
#include <cstdint>
|
|
|
|
#if TINYEXR_USE_THREAD
|
|
#include <atomic>
|
|
#include <thread>
|
|
#endif
|
|
|
|
#else // __cplusplus > 199711L
|
|
#define TINYEXR_HAS_CXX11 (0)
|
|
#endif // __cplusplus > 199711L
|
|
|
|
#if TINYEXR_USE_OPENMP
|
|
#include <omp.h>
|
|
#endif
|
|
|
|
#if defined(TINYEXR_USE_MINIZ) && (TINYEXR_USE_MINIZ==1)
|
|
#include <miniz.h>
|
|
#else
|
|
// Issue #46. Please include your own zlib-compatible API header before
|
|
// including `tinyexr.h`
|
|
//#include "zlib.h"
|
|
#endif
|
|
|
|
#if defined(TINYEXR_USE_NANOZLIB) && (TINYEXR_USE_NANOZLIB==1)
|
|
#define NANOZLIB_IMPLEMENTATION
|
|
#include "nanozlib.h"
|
|
#endif
|
|
|
|
#if TINYEXR_USE_STB_ZLIB
|
|
// Since we don't know where a project has stb_image.h and stb_image_write.h
|
|
// and whether they are in the include path, we don't include them here, and
|
|
// instead declare the two relevant functions manually.
|
|
// from stb_image.h:
|
|
extern "C" int stbi_zlib_decode_buffer(char *obuffer, int olen, const char *ibuffer, int ilen);
|
|
// from stb_image_write.h:
|
|
extern "C" unsigned char *stbi_zlib_compress(unsigned char *data, int data_len, int *out_len, int quality);
|
|
#endif
|
|
|
|
|
|
#if TINYEXR_USE_ZFP
|
|
|
|
#ifdef __clang__
|
|
#pragma clang diagnostic push
|
|
#pragma clang diagnostic ignored "-Weverything"
|
|
#endif
|
|
|
|
#include "zfp.h"
|
|
|
|
#ifdef __clang__
|
|
#pragma clang diagnostic pop
|
|
#endif
|
|
|
|
#endif
|
|
|
|
// cond: conditional expression
|
|
// msg: std::string
|
|
// err: std::string*
|
|
#define TINYEXR_CHECK_AND_RETURN_MSG(cond, msg, err) do { \
|
|
if (!(cond)) { \
|
|
if (!err) { \
|
|
std::ostringstream ss_e; \
|
|
ss_e << __func__ << "():" << __LINE__ << msg << "\n"; \
|
|
(*err) += ss_e.str(); \
|
|
} \
|
|
return false;\
|
|
} \
|
|
} while(0)
|
|
|
|
// no error message.
|
|
#define TINYEXR_CHECK_AND_RETURN_C(cond, retcode) do { \
|
|
if (!(cond)) { \
|
|
return retcode; \
|
|
} \
|
|
} while(0)
|
|
|
|
namespace tinyexr {
|
|
|
|
#if __cplusplus > 199711L
|
|
// C++11
|
|
typedef uint64_t tinyexr_uint64;
|
|
typedef int64_t tinyexr_int64;
|
|
#else
|
|
// Although `long long` is not a standard type pre C++11, assume it is defined
|
|
// as a compiler's extension.
|
|
#ifdef __clang__
|
|
#pragma clang diagnostic push
|
|
#pragma clang diagnostic ignored "-Wc++11-long-long"
|
|
#endif
|
|
typedef unsigned long long tinyexr_uint64;
|
|
typedef long long tinyexr_int64;
|
|
#ifdef __clang__
|
|
#pragma clang diagnostic pop
|
|
#endif
|
|
#endif
|
|
|
|
// static bool IsBigEndian(void) {
|
|
// union {
|
|
// unsigned int i;
|
|
// char c[4];
|
|
// } bint = {0x01020304};
|
|
//
|
|
// return bint.c[0] == 1;
|
|
//}
|
|
|
|
static void SetErrorMessage(const std::string &msg, const char **err) {
|
|
if (err) {
|
|
#ifdef _WIN32
|
|
(*err) = _strdup(msg.c_str());
|
|
#else
|
|
(*err) = strdup(msg.c_str());
|
|
#endif
|
|
}
|
|
}
|
|
|
|
#if 0
|
|
static void SetWarningMessage(const std::string &msg, const char **warn) {
|
|
if (warn) {
|
|
#ifdef _WIN32
|
|
(*warn) = _strdup(msg.c_str());
|
|
#else
|
|
(*warn) = strdup(msg.c_str());
|
|
#endif
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static const int kEXRVersionSize = 8;
|
|
|
|
static void cpy2(unsigned short *dst_val, const unsigned short *src_val) {
|
|
unsigned char *dst = reinterpret_cast<unsigned char *>(dst_val);
|
|
const unsigned char *src = reinterpret_cast<const unsigned char *>(src_val);
|
|
|
|
dst[0] = src[0];
|
|
dst[1] = src[1];
|
|
}
|
|
|
|
static void swap2(unsigned short *val) {
|
|
#if TINYEXR_LITTLE_ENDIAN
|
|
(void)val;
|
|
#else
|
|
unsigned short tmp = *val;
|
|
unsigned char *dst = reinterpret_cast<unsigned char *>(val);
|
|
unsigned char *src = reinterpret_cast<unsigned char *>(&tmp);
|
|
|
|
dst[0] = src[1];
|
|
dst[1] = src[0];
|
|
#endif
|
|
}
|
|
|
|
#ifdef __clang__
|
|
#pragma clang diagnostic push
|
|
#pragma clang diagnostic ignored "-Wunused-function"
|
|
#endif
|
|
|
|
#ifdef __GNUC__
|
|
#pragma GCC diagnostic push
|
|
#pragma GCC diagnostic ignored "-Wunused-function"
|
|
#endif
|
|
static void cpy4(int *dst_val, const int *src_val) {
|
|
unsigned char *dst = reinterpret_cast<unsigned char *>(dst_val);
|
|
const unsigned char *src = reinterpret_cast<const unsigned char *>(src_val);
|
|
|
|
dst[0] = src[0];
|
|
dst[1] = src[1];
|
|
dst[2] = src[2];
|
|
dst[3] = src[3];
|
|
}
|
|
|
|
static void cpy4(unsigned int *dst_val, const unsigned int *src_val) {
|
|
unsigned char *dst = reinterpret_cast<unsigned char *>(dst_val);
|
|
const unsigned char *src = reinterpret_cast<const unsigned char *>(src_val);
|
|
|
|
dst[0] = src[0];
|
|
dst[1] = src[1];
|
|
dst[2] = src[2];
|
|
dst[3] = src[3];
|
|
}
|
|
|
|
static void cpy4(float *dst_val, const float *src_val) {
|
|
unsigned char *dst = reinterpret_cast<unsigned char *>(dst_val);
|
|
const unsigned char *src = reinterpret_cast<const unsigned char *>(src_val);
|
|
|
|
dst[0] = src[0];
|
|
dst[1] = src[1];
|
|
dst[2] = src[2];
|
|
dst[3] = src[3];
|
|
}
|
|
#ifdef __clang__
|
|
#pragma clang diagnostic pop
|
|
#endif
|
|
|
|
#ifdef __GNUC__
|
|
#pragma GCC diagnostic pop
|
|
#endif
|
|
|
|
static void swap4(unsigned int *val) {
|
|
#if TINYEXR_LITTLE_ENDIAN
|
|
(void)val;
|
|
#else
|
|
unsigned int tmp = *val;
|
|
unsigned char *dst = reinterpret_cast<unsigned char *>(val);
|
|
unsigned char *src = reinterpret_cast<unsigned char *>(&tmp);
|
|
|
|
dst[0] = src[3];
|
|
dst[1] = src[2];
|
|
dst[2] = src[1];
|
|
dst[3] = src[0];
|
|
#endif
|
|
}
|
|
|
|
static void swap4(int *val) {
|
|
#if TINYEXR_LITTLE_ENDIAN
|
|
(void)val;
|
|
#else
|
|
int tmp = *val;
|
|
unsigned char *dst = reinterpret_cast<unsigned char *>(val);
|
|
unsigned char *src = reinterpret_cast<unsigned char *>(&tmp);
|
|
|
|
dst[0] = src[3];
|
|
dst[1] = src[2];
|
|
dst[2] = src[1];
|
|
dst[3] = src[0];
|
|
#endif
|
|
}
|
|
|
|
static void swap4(float *val) {
|
|
#if TINYEXR_LITTLE_ENDIAN
|
|
(void)val;
|
|
#else
|
|
float tmp = *val;
|
|
unsigned char *dst = reinterpret_cast<unsigned char *>(val);
|
|
unsigned char *src = reinterpret_cast<unsigned char *>(&tmp);
|
|
|
|
dst[0] = src[3];
|
|
dst[1] = src[2];
|
|
dst[2] = src[1];
|
|
dst[3] = src[0];
|
|
#endif
|
|
}
|
|
|
|
#if 0
|
|
static void cpy8(tinyexr::tinyexr_uint64 *dst_val, const tinyexr::tinyexr_uint64 *src_val) {
|
|
unsigned char *dst = reinterpret_cast<unsigned char *>(dst_val);
|
|
const unsigned char *src = reinterpret_cast<const unsigned char *>(src_val);
|
|
|
|
dst[0] = src[0];
|
|
dst[1] = src[1];
|
|
dst[2] = src[2];
|
|
dst[3] = src[3];
|
|
dst[4] = src[4];
|
|
dst[5] = src[5];
|
|
dst[6] = src[6];
|
|
dst[7] = src[7];
|
|
}
|
|
#endif
|
|
|
|
static void swap8(tinyexr::tinyexr_uint64 *val) {
|
|
#if TINYEXR_LITTLE_ENDIAN
|
|
(void)val;
|
|
#else
|
|
tinyexr::tinyexr_uint64 tmp = (*val);
|
|
unsigned char *dst = reinterpret_cast<unsigned char *>(val);
|
|
unsigned char *src = reinterpret_cast<unsigned char *>(&tmp);
|
|
|
|
dst[0] = src[7];
|
|
dst[1] = src[6];
|
|
dst[2] = src[5];
|
|
dst[3] = src[4];
|
|
dst[4] = src[3];
|
|
dst[5] = src[2];
|
|
dst[6] = src[1];
|
|
dst[7] = src[0];
|
|
#endif
|
|
}
|
|
|
|
// https://gist.github.com/rygorous/2156668
|
|
union FP32 {
|
|
unsigned int u;
|
|
float f;
|
|
struct {
|
|
#if TINYEXR_LITTLE_ENDIAN
|
|
unsigned int Mantissa : 23;
|
|
unsigned int Exponent : 8;
|
|
unsigned int Sign : 1;
|
|
#else
|
|
unsigned int Sign : 1;
|
|
unsigned int Exponent : 8;
|
|
unsigned int Mantissa : 23;
|
|
#endif
|
|
} s;
|
|
};
|
|
|
|
#ifdef __clang__
|
|
#pragma clang diagnostic push
|
|
#pragma clang diagnostic ignored "-Wpadded"
|
|
#endif
|
|
|
|
union FP16 {
|
|
unsigned short u;
|
|
struct {
|
|
#if TINYEXR_LITTLE_ENDIAN
|
|
unsigned int Mantissa : 10;
|
|
unsigned int Exponent : 5;
|
|
unsigned int Sign : 1;
|
|
#else
|
|
unsigned int Sign : 1;
|
|
unsigned int Exponent : 5;
|
|
unsigned int Mantissa : 10;
|
|
#endif
|
|
} s;
|
|
};
|
|
|
|
#ifdef __clang__
|
|
#pragma clang diagnostic pop
|
|
#endif
|
|
|
|
static FP32 half_to_float(FP16 h) {
|
|
static const FP32 magic = {113 << 23};
|
|
static const unsigned int shifted_exp = 0x7c00
|
|
<< 13; // exponent mask after shift
|
|
FP32 o;
|
|
|
|
o.u = (h.u & 0x7fffU) << 13U; // exponent/mantissa bits
|
|
unsigned int exp_ = shifted_exp & o.u; // just the exponent
|
|
o.u += (127 - 15) << 23; // exponent adjust
|
|
|
|
// handle exponent special cases
|
|
if (exp_ == shifted_exp) // Inf/NaN?
|
|
o.u += (128 - 16) << 23; // extra exp adjust
|
|
else if (exp_ == 0) // Zero/Denormal?
|
|
{
|
|
o.u += 1 << 23; // extra exp adjust
|
|
o.f -= magic.f; // renormalize
|
|
}
|
|
|
|
o.u |= (h.u & 0x8000U) << 16U; // sign bit
|
|
return o;
|
|
}
|
|
|
|
static FP16 float_to_half_full(FP32 f) {
|
|
FP16 o = {0};
|
|
|
|
// Based on ISPC reference code (with minor modifications)
|
|
if (f.s.Exponent == 0) // Signed zero/denormal (which will underflow)
|
|
o.s.Exponent = 0;
|
|
else if (f.s.Exponent == 255) // Inf or NaN (all exponent bits set)
|
|
{
|
|
o.s.Exponent = 31;
|
|
o.s.Mantissa = f.s.Mantissa ? 0x200 : 0; // NaN->qNaN and Inf->Inf
|
|
} else // Normalized number
|
|
{
|
|
// Exponent unbias the single, then bias the halfp
|
|
int newexp = f.s.Exponent - 127 + 15;
|
|
if (newexp >= 31) // Overflow, return signed infinity
|
|
o.s.Exponent = 31;
|
|
else if (newexp <= 0) // Underflow
|
|
{
|
|
if ((14 - newexp) <= 24) // Mantissa might be non-zero
|
|
{
|
|
unsigned int mant = f.s.Mantissa | 0x800000; // Hidden 1 bit
|
|
o.s.Mantissa = mant >> (14 - newexp);
|
|
if ((mant >> (13 - newexp)) & 1) // Check for rounding
|
|
o.u++; // Round, might overflow into exp bit, but this is OK
|
|
}
|
|
} else {
|
|
o.s.Exponent = static_cast<unsigned int>(newexp);
|
|
o.s.Mantissa = f.s.Mantissa >> 13;
|
|
if (f.s.Mantissa & 0x1000) // Check for rounding
|
|
o.u++; // Round, might overflow to inf, this is OK
|
|
}
|
|
}
|
|
|
|
o.s.Sign = f.s.Sign;
|
|
return o;
|
|
}
|
|
|
|
// NOTE: From OpenEXR code
|
|
// #define IMF_INCREASING_Y 0
|
|
// #define IMF_DECREASING_Y 1
|
|
// #define IMF_RAMDOM_Y 2
|
|
//
|
|
// #define IMF_NO_COMPRESSION 0
|
|
// #define IMF_RLE_COMPRESSION 1
|
|
// #define IMF_ZIPS_COMPRESSION 2
|
|
// #define IMF_ZIP_COMPRESSION 3
|
|
// #define IMF_PIZ_COMPRESSION 4
|
|
// #define IMF_PXR24_COMPRESSION 5
|
|
// #define IMF_B44_COMPRESSION 6
|
|
// #define IMF_B44A_COMPRESSION 7
|
|
|
|
#ifdef __clang__
|
|
#pragma clang diagnostic push
|
|
|
|
#if __has_warning("-Wzero-as-null-pointer-constant")
|
|
#pragma clang diagnostic ignored "-Wzero-as-null-pointer-constant"
|
|
#endif
|
|
|
|
#endif
|
|
|
|
static const char *ReadString(std::string *s, const char *ptr, size_t len) {
|
|
// Read untile NULL(\0).
|
|
const char *p = ptr;
|
|
const char *q = ptr;
|
|
while ((size_t(q - ptr) < len) && (*q) != 0) {
|
|
q++;
|
|
}
|
|
|
|
if (size_t(q - ptr) >= len) {
|
|
(*s).clear();
|
|
return NULL;
|
|
}
|
|
|
|
(*s) = std::string(p, q);
|
|
|
|
return q + 1; // skip '\0'
|
|
}
|
|
|
|
static bool ReadAttribute(std::string *name, std::string *type,
|
|
std::vector<unsigned char> *data, size_t *marker_size,
|
|
const char *marker, size_t size) {
|
|
size_t name_len = strnlen(marker, size);
|
|
if (name_len == size) {
|
|
// String does not have a terminating character.
|
|
return false;
|
|
}
|
|
*name = std::string(marker, name_len);
|
|
|
|
marker += name_len + 1;
|
|
size -= name_len + 1;
|
|
|
|
size_t type_len = strnlen(marker, size);
|
|
if (type_len == size) {
|
|
return false;
|
|
}
|
|
*type = std::string(marker, type_len);
|
|
|
|
marker += type_len + 1;
|
|
size -= type_len + 1;
|
|
|
|
if (size < sizeof(uint32_t)) {
|
|
return false;
|
|
}
|
|
|
|
uint32_t data_len;
|
|
memcpy(&data_len, marker, sizeof(uint32_t));
|
|
tinyexr::swap4(reinterpret_cast<unsigned int *>(&data_len));
|
|
|
|
if (data_len == 0) {
|
|
if ((*type).compare("string") == 0) {
|
|
// Accept empty string attribute.
|
|
|
|
marker += sizeof(uint32_t);
|
|
size -= sizeof(uint32_t);
|
|
|
|
*marker_size = name_len + 1 + type_len + 1 + sizeof(uint32_t);
|
|
|
|
data->resize(1);
|
|
(*data)[0] = '\0';
|
|
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
marker += sizeof(uint32_t);
|
|
size -= sizeof(uint32_t);
|
|
|
|
if (size < data_len) {
|
|
return false;
|
|
}
|
|
|
|
data->resize(static_cast<size_t>(data_len));
|
|
memcpy(&data->at(0), marker, static_cast<size_t>(data_len));
|
|
|
|
*marker_size = name_len + 1 + type_len + 1 + sizeof(uint32_t) + data_len;
|
|
return true;
|
|
}
|
|
|
|
static void WriteAttributeToMemory(std::vector<unsigned char> *out,
|
|
const char *name, const char *type,
|
|
const unsigned char *data, int len) {
|
|
out->insert(out->end(), name, name + strlen(name) + 1);
|
|
out->insert(out->end(), type, type + strlen(type) + 1);
|
|
|
|
int outLen = len;
|
|
tinyexr::swap4(&outLen);
|
|
out->insert(out->end(), reinterpret_cast<unsigned char *>(&outLen),
|
|
reinterpret_cast<unsigned char *>(&outLen) + sizeof(int));
|
|
out->insert(out->end(), data, data + len);
|
|
}
|
|
|
|
typedef struct TChannelInfo {
|
|
std::string name; // less than 255 bytes long
|
|
int pixel_type;
|
|
int requested_pixel_type;
|
|
int x_sampling;
|
|
int y_sampling;
|
|
unsigned char p_linear;
|
|
unsigned char pad[3];
|
|
} ChannelInfo;
|
|
|
|
typedef struct {
|
|
int min_x;
|
|
int min_y;
|
|
int max_x;
|
|
int max_y;
|
|
} Box2iInfo;
|
|
|
|
struct HeaderInfo {
|
|
std::vector<tinyexr::ChannelInfo> channels;
|
|
std::vector<EXRAttribute> attributes;
|
|
|
|
Box2iInfo data_window;
|
|
int line_order;
|
|
Box2iInfo display_window;
|
|
float screen_window_center[2];
|
|
float screen_window_width;
|
|
float pixel_aspect_ratio;
|
|
|
|
int chunk_count;
|
|
|
|
// Tiled format
|
|
int tiled; // Non-zero if the part is tiled.
|
|
int tile_size_x;
|
|
int tile_size_y;
|
|
int tile_level_mode;
|
|
int tile_rounding_mode;
|
|
|
|
unsigned int header_len;
|
|
|
|
int compression_type;
|
|
|
|
// required for multi-part or non-image files
|
|
std::string name;
|
|
// required for multi-part or non-image files
|
|
std::string type;
|
|
|
|
void clear() {
|
|
channels.clear();
|
|
attributes.clear();
|
|
|
|
data_window.min_x = 0;
|
|
data_window.min_y = 0;
|
|
data_window.max_x = 0;
|
|
data_window.max_y = 0;
|
|
line_order = 0;
|
|
display_window.min_x = 0;
|
|
display_window.min_y = 0;
|
|
display_window.max_x = 0;
|
|
display_window.max_y = 0;
|
|
screen_window_center[0] = 0.0f;
|
|
screen_window_center[1] = 0.0f;
|
|
screen_window_width = 0.0f;
|
|
pixel_aspect_ratio = 0.0f;
|
|
|
|
chunk_count = 0;
|
|
|
|
// Tiled format
|
|
tiled = 0;
|
|
tile_size_x = 0;
|
|
tile_size_y = 0;
|
|
tile_level_mode = 0;
|
|
tile_rounding_mode = 0;
|
|
|
|
header_len = 0;
|
|
compression_type = 0;
|
|
|
|
name.clear();
|
|
type.clear();
|
|
}
|
|
};
|
|
|
|
static bool ReadChannelInfo(std::vector<ChannelInfo> &channels,
|
|
const std::vector<unsigned char> &data) {
|
|
const char *p = reinterpret_cast<const char *>(&data.at(0));
|
|
|
|
for (;;) {
|
|
if ((*p) == 0) {
|
|
break;
|
|
}
|
|
ChannelInfo info;
|
|
info.requested_pixel_type = 0;
|
|
|
|
tinyexr_int64 data_len = static_cast<tinyexr_int64>(data.size()) -
|
|
(p - reinterpret_cast<const char *>(data.data()));
|
|
if (data_len < 0) {
|
|
return false;
|
|
}
|
|
|
|
p = ReadString(&info.name, p, size_t(data_len));
|
|
if ((p == NULL) && (info.name.empty())) {
|
|
// Buffer overrun. Issue #51.
|
|
return false;
|
|
}
|
|
|
|
const unsigned char *data_end =
|
|
reinterpret_cast<const unsigned char *>(p) + 16;
|
|
if (data_end >= (data.data() + data.size())) {
|
|
return false;
|
|
}
|
|
|
|
memcpy(&info.pixel_type, p, sizeof(int));
|
|
p += 4;
|
|
info.p_linear = static_cast<unsigned char>(p[0]); // uchar
|
|
p += 1 + 3; // reserved: uchar[3]
|
|
memcpy(&info.x_sampling, p, sizeof(int)); // int
|
|
p += 4;
|
|
memcpy(&info.y_sampling, p, sizeof(int)); // int
|
|
p += 4;
|
|
|
|
tinyexr::swap4(&info.pixel_type);
|
|
tinyexr::swap4(&info.x_sampling);
|
|
tinyexr::swap4(&info.y_sampling);
|
|
|
|
channels.push_back(info);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static void WriteChannelInfo(std::vector<unsigned char> &data,
|
|
const std::vector<ChannelInfo> &channels) {
|
|
size_t sz = 0;
|
|
|
|
// Calculate total size.
|
|
for (size_t c = 0; c < channels.size(); c++) {
|
|
sz += channels[c].name.length() + 1; // +1 for \0
|
|
sz += 16; // 4 * int
|
|
}
|
|
data.resize(sz + 1);
|
|
|
|
unsigned char *p = &data.at(0);
|
|
|
|
for (size_t c = 0; c < channels.size(); c++) {
|
|
memcpy(p, channels[c].name.c_str(), channels[c].name.length());
|
|
p += channels[c].name.length();
|
|
(*p) = '\0';
|
|
p++;
|
|
|
|
int pixel_type = channels[c].requested_pixel_type;
|
|
int x_sampling = channels[c].x_sampling;
|
|
int y_sampling = channels[c].y_sampling;
|
|
tinyexr::swap4(&pixel_type);
|
|
tinyexr::swap4(&x_sampling);
|
|
tinyexr::swap4(&y_sampling);
|
|
|
|
memcpy(p, &pixel_type, sizeof(int));
|
|
p += sizeof(int);
|
|
|
|
(*p) = channels[c].p_linear;
|
|
p += 4;
|
|
|
|
memcpy(p, &x_sampling, sizeof(int));
|
|
p += sizeof(int);
|
|
|
|
memcpy(p, &y_sampling, sizeof(int));
|
|
p += sizeof(int);
|
|
}
|
|
|
|
(*p) = '\0';
|
|
}
|
|
|
|
static bool CompressZip(unsigned char *dst,
|
|
tinyexr::tinyexr_uint64 &compressedSize,
|
|
const unsigned char *src, unsigned long src_size) {
|
|
std::vector<unsigned char> tmpBuf(src_size);
|
|
|
|
//
|
|
// Apply EXR-specific? postprocess. Grabbed from OpenEXR's
|
|
// ImfZipCompressor.cpp
|
|
//
|
|
|
|
//
|
|
// Reorder the pixel data.
|
|
//
|
|
|
|
const char *srcPtr = reinterpret_cast<const char *>(src);
|
|
|
|
{
|
|
char *t1 = reinterpret_cast<char *>(&tmpBuf.at(0));
|
|
char *t2 = reinterpret_cast<char *>(&tmpBuf.at(0)) + (src_size + 1) / 2;
|
|
const char *stop = srcPtr + src_size;
|
|
|
|
for (;;) {
|
|
if (srcPtr < stop)
|
|
*(t1++) = *(srcPtr++);
|
|
else
|
|
break;
|
|
|
|
if (srcPtr < stop)
|
|
*(t2++) = *(srcPtr++);
|
|
else
|
|
break;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Predictor.
|
|
//
|
|
|
|
{
|
|
unsigned char *t = &tmpBuf.at(0) + 1;
|
|
unsigned char *stop = &tmpBuf.at(0) + src_size;
|
|
int p = t[-1];
|
|
|
|
while (t < stop) {
|
|
int d = int(t[0]) - p + (128 + 256);
|
|
p = t[0];
|
|
t[0] = static_cast<unsigned char>(d);
|
|
++t;
|
|
}
|
|
}
|
|
|
|
#if defined(TINYEXR_USE_MINIZ) && (TINYEXR_USE_MINIZ==1)
|
|
//
|
|
// Compress the data using miniz
|
|
//
|
|
|
|
mz_ulong outSize = mz_compressBound(src_size);
|
|
int ret = mz_compress(
|
|
dst, &outSize, static_cast<const unsigned char *>(&tmpBuf.at(0)),
|
|
src_size);
|
|
if (ret != MZ_OK) {
|
|
return false;
|
|
}
|
|
|
|
compressedSize = outSize;
|
|
#elif defined(TINYEXR_USE_STB_ZLIB) && (TINYEXR_USE_STB_ZLIB==1)
|
|
int outSize;
|
|
unsigned char* ret = stbi_zlib_compress(const_cast<unsigned char*>(&tmpBuf.at(0)), src_size, &outSize, 8);
|
|
if (!ret) {
|
|
return false;
|
|
}
|
|
memcpy(dst, ret, outSize);
|
|
free(ret);
|
|
|
|
compressedSize = outSize;
|
|
#elif defined(TINYEXR_USE_NANOZLIB) && (TINYEXR_USE_NANOZLIB==1)
|
|
uint64_t dstSize = nanoz_compressBound(static_cast<uint64_t>(src_size));
|
|
int outSize{0};
|
|
unsigned char *ret = nanoz_compress(&tmpBuf.at(0), src_size, &outSize, /* quality */8);
|
|
if (!ret) {
|
|
return false;
|
|
}
|
|
|
|
memcpy(dst, ret, outSize);
|
|
free(ret);
|
|
|
|
compressedSize = outSize;
|
|
#else
|
|
uLong outSize = compressBound(static_cast<uLong>(src_size));
|
|
int ret = compress(dst, &outSize, static_cast<const Bytef *>(&tmpBuf.at(0)),
|
|
src_size);
|
|
if (ret != Z_OK) {
|
|
return false;
|
|
}
|
|
|
|
compressedSize = outSize;
|
|
#endif
|
|
|
|
// Use uncompressed data when compressed data is larger than uncompressed.
|
|
// (Issue 40)
|
|
if (compressedSize >= src_size) {
|
|
compressedSize = src_size;
|
|
memcpy(dst, src, src_size);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool DecompressZip(unsigned char *dst,
|
|
unsigned long *uncompressed_size /* inout */,
|
|
const unsigned char *src, unsigned long src_size) {
|
|
if ((*uncompressed_size) == src_size) {
|
|
// Data is not compressed(Issue 40).
|
|
memcpy(dst, src, src_size);
|
|
return true;
|
|
}
|
|
std::vector<unsigned char> tmpBuf(*uncompressed_size);
|
|
|
|
#if defined(TINYEXR_USE_MINIZ) && (TINYEXR_USE_MINIZ==1)
|
|
int ret =
|
|
mz_uncompress(&tmpBuf.at(0), uncompressed_size, src, src_size);
|
|
if (MZ_OK != ret) {
|
|
return false;
|
|
}
|
|
#elif TINYEXR_USE_STB_ZLIB
|
|
int ret = stbi_zlib_decode_buffer(reinterpret_cast<char*>(&tmpBuf.at(0)),
|
|
*uncompressed_size, reinterpret_cast<const char*>(src), src_size);
|
|
if (ret < 0) {
|
|
return false;
|
|
}
|
|
#elif defined(TINYEXR_USE_NANOZLIB) && (TINYEXR_USE_NANOZLIB==1)
|
|
uint64_t dest_size = (*uncompressed_size);
|
|
uint64_t uncomp_size{0};
|
|
nanoz_status_t ret =
|
|
nanoz_uncompress(src, src_size, dest_size, &tmpBuf.at(0), &uncomp_size);
|
|
if (NANOZ_SUCCESS != ret) {
|
|
return false;
|
|
}
|
|
if ((*uncompressed_size) != uncomp_size) {
|
|
return false;
|
|
}
|
|
#else
|
|
int ret = uncompress(&tmpBuf.at(0), uncompressed_size, src, src_size);
|
|
if (Z_OK != ret) {
|
|
return false;
|
|
}
|
|
#endif
|
|
|
|
//
|
|
// Apply EXR-specific? postprocess. Grabbed from OpenEXR's
|
|
// ImfZipCompressor.cpp
|
|
//
|
|
|
|
// Predictor.
|
|
{
|
|
unsigned char *t = &tmpBuf.at(0) + 1;
|
|
unsigned char *stop = &tmpBuf.at(0) + (*uncompressed_size);
|
|
|
|
while (t < stop) {
|
|
int d = int(t[-1]) + int(t[0]) - 128;
|
|
t[0] = static_cast<unsigned char>(d);
|
|
++t;
|
|
}
|
|
}
|
|
|
|
// Reorder the pixel data.
|
|
{
|
|
const char *t1 = reinterpret_cast<const char *>(&tmpBuf.at(0));
|
|
const char *t2 = reinterpret_cast<const char *>(&tmpBuf.at(0)) +
|
|
(*uncompressed_size + 1) / 2;
|
|
char *s = reinterpret_cast<char *>(dst);
|
|
char *stop = s + (*uncompressed_size);
|
|
|
|
for (;;) {
|
|
if (s < stop)
|
|
*(s++) = *(t1++);
|
|
else
|
|
break;
|
|
|
|
if (s < stop)
|
|
*(s++) = *(t2++);
|
|
else
|
|
break;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// RLE code from OpenEXR --------------------------------------
|
|
|
|
#ifdef __clang__
|
|
#pragma clang diagnostic push
|
|
#pragma clang diagnostic ignored "-Wsign-conversion"
|
|
#if __has_warning("-Wextra-semi-stmt")
|
|
#pragma clang diagnostic ignored "-Wextra-semi-stmt"
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef _MSC_VER
|
|
#pragma warning(push)
|
|
#pragma warning(disable : 4204) // nonstandard extension used : non-constant
|
|
// aggregate initializer (also supported by GNU
|
|
// C and C99, so no big deal)
|
|
#pragma warning(disable : 4244) // 'initializing': conversion from '__int64' to
|
|
// 'int', possible loss of data
|
|
#pragma warning(disable : 4267) // 'argument': conversion from '__int64' to
|
|
// 'int', possible loss of data
|
|
#pragma warning(disable : 4996) // 'strdup': The POSIX name for this item is
|
|
// deprecated. Instead, use the ISO C and C++
|
|
// conformant name: _strdup.
|
|
#endif
|
|
|
|
const int MIN_RUN_LENGTH = 3;
|
|
const int MAX_RUN_LENGTH = 127;
|
|
|
|
//
|
|
// Compress an array of bytes, using run-length encoding,
|
|
// and return the length of the compressed data.
|
|
//
|
|
|
|
static int rleCompress(int inLength, const char in[], signed char out[]) {
|
|
const char *inEnd = in + inLength;
|
|
const char *runStart = in;
|
|
const char *runEnd = in + 1;
|
|
signed char *outWrite = out;
|
|
|
|
while (runStart < inEnd) {
|
|
while (runEnd < inEnd && *runStart == *runEnd &&
|
|
runEnd - runStart - 1 < MAX_RUN_LENGTH) {
|
|
++runEnd;
|
|
}
|
|
|
|
if (runEnd - runStart >= MIN_RUN_LENGTH) {
|
|
//
|
|
// Compressible run
|
|
//
|
|
|
|
*outWrite++ = static_cast<char>(runEnd - runStart) - 1;
|
|
*outWrite++ = *(reinterpret_cast<const signed char *>(runStart));
|
|
runStart = runEnd;
|
|
} else {
|
|
//
|
|
// Uncompressable run
|
|
//
|
|
|
|
while (runEnd < inEnd &&
|
|
((runEnd + 1 >= inEnd || *runEnd != *(runEnd + 1)) ||
|
|
(runEnd + 2 >= inEnd || *(runEnd + 1) != *(runEnd + 2))) &&
|
|
runEnd - runStart < MAX_RUN_LENGTH) {
|
|
++runEnd;
|
|
}
|
|
|
|
*outWrite++ = static_cast<char>(runStart - runEnd);
|
|
|
|
while (runStart < runEnd) {
|
|
*outWrite++ = *(reinterpret_cast<const signed char *>(runStart++));
|
|
}
|
|
}
|
|
|
|
++runEnd;
|
|
}
|
|
|
|
return static_cast<int>(outWrite - out);
|
|
}
|
|
|
|
//
|
|
// Uncompress an array of bytes compressed with rleCompress().
|
|
// Returns the length of the uncompressed data, or 0 if the
|
|
// length of the uncompressed data would be more than maxLength.
|
|
//
|
|
|
|
static int rleUncompress(int inLength, int maxLength, const signed char in[],
|
|
char out[]) {
|
|
char *outStart = out;
|
|
|
|
while (inLength > 0) {
|
|
if (*in < 0) {
|
|
int count = -(static_cast<int>(*in++));
|
|
inLength -= count + 1;
|
|
|
|
// Fixes #116: Add bounds check to in buffer.
|
|
if ((0 > (maxLength -= count)) || (inLength < 0)) return 0;
|
|
|
|
memcpy(out, in, count);
|
|
out += count;
|
|
in += count;
|
|
} else {
|
|
int count = *in++;
|
|
inLength -= 2;
|
|
|
|
if ((0 > (maxLength -= count + 1)) || (inLength < 0)) return 0;
|
|
|
|
memset(out, *reinterpret_cast<const char *>(in), count + 1);
|
|
out += count + 1;
|
|
|
|
in++;
|
|
}
|
|
}
|
|
|
|
return static_cast<int>(out - outStart);
|
|
}
|
|
|
|
#ifdef __clang__
|
|
#pragma clang diagnostic pop
|
|
#endif
|
|
|
|
// End of RLE code from OpenEXR -----------------------------------
|
|
|
|
static bool CompressRle(unsigned char *dst,
|
|
tinyexr::tinyexr_uint64 &compressedSize,
|
|
const unsigned char *src, unsigned long src_size) {
|
|
std::vector<unsigned char> tmpBuf(src_size);
|
|
|
|
//
|
|
// Apply EXR-specific? postprocess. Grabbed from OpenEXR's
|
|
// ImfRleCompressor.cpp
|
|
//
|
|
|
|
//
|
|
// Reorder the pixel data.
|
|
//
|
|
|
|
const char *srcPtr = reinterpret_cast<const char *>(src);
|
|
|
|
{
|
|
char *t1 = reinterpret_cast<char *>(&tmpBuf.at(0));
|
|
char *t2 = reinterpret_cast<char *>(&tmpBuf.at(0)) + (src_size + 1) / 2;
|
|
const char *stop = srcPtr + src_size;
|
|
|
|
for (;;) {
|
|
if (srcPtr < stop)
|
|
*(t1++) = *(srcPtr++);
|
|
else
|
|
break;
|
|
|
|
if (srcPtr < stop)
|
|
*(t2++) = *(srcPtr++);
|
|
else
|
|
break;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Predictor.
|
|
//
|
|
|
|
{
|
|
unsigned char *t = &tmpBuf.at(0) + 1;
|
|
unsigned char *stop = &tmpBuf.at(0) + src_size;
|
|
int p = t[-1];
|
|
|
|
while (t < stop) {
|
|
int d = int(t[0]) - p + (128 + 256);
|
|
p = t[0];
|
|
t[0] = static_cast<unsigned char>(d);
|
|
++t;
|
|
}
|
|
}
|
|
|
|
// outSize will be (srcSiz * 3) / 2 at max.
|
|
int outSize = rleCompress(static_cast<int>(src_size),
|
|
reinterpret_cast<const char *>(&tmpBuf.at(0)),
|
|
reinterpret_cast<signed char *>(dst));
|
|
TINYEXR_CHECK_AND_RETURN_C(outSize > 0, false);
|
|
|
|
compressedSize = static_cast<tinyexr::tinyexr_uint64>(outSize);
|
|
|
|
// Use uncompressed data when compressed data is larger than uncompressed.
|
|
// (Issue 40)
|
|
if (compressedSize >= src_size) {
|
|
compressedSize = src_size;
|
|
memcpy(dst, src, src_size);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool DecompressRle(unsigned char *dst,
|
|
const unsigned long uncompressed_size,
|
|
const unsigned char *src, unsigned long src_size) {
|
|
if (uncompressed_size == src_size) {
|
|
// Data is not compressed(Issue 40).
|
|
memcpy(dst, src, src_size);
|
|
return true;
|
|
}
|
|
|
|
// Workaround for issue #112.
|
|
// TODO(syoyo): Add more robust out-of-bounds check in `rleUncompress`.
|
|
if (src_size <= 2) {
|
|
return false;
|
|
}
|
|
|
|
std::vector<unsigned char> tmpBuf(uncompressed_size);
|
|
|
|
int ret = rleUncompress(static_cast<int>(src_size),
|
|
static_cast<int>(uncompressed_size),
|
|
reinterpret_cast<const signed char *>(src),
|
|
reinterpret_cast<char *>(&tmpBuf.at(0)));
|
|
if (ret != static_cast<int>(uncompressed_size)) {
|
|
return false;
|
|
}
|
|
|
|
//
|
|
// Apply EXR-specific? postprocess. Grabbed from OpenEXR's
|
|
// ImfRleCompressor.cpp
|
|
//
|
|
|
|
// Predictor.
|
|
{
|
|
unsigned char *t = &tmpBuf.at(0) + 1;
|
|
unsigned char *stop = &tmpBuf.at(0) + uncompressed_size;
|
|
|
|
while (t < stop) {
|
|
int d = int(t[-1]) + int(t[0]) - 128;
|
|
t[0] = static_cast<unsigned char>(d);
|
|
++t;
|
|
}
|
|
}
|
|
|
|
// Reorder the pixel data.
|
|
{
|
|
const char *t1 = reinterpret_cast<const char *>(&tmpBuf.at(0));
|
|
const char *t2 = reinterpret_cast<const char *>(&tmpBuf.at(0)) +
|
|
(uncompressed_size + 1) / 2;
|
|
char *s = reinterpret_cast<char *>(dst);
|
|
char *stop = s + uncompressed_size;
|
|
|
|
for (;;) {
|
|
if (s < stop)
|
|
*(s++) = *(t1++);
|
|
else
|
|
break;
|
|
|
|
if (s < stop)
|
|
*(s++) = *(t2++);
|
|
else
|
|
break;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
#if TINYEXR_USE_PIZ
|
|
|
|
#ifdef __clang__
|
|
#pragma clang diagnostic push
|
|
#pragma clang diagnostic ignored "-Wc++11-long-long"
|
|
#pragma clang diagnostic ignored "-Wold-style-cast"
|
|
#pragma clang diagnostic ignored "-Wpadded"
|
|
#pragma clang diagnostic ignored "-Wsign-conversion"
|
|
#pragma clang diagnostic ignored "-Wc++11-extensions"
|
|
#pragma clang diagnostic ignored "-Wconversion"
|
|
#pragma clang diagnostic ignored "-Wc++98-compat-pedantic"
|
|
|
|
#if __has_warning("-Wcast-qual")
|
|
#pragma clang diagnostic ignored "-Wcast-qual"
|
|
#endif
|
|
|
|
#if __has_warning("-Wextra-semi-stmt")
|
|
#pragma clang diagnostic ignored "-Wextra-semi-stmt"
|
|
#endif
|
|
|
|
#endif
|
|
|
|
//
|
|
// PIZ compress/uncompress, based on OpenEXR's ImfPizCompressor.cpp
|
|
//
|
|
// -----------------------------------------------------------------
|
|
// Copyright (c) 2004, Industrial Light & Magic, a division of Lucas
|
|
// Digital Ltd. LLC)
|
|
// (3 clause BSD license)
|
|
//
|
|
|
|
struct PIZChannelData {
|
|
unsigned short *start;
|
|
unsigned short *end;
|
|
int nx;
|
|
int ny;
|
|
int ys;
|
|
int size;
|
|
};
|
|
|
|
//-----------------------------------------------------------------------------
|
|
//
|
|
// 16-bit Haar Wavelet encoding and decoding
|
|
//
|
|
// The source code in this file is derived from the encoding
|
|
// and decoding routines written by Christian Rouet for his
|
|
// PIZ image file format.
|
|
//
|
|
//-----------------------------------------------------------------------------
|
|
|
|
//
|
|
// Wavelet basis functions without modulo arithmetic; they produce
|
|
// the best compression ratios when the wavelet-transformed data are
|
|
// Huffman-encoded, but the wavelet transform works only for 14-bit
|
|
// data (untransformed data values must be less than (1 << 14)).
|
|
//
|
|
|
|
inline void wenc14(unsigned short a, unsigned short b, unsigned short &l,
|
|
unsigned short &h) {
|
|
short as = static_cast<short>(a);
|
|
short bs = static_cast<short>(b);
|
|
|
|
short ms = (as + bs) >> 1;
|
|
short ds = as - bs;
|
|
|
|
l = static_cast<unsigned short>(ms);
|
|
h = static_cast<unsigned short>(ds);
|
|
}
|
|
|
|
inline void wdec14(unsigned short l, unsigned short h, unsigned short &a,
|
|
unsigned short &b) {
|
|
short ls = static_cast<short>(l);
|
|
short hs = static_cast<short>(h);
|
|
|
|
int hi = hs;
|
|
int ai = ls + (hi & 1) + (hi >> 1);
|
|
|
|
short as = static_cast<short>(ai);
|
|
short bs = static_cast<short>(ai - hi);
|
|
|
|
a = static_cast<unsigned short>(as);
|
|
b = static_cast<unsigned short>(bs);
|
|
}
|
|
|
|
//
|
|
// Wavelet basis functions with modulo arithmetic; they work with full
|
|
// 16-bit data, but Huffman-encoding the wavelet-transformed data doesn't
|
|
// compress the data quite as well.
|
|
//
|
|
|
|
const int NBITS = 16;
|
|
const int A_OFFSET = 1 << (NBITS - 1);
|
|
const int M_OFFSET = 1 << (NBITS - 1);
|
|
const int MOD_MASK = (1 << NBITS) - 1;
|
|
|
|
inline void wenc16(unsigned short a, unsigned short b, unsigned short &l,
|
|
unsigned short &h) {
|
|
int ao = (a + A_OFFSET) & MOD_MASK;
|
|
int m = ((ao + b) >> 1);
|
|
int d = ao - b;
|
|
|
|
if (d < 0) m = (m + M_OFFSET) & MOD_MASK;
|
|
|
|
d &= MOD_MASK;
|
|
|
|
l = static_cast<unsigned short>(m);
|
|
h = static_cast<unsigned short>(d);
|
|
}
|
|
|
|
inline void wdec16(unsigned short l, unsigned short h, unsigned short &a,
|
|
unsigned short &b) {
|
|
int m = l;
|
|
int d = h;
|
|
int bb = (m - (d >> 1)) & MOD_MASK;
|
|
int aa = (d + bb - A_OFFSET) & MOD_MASK;
|
|
b = static_cast<unsigned short>(bb);
|
|
a = static_cast<unsigned short>(aa);
|
|
}
|
|
|
|
//
|
|
// 2D Wavelet encoding:
|
|
//
|
|
|
|
static void wav2Encode(
|
|
unsigned short *in, // io: values are transformed in place
|
|
int nx, // i : x size
|
|
int ox, // i : x offset
|
|
int ny, // i : y size
|
|
int oy, // i : y offset
|
|
unsigned short mx) // i : maximum in[x][y] value
|
|
{
|
|
bool w14 = (mx < (1 << 14));
|
|
int n = (nx > ny) ? ny : nx;
|
|
int p = 1; // == 1 << level
|
|
int p2 = 2; // == 1 << (level+1)
|
|
|
|
//
|
|
// Hierarchical loop on smaller dimension n
|
|
//
|
|
|
|
while (p2 <= n) {
|
|
unsigned short *py = in;
|
|
unsigned short *ey = in + oy * (ny - p2);
|
|
int oy1 = oy * p;
|
|
int oy2 = oy * p2;
|
|
int ox1 = ox * p;
|
|
int ox2 = ox * p2;
|
|
unsigned short i00, i01, i10, i11;
|
|
|
|
//
|
|
// Y loop
|
|
//
|
|
|
|
for (; py <= ey; py += oy2) {
|
|
unsigned short *px = py;
|
|
unsigned short *ex = py + ox * (nx - p2);
|
|
|
|
//
|
|
// X loop
|
|
//
|
|
|
|
for (; px <= ex; px += ox2) {
|
|
unsigned short *p01 = px + ox1;
|
|
unsigned short *p10 = px + oy1;
|
|
unsigned short *p11 = p10 + ox1;
|
|
|
|
//
|
|
// 2D wavelet encoding
|
|
//
|
|
|
|
if (w14) {
|
|
wenc14(*px, *p01, i00, i01);
|
|
wenc14(*p10, *p11, i10, i11);
|
|
wenc14(i00, i10, *px, *p10);
|
|
wenc14(i01, i11, *p01, *p11);
|
|
} else {
|
|
wenc16(*px, *p01, i00, i01);
|
|
wenc16(*p10, *p11, i10, i11);
|
|
wenc16(i00, i10, *px, *p10);
|
|
wenc16(i01, i11, *p01, *p11);
|
|
}
|
|
}
|
|
|
|
//
|
|
// Encode (1D) odd column (still in Y loop)
|
|
//
|
|
|
|
if (nx & p) {
|
|
unsigned short *p10 = px + oy1;
|
|
|
|
if (w14)
|
|
wenc14(*px, *p10, i00, *p10);
|
|
else
|
|
wenc16(*px, *p10, i00, *p10);
|
|
|
|
*px = i00;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Encode (1D) odd line (must loop in X)
|
|
//
|
|
|
|
if (ny & p) {
|
|
unsigned short *px = py;
|
|
unsigned short *ex = py + ox * (nx - p2);
|
|
|
|
for (; px <= ex; px += ox2) {
|
|
unsigned short *p01 = px + ox1;
|
|
|
|
if (w14)
|
|
wenc14(*px, *p01, i00, *p01);
|
|
else
|
|
wenc16(*px, *p01, i00, *p01);
|
|
|
|
*px = i00;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Next level
|
|
//
|
|
|
|
p = p2;
|
|
p2 <<= 1;
|
|
}
|
|
}
|
|
|
|
//
|
|
// 2D Wavelet decoding:
|
|
//
|
|
|
|
static void wav2Decode(
|
|
unsigned short *in, // io: values are transformed in place
|
|
int nx, // i : x size
|
|
int ox, // i : x offset
|
|
int ny, // i : y size
|
|
int oy, // i : y offset
|
|
unsigned short mx) // i : maximum in[x][y] value
|
|
{
|
|
bool w14 = (mx < (1 << 14));
|
|
int n = (nx > ny) ? ny : nx;
|
|
int p = 1;
|
|
int p2;
|
|
|
|
//
|
|
// Search max level
|
|
//
|
|
|
|
while (p <= n) p <<= 1;
|
|
|
|
p >>= 1;
|
|
p2 = p;
|
|
p >>= 1;
|
|
|
|
//
|
|
// Hierarchical loop on smaller dimension n
|
|
//
|
|
|
|
while (p >= 1) {
|
|
unsigned short *py = in;
|
|
unsigned short *ey = in + oy * (ny - p2);
|
|
int oy1 = oy * p;
|
|
int oy2 = oy * p2;
|
|
int ox1 = ox * p;
|
|
int ox2 = ox * p2;
|
|
unsigned short i00, i01, i10, i11;
|
|
|
|
//
|
|
// Y loop
|
|
//
|
|
|
|
for (; py <= ey; py += oy2) {
|
|
unsigned short *px = py;
|
|
unsigned short *ex = py + ox * (nx - p2);
|
|
|
|
//
|
|
// X loop
|
|
//
|
|
|
|
for (; px <= ex; px += ox2) {
|
|
unsigned short *p01 = px + ox1;
|
|
unsigned short *p10 = px + oy1;
|
|
unsigned short *p11 = p10 + ox1;
|
|
|
|
//
|
|
// 2D wavelet decoding
|
|
//
|
|
|
|
if (w14) {
|
|
wdec14(*px, *p10, i00, i10);
|
|
wdec14(*p01, *p11, i01, i11);
|
|
wdec14(i00, i01, *px, *p01);
|
|
wdec14(i10, i11, *p10, *p11);
|
|
} else {
|
|
wdec16(*px, *p10, i00, i10);
|
|
wdec16(*p01, *p11, i01, i11);
|
|
wdec16(i00, i01, *px, *p01);
|
|
wdec16(i10, i11, *p10, *p11);
|
|
}
|
|
}
|
|
|
|
//
|
|
// Decode (1D) odd column (still in Y loop)
|
|
//
|
|
|
|
if (nx & p) {
|
|
unsigned short *p10 = px + oy1;
|
|
|
|
if (w14)
|
|
wdec14(*px, *p10, i00, *p10);
|
|
else
|
|
wdec16(*px, *p10, i00, *p10);
|
|
|
|
*px = i00;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Decode (1D) odd line (must loop in X)
|
|
//
|
|
|
|
if (ny & p) {
|
|
unsigned short *px = py;
|
|
unsigned short *ex = py + ox * (nx - p2);
|
|
|
|
for (; px <= ex; px += ox2) {
|
|
unsigned short *p01 = px + ox1;
|
|
|
|
if (w14)
|
|
wdec14(*px, *p01, i00, *p01);
|
|
else
|
|
wdec16(*px, *p01, i00, *p01);
|
|
|
|
*px = i00;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Next level
|
|
//
|
|
|
|
p2 = p;
|
|
p >>= 1;
|
|
}
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
//
|
|
// 16-bit Huffman compression and decompression.
|
|
//
|
|
// The source code in this file is derived from the 8-bit
|
|
// Huffman compression and decompression routines written
|
|
// by Christian Rouet for his PIZ image file format.
|
|
//
|
|
//-----------------------------------------------------------------------------
|
|
|
|
// Adds some modification for tinyexr.
|
|
|
|
const int HUF_ENCBITS = 16; // literal (value) bit length
|
|
const int HUF_DECBITS = 14; // decoding bit size (>= 8)
|
|
|
|
const int HUF_ENCSIZE = (1 << HUF_ENCBITS) + 1; // encoding table size
|
|
const int HUF_DECSIZE = 1 << HUF_DECBITS; // decoding table size
|
|
const int HUF_DECMASK = HUF_DECSIZE - 1;
|
|
|
|
struct HufDec { // short code long code
|
|
//-------------------------------
|
|
unsigned int len : 8; // code length 0
|
|
unsigned int lit : 24; // lit p size
|
|
unsigned int *p; // 0 lits
|
|
};
|
|
|
|
inline long long hufLength(long long code) { return code & 63; }
|
|
|
|
inline long long hufCode(long long code) { return code >> 6; }
|
|
|
|
inline void outputBits(int nBits, long long bits, long long &c, int &lc,
|
|
char *&out) {
|
|
c <<= nBits;
|
|
lc += nBits;
|
|
|
|
c |= bits;
|
|
|
|
while (lc >= 8) *out++ = static_cast<char>((c >> (lc -= 8)));
|
|
}
|
|
|
|
inline long long getBits(int nBits, long long &c, int &lc, const char *&in) {
|
|
while (lc < nBits) {
|
|
c = (c << 8) | *(reinterpret_cast<const unsigned char *>(in++));
|
|
lc += 8;
|
|
}
|
|
|
|
lc -= nBits;
|
|
return (c >> lc) & ((1 << nBits) - 1);
|
|
}
|
|
|
|
//
|
|
// ENCODING TABLE BUILDING & (UN)PACKING
|
|
//
|
|
|
|
//
|
|
// Build a "canonical" Huffman code table:
|
|
// - for each (uncompressed) symbol, hcode contains the length
|
|
// of the corresponding code (in the compressed data)
|
|
// - canonical codes are computed and stored in hcode
|
|
// - the rules for constructing canonical codes are as follows:
|
|
// * shorter codes (if filled with zeroes to the right)
|
|
// have a numerically higher value than longer codes
|
|
// * for codes with the same length, numerical values
|
|
// increase with numerical symbol values
|
|
// - because the canonical code table can be constructed from
|
|
// symbol lengths alone, the code table can be transmitted
|
|
// without sending the actual code values
|
|
// - see http://www.compressconsult.com/huffman/
|
|
//
|
|
|
|
static void hufCanonicalCodeTable(long long hcode[HUF_ENCSIZE]) {
|
|
long long n[59];
|
|
|
|
//
|
|
// For each i from 0 through 58, count the
|
|
// number of different codes of length i, and
|
|
// store the count in n[i].
|
|
//
|
|
|
|
for (int i = 0; i <= 58; ++i) n[i] = 0;
|
|
|
|
for (int i = 0; i < HUF_ENCSIZE; ++i) n[hcode[i]] += 1;
|
|
|
|
//
|
|
// For each i from 58 through 1, compute the
|
|
// numerically lowest code with length i, and
|
|
// store that code in n[i].
|
|
//
|
|
|
|
long long c = 0;
|
|
|
|
for (int i = 58; i > 0; --i) {
|
|
long long nc = ((c + n[i]) >> 1);
|
|
n[i] = c;
|
|
c = nc;
|
|
}
|
|
|
|
//
|
|
// hcode[i] contains the length, l, of the
|
|
// code for symbol i. Assign the next available
|
|
// code of length l to the symbol and store both
|
|
// l and the code in hcode[i].
|
|
//
|
|
|
|
for (int i = 0; i < HUF_ENCSIZE; ++i) {
|
|
int l = static_cast<int>(hcode[i]);
|
|
|
|
if (l > 0) hcode[i] = l | (n[l]++ << 6);
|
|
}
|
|
}
|
|
|
|
//
|
|
// Compute Huffman codes (based on frq input) and store them in frq:
|
|
// - code structure is : [63:lsb - 6:msb] | [5-0: bit length];
|
|
// - max code length is 58 bits;
|
|
// - codes outside the range [im-iM] have a null length (unused values);
|
|
// - original frequencies are destroyed;
|
|
// - encoding tables are used by hufEncode() and hufBuildDecTable();
|
|
//
|
|
|
|
struct FHeapCompare {
|
|
bool operator()(long long *a, long long *b) { return *a > *b; }
|
|
};
|
|
|
|
static bool hufBuildEncTable(
|
|
long long *frq, // io: input frequencies [HUF_ENCSIZE], output table
|
|
int *im, // o: min frq index
|
|
int *iM) // o: max frq index
|
|
{
|
|
//
|
|
// This function assumes that when it is called, array frq
|
|
// indicates the frequency of all possible symbols in the data
|
|
// that are to be Huffman-encoded. (frq[i] contains the number
|
|
// of occurrences of symbol i in the data.)
|
|
//
|
|
// The loop below does three things:
|
|
//
|
|
// 1) Finds the minimum and maximum indices that point
|
|
// to non-zero entries in frq:
|
|
//
|
|
// frq[im] != 0, and frq[i] == 0 for all i < im
|
|
// frq[iM] != 0, and frq[i] == 0 for all i > iM
|
|
//
|
|
// 2) Fills array fHeap with pointers to all non-zero
|
|
// entries in frq.
|
|
//
|
|
// 3) Initializes array hlink such that hlink[i] == i
|
|
// for all array entries.
|
|
//
|
|
|
|
std::vector<int> hlink(HUF_ENCSIZE);
|
|
std::vector<long long *> fHeap(HUF_ENCSIZE);
|
|
|
|
*im = 0;
|
|
|
|
while (!frq[*im]) (*im)++;
|
|
|
|
int nf = 0;
|
|
|
|
for (int i = *im; i < HUF_ENCSIZE; i++) {
|
|
hlink[i] = i;
|
|
|
|
if (frq[i]) {
|
|
fHeap[nf] = &frq[i];
|
|
nf++;
|
|
*iM = i;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Add a pseudo-symbol, with a frequency count of 1, to frq;
|
|
// adjust the fHeap and hlink array accordingly. Function
|
|
// hufEncode() uses the pseudo-symbol for run-length encoding.
|
|
//
|
|
|
|
(*iM)++;
|
|
frq[*iM] = 1;
|
|
fHeap[nf] = &frq[*iM];
|
|
nf++;
|
|
|
|
//
|
|
// Build an array, scode, such that scode[i] contains the number
|
|
// of bits assigned to symbol i. Conceptually this is done by
|
|
// constructing a tree whose leaves are the symbols with non-zero
|
|
// frequency:
|
|
//
|
|
// Make a heap that contains all symbols with a non-zero frequency,
|
|
// with the least frequent symbol on top.
|
|
//
|
|
// Repeat until only one symbol is left on the heap:
|
|
//
|
|
// Take the two least frequent symbols off the top of the heap.
|
|
// Create a new node that has first two nodes as children, and
|
|
// whose frequency is the sum of the frequencies of the first
|
|
// two nodes. Put the new node back into the heap.
|
|
//
|
|
// The last node left on the heap is the root of the tree. For each
|
|
// leaf node, the distance between the root and the leaf is the length
|
|
// of the code for the corresponding symbol.
|
|
//
|
|
// The loop below doesn't actually build the tree; instead we compute
|
|
// the distances of the leaves from the root on the fly. When a new
|
|
// node is added to the heap, then that node's descendants are linked
|
|
// into a single linear list that starts at the new node, and the code
|
|
// lengths of the descendants (that is, their distance from the root
|
|
// of the tree) are incremented by one.
|
|
//
|
|
|
|
std::make_heap(&fHeap[0], &fHeap[nf], FHeapCompare());
|
|
|
|
std::vector<long long> scode(HUF_ENCSIZE);
|
|
memset(scode.data(), 0, sizeof(long long) * HUF_ENCSIZE);
|
|
|
|
while (nf > 1) {
|
|
//
|
|
// Find the indices, mm and m, of the two smallest non-zero frq
|
|
// values in fHeap, add the smallest frq to the second-smallest
|
|
// frq, and remove the smallest frq value from fHeap.
|
|
//
|
|
|
|
int mm = fHeap[0] - frq;
|
|
std::pop_heap(&fHeap[0], &fHeap[nf], FHeapCompare());
|
|
--nf;
|
|
|
|
int m = fHeap[0] - frq;
|
|
std::pop_heap(&fHeap[0], &fHeap[nf], FHeapCompare());
|
|
|
|
frq[m] += frq[mm];
|
|
std::push_heap(&fHeap[0], &fHeap[nf], FHeapCompare());
|
|
|
|
//
|
|
// The entries in scode are linked into lists with the
|
|
// entries in hlink serving as "next" pointers and with
|
|
// the end of a list marked by hlink[j] == j.
|
|
//
|
|
// Traverse the lists that start at scode[m] and scode[mm].
|
|
// For each element visited, increment the length of the
|
|
// corresponding code by one bit. (If we visit scode[j]
|
|
// during the traversal, then the code for symbol j becomes
|
|
// one bit longer.)
|
|
//
|
|
// Merge the lists that start at scode[m] and scode[mm]
|
|
// into a single list that starts at scode[m].
|
|
//
|
|
|
|
//
|
|
// Add a bit to all codes in the first list.
|
|
//
|
|
|
|
for (int j = m;; j = hlink[j]) {
|
|
scode[j]++;
|
|
|
|
TINYEXR_CHECK_AND_RETURN_C(scode[j] <= 58, false);
|
|
|
|
if (hlink[j] == j) {
|
|
//
|
|
// Merge the two lists.
|
|
//
|
|
|
|
hlink[j] = mm;
|
|
break;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Add a bit to all codes in the second list
|
|
//
|
|
|
|
for (int j = mm;; j = hlink[j]) {
|
|
scode[j]++;
|
|
|
|
TINYEXR_CHECK_AND_RETURN_C(scode[j] <= 58, false);
|
|
|
|
if (hlink[j] == j) break;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Build a canonical Huffman code table, replacing the code
|
|
// lengths in scode with (code, code length) pairs. Copy the
|
|
// code table from scode into frq.
|
|
//
|
|
|
|
hufCanonicalCodeTable(scode.data());
|
|
memcpy(frq, scode.data(), sizeof(long long) * HUF_ENCSIZE);
|
|
|
|
return true;
|
|
}
|
|
|
|
//
|
|
// Pack an encoding table:
|
|
// - only code lengths, not actual codes, are stored
|
|
// - runs of zeroes are compressed as follows:
|
|
//
|
|
// unpacked packed
|
|
// --------------------------------
|
|
// 1 zero 0 (6 bits)
|
|
// 2 zeroes 59
|
|
// 3 zeroes 60
|
|
// 4 zeroes 61
|
|
// 5 zeroes 62
|
|
// n zeroes (6 or more) 63 n-6 (6 + 8 bits)
|
|
//
|
|
|
|
const int SHORT_ZEROCODE_RUN = 59;
|
|
const int LONG_ZEROCODE_RUN = 63;
|
|
const int SHORTEST_LONG_RUN = 2 + LONG_ZEROCODE_RUN - SHORT_ZEROCODE_RUN;
|
|
const int LONGEST_LONG_RUN = 255 + SHORTEST_LONG_RUN;
|
|
|
|
static void hufPackEncTable(
|
|
const long long *hcode, // i : encoding table [HUF_ENCSIZE]
|
|
int im, // i : min hcode index
|
|
int iM, // i : max hcode index
|
|
char **pcode) // o: ptr to packed table (updated)
|
|
{
|
|
char *p = *pcode;
|
|
long long c = 0;
|
|
int lc = 0;
|
|
|
|
for (; im <= iM; im++) {
|
|
int l = hufLength(hcode[im]);
|
|
|
|
if (l == 0) {
|
|
int zerun = 1;
|
|
|
|
while ((im < iM) && (zerun < LONGEST_LONG_RUN)) {
|
|
if (hufLength(hcode[im + 1]) > 0) break;
|
|
im++;
|
|
zerun++;
|
|
}
|
|
|
|
if (zerun >= 2) {
|
|
if (zerun >= SHORTEST_LONG_RUN) {
|
|
outputBits(6, LONG_ZEROCODE_RUN, c, lc, p);
|
|
outputBits(8, zerun - SHORTEST_LONG_RUN, c, lc, p);
|
|
} else {
|
|
outputBits(6, SHORT_ZEROCODE_RUN + zerun - 2, c, lc, p);
|
|
}
|
|
continue;
|
|
}
|
|
}
|
|
|
|
outputBits(6, l, c, lc, p);
|
|
}
|
|
|
|
if (lc > 0) *p++ = (unsigned char)(c << (8 - lc));
|
|
|
|
*pcode = p;
|
|
}
|
|
|
|
//
|
|
// Unpack an encoding table packed by hufPackEncTable():
|
|
//
|
|
|
|
static bool hufUnpackEncTable(
|
|
const char **pcode, // io: ptr to packed table (updated)
|
|
int ni, // i : input size (in bytes)
|
|
int im, // i : min hcode index
|
|
int iM, // i : max hcode index
|
|
long long *hcode) // o: encoding table [HUF_ENCSIZE]
|
|
{
|
|
memset(hcode, 0, sizeof(long long) * HUF_ENCSIZE);
|
|
|
|
const char *p = *pcode;
|
|
long long c = 0;
|
|
int lc = 0;
|
|
|
|
for (; im <= iM; im++) {
|
|
if (p - *pcode >= ni) {
|
|
return false;
|
|
}
|
|
|
|
long long l = hcode[im] = getBits(6, c, lc, p); // code length
|
|
|
|
if (l == (long long)LONG_ZEROCODE_RUN) {
|
|
if (p - *pcode > ni) {
|
|
return false;
|
|
}
|
|
|
|
int zerun = getBits(8, c, lc, p) + SHORTEST_LONG_RUN;
|
|
|
|
if (im + zerun > iM + 1) {
|
|
return false;
|
|
}
|
|
|
|
while (zerun--) hcode[im++] = 0;
|
|
|
|
im--;
|
|
} else if (l >= (long long)SHORT_ZEROCODE_RUN) {
|
|
int zerun = l - SHORT_ZEROCODE_RUN + 2;
|
|
|
|
if (im + zerun > iM + 1) {
|
|
return false;
|
|
}
|
|
|
|
while (zerun--) hcode[im++] = 0;
|
|
|
|
im--;
|
|
}
|
|
}
|
|
|
|
*pcode = const_cast<char *>(p);
|
|
|
|
hufCanonicalCodeTable(hcode);
|
|
|
|
return true;
|
|
}
|
|
|
|
//
|
|
// DECODING TABLE BUILDING
|
|
//
|
|
|
|
//
|
|
// Clear a newly allocated decoding table so that it contains only zeroes.
|
|
//
|
|
|
|
static void hufClearDecTable(HufDec *hdecod) // io: (allocated by caller)
|
|
// decoding table [HUF_DECSIZE]
|
|
{
|
|
for (int i = 0; i < HUF_DECSIZE; i++) {
|
|
hdecod[i].len = 0;
|
|
hdecod[i].lit = 0;
|
|
hdecod[i].p = NULL;
|
|
}
|
|
// memset(hdecod, 0, sizeof(HufDec) * HUF_DECSIZE);
|
|
}
|
|
|
|
//
|
|
// Build a decoding hash table based on the encoding table hcode:
|
|
// - short codes (<= HUF_DECBITS) are resolved with a single table access;
|
|
// - long code entry allocations are not optimized, because long codes are
|
|
// unfrequent;
|
|
// - decoding tables are used by hufDecode();
|
|
//
|
|
|
|
static bool hufBuildDecTable(const long long *hcode, // i : encoding table
|
|
int im, // i : min index in hcode
|
|
int iM, // i : max index in hcode
|
|
HufDec *hdecod) // o: (allocated by caller)
|
|
// decoding table [HUF_DECSIZE]
|
|
{
|
|
//
|
|
// Init hashtable & loop on all codes.
|
|
// Assumes that hufClearDecTable(hdecod) has already been called.
|
|
//
|
|
|
|
for (; im <= iM; im++) {
|
|
long long c = hufCode(hcode[im]);
|
|
int l = hufLength(hcode[im]);
|
|
|
|
if (c >> l) {
|
|
//
|
|
// Error: c is supposed to be an l-bit code,
|
|
// but c contains a value that is greater
|
|
// than the largest l-bit number.
|
|
//
|
|
|
|
// invalidTableEntry();
|
|
return false;
|
|
}
|
|
|
|
if (l > HUF_DECBITS) {
|
|
//
|
|
// Long code: add a secondary entry
|
|
//
|
|
|
|
HufDec *pl = hdecod + (c >> (l - HUF_DECBITS));
|
|
|
|
if (pl->len) {
|
|
//
|
|
// Error: a short code has already
|
|
// been stored in table entry *pl.
|
|
//
|
|
|
|
// invalidTableEntry();
|
|
return false;
|
|
}
|
|
|
|
pl->lit++;
|
|
|
|
if (pl->p) {
|
|
unsigned int *p = pl->p;
|
|
pl->p = new unsigned int[pl->lit];
|
|
|
|
for (unsigned int i = 0; i < pl->lit - 1u; ++i) pl->p[i] = p[i];
|
|
|
|
delete[] p;
|
|
} else {
|
|
pl->p = new unsigned int[1];
|
|
}
|
|
|
|
pl->p[pl->lit - 1] = im;
|
|
} else if (l) {
|
|
//
|
|
// Short code: init all primary entries
|
|
//
|
|
|
|
HufDec *pl = hdecod + (c << (HUF_DECBITS - l));
|
|
|
|
for (long long i = 1ULL << (HUF_DECBITS - l); i > 0; i--, pl++) {
|
|
if (pl->len || pl->p) {
|
|
//
|
|
// Error: a short code or a long code has
|
|
// already been stored in table entry *pl.
|
|
//
|
|
|
|
// invalidTableEntry();
|
|
return false;
|
|
}
|
|
|
|
pl->len = l;
|
|
pl->lit = im;
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
//
|
|
// Free the long code entries of a decoding table built by hufBuildDecTable()
|
|
//
|
|
|
|
static void hufFreeDecTable(HufDec *hdecod) // io: Decoding table
|
|
{
|
|
for (int i = 0; i < HUF_DECSIZE; i++) {
|
|
if (hdecod[i].p) {
|
|
delete[] hdecod[i].p;
|
|
hdecod[i].p = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
// ENCODING
|
|
//
|
|
|
|
inline void outputCode(long long code, long long &c, int &lc, char *&out) {
|
|
outputBits(hufLength(code), hufCode(code), c, lc, out);
|
|
}
|
|
|
|
inline void sendCode(long long sCode, int runCount, long long runCode,
|
|
long long &c, int &lc, char *&out) {
|
|
//
|
|
// Output a run of runCount instances of the symbol sCount.
|
|
// Output the symbols explicitly, or if that is shorter, output
|
|
// the sCode symbol once followed by a runCode symbol and runCount
|
|
// expressed as an 8-bit number.
|
|
//
|
|
|
|
if (hufLength(sCode) + hufLength(runCode) + 8 < hufLength(sCode) * runCount) {
|
|
outputCode(sCode, c, lc, out);
|
|
outputCode(runCode, c, lc, out);
|
|
outputBits(8, runCount, c, lc, out);
|
|
} else {
|
|
while (runCount-- >= 0) outputCode(sCode, c, lc, out);
|
|
}
|
|
}
|
|
|
|
//
|
|
// Encode (compress) ni values based on the Huffman encoding table hcode:
|
|
//
|
|
|
|
static int hufEncode // return: output size (in bits)
|
|
(const long long *hcode, // i : encoding table
|
|
const unsigned short *in, // i : uncompressed input buffer
|
|
const int ni, // i : input buffer size (in bytes)
|
|
int rlc, // i : rl code
|
|
char *out) // o: compressed output buffer
|
|
{
|
|
char *outStart = out;
|
|
long long c = 0; // bits not yet written to out
|
|
int lc = 0; // number of valid bits in c (LSB)
|
|
int s = in[0];
|
|
int cs = 0;
|
|
|
|
//
|
|
// Loop on input values
|
|
//
|
|
|
|
for (int i = 1; i < ni; i++) {
|
|
//
|
|
// Count same values or send code
|
|
//
|
|
|
|
if (s == in[i] && cs < 255) {
|
|
cs++;
|
|
} else {
|
|
sendCode(hcode[s], cs, hcode[rlc], c, lc, out);
|
|
cs = 0;
|
|
}
|
|
|
|
s = in[i];
|
|
}
|
|
|
|
//
|
|
// Send remaining code
|
|
//
|
|
|
|
sendCode(hcode[s], cs, hcode[rlc], c, lc, out);
|
|
|
|
if (lc) *out = (c << (8 - lc)) & 0xff;
|
|
|
|
return (out - outStart) * 8 + lc;
|
|
}
|
|
|
|
//
|
|
// DECODING
|
|
//
|
|
|
|
//
|
|
// In order to force the compiler to inline them,
|
|
// getChar() and getCode() are implemented as macros
|
|
// instead of "inline" functions.
|
|
//
|
|
|
|
#define getChar(c, lc, in) \
|
|
{ \
|
|
c = (c << 8) | *(unsigned char *)(in++); \
|
|
lc += 8; \
|
|
}
|
|
|
|
#if 0
|
|
#define getCode(po, rlc, c, lc, in, out, ob, oe) \
|
|
{ \
|
|
if (po == rlc) { \
|
|
if (lc < 8) getChar(c, lc, in); \
|
|
\
|
|
lc -= 8; \
|
|
\
|
|
unsigned char cs = (c >> lc); \
|
|
\
|
|
if (out + cs > oe) return false; \
|
|
\
|
|
/* TinyEXR issue 78 */ \
|
|
unsigned short s = out[-1]; \
|
|
\
|
|
while (cs-- > 0) *out++ = s; \
|
|
} else if (out < oe) { \
|
|
*out++ = po; \
|
|
} else { \
|
|
return false; \
|
|
} \
|
|
}
|
|
#else
|
|
static bool getCode(int po, int rlc, long long &c, int &lc, const char *&in,
|
|
const char *in_end, unsigned short *&out,
|
|
const unsigned short *ob, const unsigned short *oe) {
|
|
(void)ob;
|
|
if (po == rlc) {
|
|
if (lc < 8) {
|
|
/* TinyEXR issue 78 */
|
|
/* TinyEXR issue 160. in + 1 -> in */
|
|
if (in >= in_end) {
|
|
return false;
|
|
}
|
|
|
|
getChar(c, lc, in);
|
|
}
|
|
|
|
lc -= 8;
|
|
|
|
unsigned char cs = (c >> lc);
|
|
|
|
if (out + cs > oe) return false;
|
|
|
|
// Bounds check for safety
|
|
// Issue 100.
|
|
if ((out - 1) < ob) return false;
|
|
unsigned short s = out[-1];
|
|
|
|
while (cs-- > 0) *out++ = s;
|
|
} else if (out < oe) {
|
|
*out++ = po;
|
|
} else {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
//
|
|
// Decode (uncompress) ni bits based on encoding & decoding tables:
|
|
//
|
|
|
|
static bool hufDecode(const long long *hcode, // i : encoding table
|
|
const HufDec *hdecod, // i : decoding table
|
|
const char *in, // i : compressed input buffer
|
|
int ni, // i : input size (in bits)
|
|
int rlc, // i : run-length code
|
|
int no, // i : expected output size (in bytes)
|
|
unsigned short *out) // o: uncompressed output buffer
|
|
{
|
|
long long c = 0;
|
|
int lc = 0;
|
|
unsigned short *outb = out; // begin
|
|
unsigned short *oe = out + no; // end
|
|
const char *ie = in + (ni + 7) / 8; // input byte size
|
|
|
|
//
|
|
// Loop on input bytes
|
|
//
|
|
|
|
while (in < ie) {
|
|
getChar(c, lc, in);
|
|
|
|
//
|
|
// Access decoding table
|
|
//
|
|
|
|
while (lc >= HUF_DECBITS) {
|
|
const HufDec pl = hdecod[(c >> (lc - HUF_DECBITS)) & HUF_DECMASK];
|
|
|
|
if (pl.len) {
|
|
//
|
|
// Get short code
|
|
//
|
|
|
|
lc -= pl.len;
|
|
// std::cout << "lit = " << pl.lit << std::endl;
|
|
// std::cout << "rlc = " << rlc << std::endl;
|
|
// std::cout << "c = " << c << std::endl;
|
|
// std::cout << "lc = " << lc << std::endl;
|
|
// std::cout << "in = " << in << std::endl;
|
|
// std::cout << "out = " << out << std::endl;
|
|
// std::cout << "oe = " << oe << std::endl;
|
|
if (!getCode(pl.lit, rlc, c, lc, in, ie, out, outb, oe)) {
|
|
return false;
|
|
}
|
|
} else {
|
|
if (!pl.p) {
|
|
return false;
|
|
}
|
|
// invalidCode(); // wrong code
|
|
|
|
//
|
|
// Search long code
|
|
//
|
|
|
|
unsigned int j;
|
|
|
|
for (j = 0; j < pl.lit; j++) {
|
|
int l = hufLength(hcode[pl.p[j]]);
|
|
|
|
while (lc < l && in < ie) // get more bits
|
|
getChar(c, lc, in);
|
|
|
|
if (lc >= l) {
|
|
if (hufCode(hcode[pl.p[j]]) ==
|
|
((c >> (lc - l)) & (((long long)(1) << l) - 1))) {
|
|
//
|
|
// Found : get long code
|
|
//
|
|
|
|
lc -= l;
|
|
if (!getCode(pl.p[j], rlc, c, lc, in, ie, out, outb, oe)) {
|
|
return false;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (j == pl.lit) {
|
|
return false;
|
|
// invalidCode(); // Not found
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
// Get remaining (short) codes
|
|
//
|
|
|
|
int i = (8 - ni) & 7;
|
|
c >>= i;
|
|
lc -= i;
|
|
|
|
while (lc > 0) {
|
|
const HufDec pl = hdecod[(c << (HUF_DECBITS - lc)) & HUF_DECMASK];
|
|
|
|
if (pl.len) {
|
|
lc -= pl.len;
|
|
if (!getCode(pl.lit, rlc, c, lc, in, ie, out, outb, oe)) {
|
|
return false;
|
|
}
|
|
} else {
|
|
return false;
|
|
// invalidCode(); // wrong (long) code
|
|
}
|
|
}
|
|
|
|
if (out - outb != no) {
|
|
return false;
|
|
}
|
|
// notEnoughData ();
|
|
|
|
return true;
|
|
}
|
|
|
|
static void countFrequencies(std::vector<long long> &freq,
|
|
const unsigned short data[/*n*/], int n) {
|
|
for (int i = 0; i < HUF_ENCSIZE; ++i) freq[i] = 0;
|
|
|
|
for (int i = 0; i < n; ++i) ++freq[data[i]];
|
|
}
|
|
|
|
static void writeUInt(char buf[4], unsigned int i) {
|
|
unsigned char *b = (unsigned char *)buf;
|
|
|
|
b[0] = i;
|
|
b[1] = i >> 8;
|
|
b[2] = i >> 16;
|
|
b[3] = i >> 24;
|
|
}
|
|
|
|
static unsigned int readUInt(const char buf[4]) {
|
|
const unsigned char *b = (const unsigned char *)buf;
|
|
|
|
return (b[0] & 0x000000ff) | ((b[1] << 8) & 0x0000ff00) |
|
|
((b[2] << 16) & 0x00ff0000) | ((b[3] << 24) & 0xff000000);
|
|
}
|
|
|
|
//
|
|
// EXTERNAL INTERFACE
|
|
//
|
|
|
|
static int hufCompress(const unsigned short raw[], int nRaw,
|
|
char compressed[]) {
|
|
if (nRaw == 0) return 0;
|
|
|
|
std::vector<long long> freq(HUF_ENCSIZE);
|
|
|
|
countFrequencies(freq, raw, nRaw);
|
|
|
|
int im = 0;
|
|
int iM = 0;
|
|
hufBuildEncTable(freq.data(), &im, &iM);
|
|
|
|
char *tableStart = compressed + 20;
|
|
char *tableEnd = tableStart;
|
|
hufPackEncTable(freq.data(), im, iM, &tableEnd);
|
|
int tableLength = tableEnd - tableStart;
|
|
|
|
char *dataStart = tableEnd;
|
|
int nBits = hufEncode(freq.data(), raw, nRaw, iM, dataStart);
|
|
int data_length = (nBits + 7) / 8;
|
|
|
|
writeUInt(compressed, im);
|
|
writeUInt(compressed + 4, iM);
|
|
writeUInt(compressed + 8, tableLength);
|
|
writeUInt(compressed + 12, nBits);
|
|
writeUInt(compressed + 16, 0); // room for future extensions
|
|
|
|
return dataStart + data_length - compressed;
|
|
}
|
|
|
|
static bool hufUncompress(const char compressed[], int nCompressed,
|
|
std::vector<unsigned short> *raw) {
|
|
if (nCompressed == 0) {
|
|
if (raw->size() != 0) return false;
|
|
|
|
return false;
|
|
}
|
|
|
|
int im = readUInt(compressed);
|
|
int iM = readUInt(compressed + 4);
|
|
// int tableLength = readUInt (compressed + 8);
|
|
int nBits = readUInt(compressed + 12);
|
|
|
|
if (im < 0 || im >= HUF_ENCSIZE || iM < 0 || iM >= HUF_ENCSIZE) return false;
|
|
|
|
const char *ptr = compressed + 20;
|
|
|
|
//
|
|
// Fast decoder needs at least 2x64-bits of compressed data, and
|
|
// needs to be run-able on this platform. Otherwise, fall back
|
|
// to the original decoder
|
|
//
|
|
|
|
// if (FastHufDecoder::enabled() && nBits > 128)
|
|
//{
|
|
// FastHufDecoder fhd (ptr, nCompressed - (ptr - compressed), im, iM, iM);
|
|
// fhd.decode ((unsigned char*)ptr, nBits, raw, nRaw);
|
|
//}
|
|
// else
|
|
{
|
|
std::vector<long long> freq(HUF_ENCSIZE);
|
|
std::vector<HufDec> hdec(HUF_DECSIZE);
|
|
|
|
hufClearDecTable(&hdec.at(0));
|
|
|
|
hufUnpackEncTable(&ptr, nCompressed - (ptr - compressed), im, iM,
|
|
&freq.at(0));
|
|
|
|
{
|
|
if (nBits > 8 * (nCompressed - (ptr - compressed))) {
|
|
return false;
|
|
}
|
|
|
|
hufBuildDecTable(&freq.at(0), im, iM, &hdec.at(0));
|
|
hufDecode(&freq.at(0), &hdec.at(0), ptr, nBits, iM, raw->size(),
|
|
raw->data());
|
|
}
|
|
// catch (...)
|
|
//{
|
|
// hufFreeDecTable (hdec);
|
|
// throw;
|
|
//}
|
|
|
|
hufFreeDecTable(&hdec.at(0));
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
//
|
|
// Functions to compress the range of values in the pixel data
|
|
//
|
|
|
|
const int USHORT_RANGE = (1 << 16);
|
|
const int BITMAP_SIZE = (USHORT_RANGE >> 3);
|
|
|
|
static void bitmapFromData(const unsigned short data[/*nData*/], int nData,
|
|
unsigned char bitmap[BITMAP_SIZE],
|
|
unsigned short &minNonZero,
|
|
unsigned short &maxNonZero) {
|
|
for (int i = 0; i < BITMAP_SIZE; ++i) bitmap[i] = 0;
|
|
|
|
for (int i = 0; i < nData; ++i) bitmap[data[i] >> 3] |= (1 << (data[i] & 7));
|
|
|
|
bitmap[0] &= ~1; // zero is not explicitly stored in
|
|
// the bitmap; we assume that the
|
|
// data always contain zeroes
|
|
minNonZero = BITMAP_SIZE - 1;
|
|
maxNonZero = 0;
|
|
|
|
for (int i = 0; i < BITMAP_SIZE; ++i) {
|
|
if (bitmap[i]) {
|
|
if (minNonZero > i) minNonZero = i;
|
|
if (maxNonZero < i) maxNonZero = i;
|
|
}
|
|
}
|
|
}
|
|
|
|
static unsigned short forwardLutFromBitmap(
|
|
const unsigned char bitmap[BITMAP_SIZE], unsigned short lut[USHORT_RANGE]) {
|
|
int k = 0;
|
|
|
|
for (int i = 0; i < USHORT_RANGE; ++i) {
|
|
if ((i == 0) || (bitmap[i >> 3] & (1 << (i & 7))))
|
|
lut[i] = k++;
|
|
else
|
|
lut[i] = 0;
|
|
}
|
|
|
|
return k - 1; // maximum value stored in lut[],
|
|
} // i.e. number of ones in bitmap minus 1
|
|
|
|
static unsigned short reverseLutFromBitmap(
|
|
const unsigned char bitmap[BITMAP_SIZE], unsigned short lut[USHORT_RANGE]) {
|
|
int k = 0;
|
|
|
|
for (int i = 0; i < USHORT_RANGE; ++i) {
|
|
if ((i == 0) || (bitmap[i >> 3] & (1 << (i & 7)))) lut[k++] = i;
|
|
}
|
|
|
|
int n = k - 1;
|
|
|
|
while (k < USHORT_RANGE) lut[k++] = 0;
|
|
|
|
return n; // maximum k where lut[k] is non-zero,
|
|
} // i.e. number of ones in bitmap minus 1
|
|
|
|
static void applyLut(const unsigned short lut[USHORT_RANGE],
|
|
unsigned short data[/*nData*/], int nData) {
|
|
for (int i = 0; i < nData; ++i) data[i] = lut[data[i]];
|
|
}
|
|
|
|
#ifdef __clang__
|
|
#pragma clang diagnostic pop
|
|
#endif // __clang__
|
|
|
|
#ifdef _MSC_VER
|
|
#pragma warning(pop)
|
|
#endif
|
|
|
|
static bool CompressPiz(unsigned char *outPtr, unsigned int *outSize,
|
|
const unsigned char *inPtr, size_t inSize,
|
|
const std::vector<ChannelInfo> &channelInfo,
|
|
int data_width, int num_lines) {
|
|
std::vector<unsigned char> bitmap(BITMAP_SIZE);
|
|
unsigned short minNonZero;
|
|
unsigned short maxNonZero;
|
|
|
|
#if !TINYEXR_LITTLE_ENDIAN
|
|
// @todo { PIZ compression on BigEndian architecture. }
|
|
return false;
|
|
#endif
|
|
|
|
// Assume `inSize` is multiple of 2 or 4.
|
|
std::vector<unsigned short> tmpBuffer(inSize / sizeof(unsigned short));
|
|
|
|
std::vector<PIZChannelData> channelData(channelInfo.size());
|
|
unsigned short *tmpBufferEnd = &tmpBuffer.at(0);
|
|
|
|
for (size_t c = 0; c < channelData.size(); c++) {
|
|
PIZChannelData &cd = channelData[c];
|
|
|
|
cd.start = tmpBufferEnd;
|
|
cd.end = cd.start;
|
|
|
|
cd.nx = data_width;
|
|
cd.ny = num_lines;
|
|
// cd.ys = c.channel().ySampling;
|
|
|
|
size_t pixelSize = sizeof(int); // UINT and FLOAT
|
|
if (channelInfo[c].requested_pixel_type == TINYEXR_PIXELTYPE_HALF) {
|
|
pixelSize = sizeof(short);
|
|
}
|
|
|
|
cd.size = static_cast<int>(pixelSize / sizeof(short));
|
|
|
|
tmpBufferEnd += cd.nx * cd.ny * cd.size;
|
|
}
|
|
|
|
const unsigned char *ptr = inPtr;
|
|
for (int y = 0; y < num_lines; ++y) {
|
|
for (size_t i = 0; i < channelData.size(); ++i) {
|
|
PIZChannelData &cd = channelData[i];
|
|
|
|
// if (modp (y, cd.ys) != 0)
|
|
// continue;
|
|
|
|
size_t n = static_cast<size_t>(cd.nx * cd.size);
|
|
memcpy(cd.end, ptr, n * sizeof(unsigned short));
|
|
ptr += n * sizeof(unsigned short);
|
|
cd.end += n;
|
|
}
|
|
}
|
|
|
|
bitmapFromData(&tmpBuffer.at(0), static_cast<int>(tmpBuffer.size()),
|
|
bitmap.data(), minNonZero, maxNonZero);
|
|
|
|
std::vector<unsigned short> lut(USHORT_RANGE);
|
|
unsigned short maxValue = forwardLutFromBitmap(bitmap.data(), lut.data());
|
|
applyLut(lut.data(), &tmpBuffer.at(0), static_cast<int>(tmpBuffer.size()));
|
|
|
|
//
|
|
// Store range compression info in _outBuffer
|
|
//
|
|
|
|
char *buf = reinterpret_cast<char *>(outPtr);
|
|
|
|
memcpy(buf, &minNonZero, sizeof(unsigned short));
|
|
buf += sizeof(unsigned short);
|
|
memcpy(buf, &maxNonZero, sizeof(unsigned short));
|
|
buf += sizeof(unsigned short);
|
|
|
|
if (minNonZero <= maxNonZero) {
|
|
memcpy(buf, reinterpret_cast<char *>(&bitmap[0] + minNonZero),
|
|
maxNonZero - minNonZero + 1);
|
|
buf += maxNonZero - minNonZero + 1;
|
|
}
|
|
|
|
//
|
|
// Apply wavelet encoding
|
|
//
|
|
|
|
for (size_t i = 0; i < channelData.size(); ++i) {
|
|
PIZChannelData &cd = channelData[i];
|
|
|
|
for (int j = 0; j < cd.size; ++j) {
|
|
wav2Encode(cd.start + j, cd.nx, cd.size, cd.ny, cd.nx * cd.size,
|
|
maxValue);
|
|
}
|
|
}
|
|
|
|
//
|
|
// Apply Huffman encoding; append the result to _outBuffer
|
|
//
|
|
|
|
// length header(4byte), then huff data. Initialize length header with zero,
|
|
// then later fill it by `length`.
|
|
char *lengthPtr = buf;
|
|
int zero = 0;
|
|
memcpy(buf, &zero, sizeof(int));
|
|
buf += sizeof(int);
|
|
|
|
int length =
|
|
hufCompress(&tmpBuffer.at(0), static_cast<int>(tmpBuffer.size()), buf);
|
|
memcpy(lengthPtr, &length, sizeof(int));
|
|
|
|
(*outSize) = static_cast<unsigned int>(
|
|
(reinterpret_cast<unsigned char *>(buf) - outPtr) +
|
|
static_cast<unsigned int>(length));
|
|
|
|
// Use uncompressed data when compressed data is larger than uncompressed.
|
|
// (Issue 40)
|
|
if ((*outSize) >= inSize) {
|
|
(*outSize) = static_cast<unsigned int>(inSize);
|
|
memcpy(outPtr, inPtr, inSize);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool DecompressPiz(unsigned char *outPtr, const unsigned char *inPtr,
|
|
size_t tmpBufSizeInBytes, size_t inLen, int num_channels,
|
|
const EXRChannelInfo *channels, int data_width,
|
|
int num_lines) {
|
|
if (inLen == tmpBufSizeInBytes) {
|
|
// Data is not compressed(Issue 40).
|
|
memcpy(outPtr, inPtr, inLen);
|
|
return true;
|
|
}
|
|
|
|
std::vector<unsigned char> bitmap(BITMAP_SIZE);
|
|
unsigned short minNonZero;
|
|
unsigned short maxNonZero;
|
|
|
|
#if !TINYEXR_LITTLE_ENDIAN
|
|
// @todo { PIZ compression on BigEndian architecture. }
|
|
return false;
|
|
#endif
|
|
|
|
memset(bitmap.data(), 0, BITMAP_SIZE);
|
|
|
|
if (inLen < 4) {
|
|
return false;
|
|
}
|
|
|
|
size_t readLen = 0;
|
|
|
|
const unsigned char *ptr = inPtr;
|
|
// minNonZero = *(reinterpret_cast<const unsigned short *>(ptr));
|
|
tinyexr::cpy2(&minNonZero, reinterpret_cast<const unsigned short *>(ptr));
|
|
// maxNonZero = *(reinterpret_cast<const unsigned short *>(ptr + 2));
|
|
tinyexr::cpy2(&maxNonZero, reinterpret_cast<const unsigned short *>(ptr + 2));
|
|
ptr += 4;
|
|
readLen += 4;
|
|
|
|
if (maxNonZero >= BITMAP_SIZE) {
|
|
return false;
|
|
}
|
|
|
|
//printf("maxNonZero = %d\n", maxNonZero);
|
|
//printf("minNonZero = %d\n", minNonZero);
|
|
//printf("len = %d\n", (maxNonZero - minNonZero + 1));
|
|
//printf("BITMAPSIZE - min = %d\n", (BITMAP_SIZE - minNonZero));
|
|
|
|
if (minNonZero <= maxNonZero) {
|
|
if (((maxNonZero - minNonZero + 1) + readLen) > inLen) {
|
|
// Input too short
|
|
return false;
|
|
}
|
|
|
|
memcpy(reinterpret_cast<char *>(&bitmap[0] + minNonZero), ptr,
|
|
maxNonZero - minNonZero + 1);
|
|
ptr += maxNonZero - minNonZero + 1;
|
|
readLen += maxNonZero - minNonZero + 1;
|
|
} else {
|
|
// Issue 194
|
|
if ((minNonZero == (BITMAP_SIZE - 1)) && (maxNonZero == 0)) {
|
|
// OK. all pixels are zero. And no need to read `bitmap` data.
|
|
} else {
|
|
// invalid minNonZero/maxNonZero combination.
|
|
return false;
|
|
}
|
|
}
|
|
|
|
std::vector<unsigned short> lut(USHORT_RANGE);
|
|
memset(lut.data(), 0, sizeof(unsigned short) * USHORT_RANGE);
|
|
unsigned short maxValue = reverseLutFromBitmap(bitmap.data(), lut.data());
|
|
|
|
//
|
|
// Huffman decoding
|
|
//
|
|
|
|
if ((readLen + 4) > inLen) {
|
|
return false;
|
|
}
|
|
|
|
int length=0;
|
|
|
|
// length = *(reinterpret_cast<const int *>(ptr));
|
|
tinyexr::cpy4(&length, reinterpret_cast<const int *>(ptr));
|
|
ptr += sizeof(int);
|
|
|
|
if (size_t((ptr - inPtr) + length) > inLen) {
|
|
return false;
|
|
}
|
|
|
|
std::vector<unsigned short> tmpBuffer(tmpBufSizeInBytes / sizeof(unsigned short));
|
|
hufUncompress(reinterpret_cast<const char *>(ptr), length, &tmpBuffer);
|
|
|
|
//
|
|
// Wavelet decoding
|
|
//
|
|
|
|
std::vector<PIZChannelData> channelData(static_cast<size_t>(num_channels));
|
|
|
|
unsigned short *tmpBufferEnd = &tmpBuffer.at(0);
|
|
|
|
for (size_t i = 0; i < static_cast<size_t>(num_channels); ++i) {
|
|
const EXRChannelInfo &chan = channels[i];
|
|
|
|
size_t pixelSize = sizeof(int); // UINT and FLOAT
|
|
if (chan.pixel_type == TINYEXR_PIXELTYPE_HALF) {
|
|
pixelSize = sizeof(short);
|
|
}
|
|
|
|
channelData[i].start = tmpBufferEnd;
|
|
channelData[i].end = channelData[i].start;
|
|
channelData[i].nx = data_width;
|
|
channelData[i].ny = num_lines;
|
|
// channelData[i].ys = 1;
|
|
channelData[i].size = static_cast<int>(pixelSize / sizeof(short));
|
|
|
|
tmpBufferEnd += channelData[i].nx * channelData[i].ny * channelData[i].size;
|
|
}
|
|
|
|
for (size_t i = 0; i < channelData.size(); ++i) {
|
|
PIZChannelData &cd = channelData[i];
|
|
|
|
for (int j = 0; j < cd.size; ++j) {
|
|
wav2Decode(cd.start + j, cd.nx, cd.size, cd.ny, cd.nx * cd.size,
|
|
maxValue);
|
|
}
|
|
}
|
|
|
|
//
|
|
// Expand the pixel data to their original range
|
|
//
|
|
|
|
applyLut(lut.data(), &tmpBuffer.at(0), static_cast<int>(tmpBufSizeInBytes / sizeof(unsigned short)));
|
|
|
|
for (int y = 0; y < num_lines; y++) {
|
|
for (size_t i = 0; i < channelData.size(); ++i) {
|
|
PIZChannelData &cd = channelData[i];
|
|
|
|
// if (modp (y, cd.ys) != 0)
|
|
// continue;
|
|
|
|
size_t n = static_cast<size_t>(cd.nx * cd.size);
|
|
memcpy(outPtr, cd.end, static_cast<size_t>(n * sizeof(unsigned short)));
|
|
outPtr += n * sizeof(unsigned short);
|
|
cd.end += n;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
#endif // TINYEXR_USE_PIZ
|
|
|
|
#if TINYEXR_USE_ZFP
|
|
|
|
struct ZFPCompressionParam {
|
|
double rate;
|
|
unsigned int precision;
|
|
unsigned int __pad0;
|
|
double tolerance;
|
|
int type; // TINYEXR_ZFP_COMPRESSIONTYPE_*
|
|
unsigned int __pad1;
|
|
|
|
ZFPCompressionParam() {
|
|
type = TINYEXR_ZFP_COMPRESSIONTYPE_RATE;
|
|
rate = 2.0;
|
|
precision = 0;
|
|
tolerance = 0.0;
|
|
}
|
|
};
|
|
|
|
static bool FindZFPCompressionParam(ZFPCompressionParam *param,
|
|
const EXRAttribute *attributes,
|
|
int num_attributes, std::string *err) {
|
|
bool foundType = false;
|
|
|
|
for (int i = 0; i < num_attributes; i++) {
|
|
if ((strcmp(attributes[i].name, "zfpCompressionType") == 0)) {
|
|
if (attributes[i].size == 1) {
|
|
param->type = static_cast<int>(attributes[i].value[0]);
|
|
foundType = true;
|
|
break;
|
|
} else {
|
|
if (err) {
|
|
(*err) +=
|
|
"zfpCompressionType attribute must be uchar(1 byte) type.\n";
|
|
}
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!foundType) {
|
|
if (err) {
|
|
(*err) += "`zfpCompressionType` attribute not found.\n";
|
|
}
|
|
return false;
|
|
}
|
|
|
|
if (param->type == TINYEXR_ZFP_COMPRESSIONTYPE_RATE) {
|
|
for (int i = 0; i < num_attributes; i++) {
|
|
if ((strcmp(attributes[i].name, "zfpCompressionRate") == 0) &&
|
|
(attributes[i].size == 8)) {
|
|
param->rate = *(reinterpret_cast<double *>(attributes[i].value));
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (err) {
|
|
(*err) += "`zfpCompressionRate` attribute not found.\n";
|
|
}
|
|
|
|
} else if (param->type == TINYEXR_ZFP_COMPRESSIONTYPE_PRECISION) {
|
|
for (int i = 0; i < num_attributes; i++) {
|
|
if ((strcmp(attributes[i].name, "zfpCompressionPrecision") == 0) &&
|
|
(attributes[i].size == 4)) {
|
|
param->rate = *(reinterpret_cast<int *>(attributes[i].value));
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (err) {
|
|
(*err) += "`zfpCompressionPrecision` attribute not found.\n";
|
|
}
|
|
|
|
} else if (param->type == TINYEXR_ZFP_COMPRESSIONTYPE_ACCURACY) {
|
|
for (int i = 0; i < num_attributes; i++) {
|
|
if ((strcmp(attributes[i].name, "zfpCompressionTolerance") == 0) &&
|
|
(attributes[i].size == 8)) {
|
|
param->tolerance = *(reinterpret_cast<double *>(attributes[i].value));
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (err) {
|
|
(*err) += "`zfpCompressionTolerance` attribute not found.\n";
|
|
}
|
|
} else {
|
|
if (err) {
|
|
(*err) += "Unknown value specified for `zfpCompressionType`.\n";
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// Assume pixel format is FLOAT for all channels.
|
|
static bool DecompressZfp(float *dst, int dst_width, int dst_num_lines,
|
|
size_t num_channels, const unsigned char *src,
|
|
unsigned long src_size,
|
|
const ZFPCompressionParam ¶m) {
|
|
size_t uncompressed_size =
|
|
size_t(dst_width) * size_t(dst_num_lines) * num_channels;
|
|
|
|
if (uncompressed_size == src_size) {
|
|
// Data is not compressed(Issue 40).
|
|
memcpy(dst, src, src_size);
|
|
}
|
|
|
|
zfp_stream *zfp = NULL;
|
|
zfp_field *field = NULL;
|
|
|
|
TINYEXR_CHECK_AND_RETURN_C((dst_width % 4) == 0, false);
|
|
TINYEXR_CHECK_AND_RETURN_C((dst_num_lines % 4) == 0, false);
|
|
|
|
if ((size_t(dst_width) & 3U) || (size_t(dst_num_lines) & 3U)) {
|
|
return false;
|
|
}
|
|
|
|
field =
|
|
zfp_field_2d(reinterpret_cast<void *>(const_cast<unsigned char *>(src)),
|
|
zfp_type_float, static_cast<unsigned int>(dst_width),
|
|
static_cast<unsigned int>(dst_num_lines) *
|
|
static_cast<unsigned int>(num_channels));
|
|
zfp = zfp_stream_open(NULL);
|
|
|
|
if (param.type == TINYEXR_ZFP_COMPRESSIONTYPE_RATE) {
|
|
zfp_stream_set_rate(zfp, param.rate, zfp_type_float, /* dimension */ 2,
|
|
/* write random access */ 0);
|
|
} else if (param.type == TINYEXR_ZFP_COMPRESSIONTYPE_PRECISION) {
|
|
zfp_stream_set_precision(zfp, param.precision);
|
|
} else if (param.type == TINYEXR_ZFP_COMPRESSIONTYPE_ACCURACY) {
|
|
zfp_stream_set_accuracy(zfp, param.tolerance);
|
|
} else {
|
|
return false;
|
|
}
|
|
|
|
size_t buf_size = zfp_stream_maximum_size(zfp, field);
|
|
std::vector<unsigned char> buf(buf_size);
|
|
memcpy(&buf.at(0), src, src_size);
|
|
|
|
bitstream *stream = stream_open(&buf.at(0), buf_size);
|
|
zfp_stream_set_bit_stream(zfp, stream);
|
|
zfp_stream_rewind(zfp);
|
|
|
|
size_t image_size = size_t(dst_width) * size_t(dst_num_lines);
|
|
|
|
for (size_t c = 0; c < size_t(num_channels); c++) {
|
|
// decompress 4x4 pixel block.
|
|
for (size_t y = 0; y < size_t(dst_num_lines); y += 4) {
|
|
for (size_t x = 0; x < size_t(dst_width); x += 4) {
|
|
float fblock[16];
|
|
zfp_decode_block_float_2(zfp, fblock);
|
|
for (size_t j = 0; j < 4; j++) {
|
|
for (size_t i = 0; i < 4; i++) {
|
|
dst[c * image_size + ((y + j) * size_t(dst_width) + (x + i))] =
|
|
fblock[j * 4 + i];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
zfp_field_free(field);
|
|
zfp_stream_close(zfp);
|
|
stream_close(stream);
|
|
|
|
return true;
|
|
}
|
|
|
|
// Assume pixel format is FLOAT for all channels.
|
|
static bool CompressZfp(std::vector<unsigned char> *outBuf,
|
|
unsigned int *outSize, const float *inPtr, int width,
|
|
int num_lines, int num_channels,
|
|
const ZFPCompressionParam ¶m) {
|
|
zfp_stream *zfp = NULL;
|
|
zfp_field *field = NULL;
|
|
|
|
TINYEXR_CHECK_AND_RETURN_C((width % 4) == 0, false);
|
|
TINYEXR_CHECK_AND_RETURN_C((num_lines % 4) == 0, false);
|
|
|
|
if ((size_t(width) & 3U) || (size_t(num_lines) & 3U)) {
|
|
return false;
|
|
}
|
|
|
|
// create input array.
|
|
field = zfp_field_2d(reinterpret_cast<void *>(const_cast<float *>(inPtr)),
|
|
zfp_type_float, static_cast<unsigned int>(width),
|
|
static_cast<unsigned int>(num_lines * num_channels));
|
|
|
|
zfp = zfp_stream_open(NULL);
|
|
|
|
if (param.type == TINYEXR_ZFP_COMPRESSIONTYPE_RATE) {
|
|
zfp_stream_set_rate(zfp, param.rate, zfp_type_float, 2, 0);
|
|
} else if (param.type == TINYEXR_ZFP_COMPRESSIONTYPE_PRECISION) {
|
|
zfp_stream_set_precision(zfp, param.precision);
|
|
} else if (param.type == TINYEXR_ZFP_COMPRESSIONTYPE_ACCURACY) {
|
|
zfp_stream_set_accuracy(zfp, param.tolerance);
|
|
} else {
|
|
return false;
|
|
}
|
|
|
|
size_t buf_size = zfp_stream_maximum_size(zfp, field);
|
|
|
|
outBuf->resize(buf_size);
|
|
|
|
bitstream *stream = stream_open(&outBuf->at(0), buf_size);
|
|
zfp_stream_set_bit_stream(zfp, stream);
|
|
zfp_field_free(field);
|
|
|
|
size_t image_size = size_t(width) * size_t(num_lines);
|
|
|
|
for (size_t c = 0; c < size_t(num_channels); c++) {
|
|
// compress 4x4 pixel block.
|
|
for (size_t y = 0; y < size_t(num_lines); y += 4) {
|
|
for (size_t x = 0; x < size_t(width); x += 4) {
|
|
float fblock[16];
|
|
for (size_t j = 0; j < 4; j++) {
|
|
for (size_t i = 0; i < 4; i++) {
|
|
fblock[j * 4 + i] =
|
|
inPtr[c * image_size + ((y + j) * size_t(width) + (x + i))];
|
|
}
|
|
}
|
|
zfp_encode_block_float_2(zfp, fblock);
|
|
}
|
|
}
|
|
}
|
|
|
|
zfp_stream_flush(zfp);
|
|
(*outSize) = static_cast<unsigned int>(zfp_stream_compressed_size(zfp));
|
|
|
|
zfp_stream_close(zfp);
|
|
|
|
return true;
|
|
}
|
|
|
|
#endif
|
|
|
|
//
|
|
// -----------------------------------------------------------------
|
|
//
|
|
|
|
// heuristics
|
|
#define TINYEXR_DIMENSION_THRESHOLD (1024 * 8192)
|
|
|
|
// TODO(syoyo): Refactor function arguments.
|
|
static bool DecodePixelData(/* out */ unsigned char **out_images,
|
|
const int *requested_pixel_types,
|
|
const unsigned char *data_ptr, size_t data_len,
|
|
int compression_type, int line_order, int width,
|
|
int height, int x_stride, int y, int line_no,
|
|
int num_lines, size_t pixel_data_size,
|
|
size_t num_attributes,
|
|
const EXRAttribute *attributes, size_t num_channels,
|
|
const EXRChannelInfo *channels,
|
|
const std::vector<size_t> &channel_offset_list) {
|
|
if (compression_type == TINYEXR_COMPRESSIONTYPE_PIZ) { // PIZ
|
|
#if TINYEXR_USE_PIZ
|
|
if ((width == 0) || (num_lines == 0) || (pixel_data_size == 0)) {
|
|
// Invalid input #90
|
|
return false;
|
|
}
|
|
|
|
// Allocate original data size.
|
|
std::vector<unsigned char> outBuf(static_cast<size_t>(
|
|
static_cast<size_t>(width * num_lines) * pixel_data_size));
|
|
size_t tmpBufLen = outBuf.size();
|
|
|
|
bool ret = tinyexr::DecompressPiz(
|
|
reinterpret_cast<unsigned char *>(&outBuf.at(0)), data_ptr, tmpBufLen,
|
|
data_len, static_cast<int>(num_channels), channels, width, num_lines);
|
|
|
|
if (!ret) {
|
|
return false;
|
|
}
|
|
|
|
// For PIZ_COMPRESSION:
|
|
// pixel sample data for channel 0 for scanline 0
|
|
// pixel sample data for channel 1 for scanline 0
|
|
// pixel sample data for channel ... for scanline 0
|
|
// pixel sample data for channel n for scanline 0
|
|
// pixel sample data for channel 0 for scanline 1
|
|
// pixel sample data for channel 1 for scanline 1
|
|
// pixel sample data for channel ... for scanline 1
|
|
// pixel sample data for channel n for scanline 1
|
|
// ...
|
|
for (size_t c = 0; c < static_cast<size_t>(num_channels); c++) {
|
|
if (channels[c].pixel_type == TINYEXR_PIXELTYPE_HALF) {
|
|
for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) {
|
|
const unsigned short *line_ptr = reinterpret_cast<unsigned short *>(
|
|
&outBuf.at(v * pixel_data_size * static_cast<size_t>(width) +
|
|
channel_offset_list[c] * static_cast<size_t>(width)));
|
|
for (size_t u = 0; u < static_cast<size_t>(width); u++) {
|
|
FP16 hf;
|
|
|
|
// hf.u = line_ptr[u];
|
|
// use `cpy` to avoid unaligned memory access when compiler's
|
|
// optimization is on.
|
|
tinyexr::cpy2(&(hf.u), line_ptr + u);
|
|
|
|
tinyexr::swap2(reinterpret_cast<unsigned short *>(&hf.u));
|
|
|
|
if (requested_pixel_types[c] == TINYEXR_PIXELTYPE_HALF) {
|
|
unsigned short *image =
|
|
reinterpret_cast<unsigned short **>(out_images)[c];
|
|
if (line_order == 0) {
|
|
image += (static_cast<size_t>(line_no) + v) *
|
|
static_cast<size_t>(x_stride) +
|
|
u;
|
|
} else {
|
|
image += static_cast<size_t>(
|
|
(height - 1 - (line_no + static_cast<int>(v)))) *
|
|
static_cast<size_t>(x_stride) +
|
|
u;
|
|
}
|
|
*image = hf.u;
|
|
} else { // HALF -> FLOAT
|
|
FP32 f32 = half_to_float(hf);
|
|
float *image = reinterpret_cast<float **>(out_images)[c];
|
|
size_t offset = 0;
|
|
if (line_order == 0) {
|
|
offset = (static_cast<size_t>(line_no) + v) *
|
|
static_cast<size_t>(x_stride) +
|
|
u;
|
|
} else {
|
|
offset = static_cast<size_t>(
|
|
(height - 1 - (line_no + static_cast<int>(v)))) *
|
|
static_cast<size_t>(x_stride) +
|
|
u;
|
|
}
|
|
image += offset;
|
|
*image = f32.f;
|
|
}
|
|
}
|
|
}
|
|
} else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_UINT) {
|
|
TINYEXR_CHECK_AND_RETURN_C(requested_pixel_types[c] == TINYEXR_PIXELTYPE_UINT, false);
|
|
|
|
for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) {
|
|
const unsigned int *line_ptr = reinterpret_cast<unsigned int *>(
|
|
&outBuf.at(v * pixel_data_size * static_cast<size_t>(width) +
|
|
channel_offset_list[c] * static_cast<size_t>(width)));
|
|
for (size_t u = 0; u < static_cast<size_t>(width); u++) {
|
|
unsigned int val;
|
|
// val = line_ptr[u];
|
|
tinyexr::cpy4(&val, line_ptr + u);
|
|
|
|
tinyexr::swap4(&val);
|
|
|
|
unsigned int *image =
|
|
reinterpret_cast<unsigned int **>(out_images)[c];
|
|
if (line_order == 0) {
|
|
image += (static_cast<size_t>(line_no) + v) *
|
|
static_cast<size_t>(x_stride) +
|
|
u;
|
|
} else {
|
|
image += static_cast<size_t>(
|
|
(height - 1 - (line_no + static_cast<int>(v)))) *
|
|
static_cast<size_t>(x_stride) +
|
|
u;
|
|
}
|
|
*image = val;
|
|
}
|
|
}
|
|
} else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_FLOAT) {
|
|
TINYEXR_CHECK_AND_RETURN_C(requested_pixel_types[c] == TINYEXR_PIXELTYPE_FLOAT, false);
|
|
for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) {
|
|
const float *line_ptr = reinterpret_cast<float *>(&outBuf.at(
|
|
v * pixel_data_size * static_cast<size_t>(width) +
|
|
channel_offset_list[c] * static_cast<size_t>(width)));
|
|
for (size_t u = 0; u < static_cast<size_t>(width); u++) {
|
|
float val;
|
|
// val = line_ptr[u];
|
|
tinyexr::cpy4(&val, line_ptr + u);
|
|
|
|
tinyexr::swap4(reinterpret_cast<unsigned int *>(&val));
|
|
|
|
float *image = reinterpret_cast<float **>(out_images)[c];
|
|
if (line_order == 0) {
|
|
image += (static_cast<size_t>(line_no) + v) *
|
|
static_cast<size_t>(x_stride) +
|
|
u;
|
|
} else {
|
|
image += static_cast<size_t>(
|
|
(height - 1 - (line_no + static_cast<int>(v)))) *
|
|
static_cast<size_t>(x_stride) +
|
|
u;
|
|
}
|
|
*image = val;
|
|
}
|
|
}
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
#else
|
|
return false;
|
|
#endif
|
|
|
|
} else if (compression_type == TINYEXR_COMPRESSIONTYPE_ZIPS ||
|
|
compression_type == TINYEXR_COMPRESSIONTYPE_ZIP) {
|
|
// Allocate original data size.
|
|
std::vector<unsigned char> outBuf(static_cast<size_t>(width) *
|
|
static_cast<size_t>(num_lines) *
|
|
pixel_data_size);
|
|
|
|
unsigned long dstLen = static_cast<unsigned long>(outBuf.size());
|
|
TINYEXR_CHECK_AND_RETURN_C(dstLen > 0, false);
|
|
if (!tinyexr::DecompressZip(
|
|
reinterpret_cast<unsigned char *>(&outBuf.at(0)), &dstLen, data_ptr,
|
|
static_cast<unsigned long>(data_len))) {
|
|
return false;
|
|
}
|
|
|
|
// For ZIP_COMPRESSION:
|
|
// pixel sample data for channel 0 for scanline 0
|
|
// pixel sample data for channel 1 for scanline 0
|
|
// pixel sample data for channel ... for scanline 0
|
|
// pixel sample data for channel n for scanline 0
|
|
// pixel sample data for channel 0 for scanline 1
|
|
// pixel sample data for channel 1 for scanline 1
|
|
// pixel sample data for channel ... for scanline 1
|
|
// pixel sample data for channel n for scanline 1
|
|
// ...
|
|
for (size_t c = 0; c < static_cast<size_t>(num_channels); c++) {
|
|
if (channels[c].pixel_type == TINYEXR_PIXELTYPE_HALF) {
|
|
for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) {
|
|
const unsigned short *line_ptr = reinterpret_cast<unsigned short *>(
|
|
&outBuf.at(v * static_cast<size_t>(pixel_data_size) *
|
|
static_cast<size_t>(width) +
|
|
channel_offset_list[c] * static_cast<size_t>(width)));
|
|
for (size_t u = 0; u < static_cast<size_t>(width); u++) {
|
|
tinyexr::FP16 hf;
|
|
|
|
// hf.u = line_ptr[u];
|
|
tinyexr::cpy2(&(hf.u), line_ptr + u);
|
|
|
|
tinyexr::swap2(reinterpret_cast<unsigned short *>(&hf.u));
|
|
|
|
if (requested_pixel_types[c] == TINYEXR_PIXELTYPE_HALF) {
|
|
unsigned short *image =
|
|
reinterpret_cast<unsigned short **>(out_images)[c];
|
|
if (line_order == 0) {
|
|
image += (static_cast<size_t>(line_no) + v) *
|
|
static_cast<size_t>(x_stride) +
|
|
u;
|
|
} else {
|
|
image += (static_cast<size_t>(height) - 1U -
|
|
(static_cast<size_t>(line_no) + v)) *
|
|
static_cast<size_t>(x_stride) +
|
|
u;
|
|
}
|
|
*image = hf.u;
|
|
} else { // HALF -> FLOAT
|
|
tinyexr::FP32 f32 = half_to_float(hf);
|
|
float *image = reinterpret_cast<float **>(out_images)[c];
|
|
size_t offset = 0;
|
|
if (line_order == 0) {
|
|
offset = (static_cast<size_t>(line_no) + v) *
|
|
static_cast<size_t>(x_stride) +
|
|
u;
|
|
} else {
|
|
offset = (static_cast<size_t>(height) - 1U -
|
|
(static_cast<size_t>(line_no) + v)) *
|
|
static_cast<size_t>(x_stride) +
|
|
u;
|
|
}
|
|
image += offset;
|
|
|
|
*image = f32.f;
|
|
}
|
|
}
|
|
}
|
|
} else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_UINT) {
|
|
TINYEXR_CHECK_AND_RETURN_C(requested_pixel_types[c] == TINYEXR_PIXELTYPE_UINT, false);
|
|
|
|
for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) {
|
|
const unsigned int *line_ptr = reinterpret_cast<unsigned int *>(
|
|
&outBuf.at(v * pixel_data_size * static_cast<size_t>(width) +
|
|
channel_offset_list[c] * static_cast<size_t>(width)));
|
|
for (size_t u = 0; u < static_cast<size_t>(width); u++) {
|
|
unsigned int val;
|
|
// val = line_ptr[u];
|
|
tinyexr::cpy4(&val, line_ptr + u);
|
|
|
|
tinyexr::swap4(&val);
|
|
|
|
unsigned int *image =
|
|
reinterpret_cast<unsigned int **>(out_images)[c];
|
|
if (line_order == 0) {
|
|
image += (static_cast<size_t>(line_no) + v) *
|
|
static_cast<size_t>(x_stride) +
|
|
u;
|
|
} else {
|
|
image += (static_cast<size_t>(height) - 1U -
|
|
(static_cast<size_t>(line_no) + v)) *
|
|
static_cast<size_t>(x_stride) +
|
|
u;
|
|
}
|
|
*image = val;
|
|
}
|
|
}
|
|
} else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_FLOAT) {
|
|
TINYEXR_CHECK_AND_RETURN_C(requested_pixel_types[c] == TINYEXR_PIXELTYPE_FLOAT, false);
|
|
for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) {
|
|
const float *line_ptr = reinterpret_cast<float *>(
|
|
&outBuf.at(v * pixel_data_size * static_cast<size_t>(width) +
|
|
channel_offset_list[c] * static_cast<size_t>(width)));
|
|
for (size_t u = 0; u < static_cast<size_t>(width); u++) {
|
|
float val;
|
|
// val = line_ptr[u];
|
|
tinyexr::cpy4(&val, line_ptr + u);
|
|
|
|
tinyexr::swap4(reinterpret_cast<unsigned int *>(&val));
|
|
|
|
float *image = reinterpret_cast<float **>(out_images)[c];
|
|
if (line_order == 0) {
|
|
image += (static_cast<size_t>(line_no) + v) *
|
|
static_cast<size_t>(x_stride) +
|
|
u;
|
|
} else {
|
|
image += (static_cast<size_t>(height) - 1U -
|
|
(static_cast<size_t>(line_no) + v)) *
|
|
static_cast<size_t>(x_stride) +
|
|
u;
|
|
}
|
|
*image = val;
|
|
}
|
|
}
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
} else if (compression_type == TINYEXR_COMPRESSIONTYPE_RLE) {
|
|
// Allocate original data size.
|
|
std::vector<unsigned char> outBuf(static_cast<size_t>(width) *
|
|
static_cast<size_t>(num_lines) *
|
|
pixel_data_size);
|
|
|
|
unsigned long dstLen = static_cast<unsigned long>(outBuf.size());
|
|
if (dstLen == 0) {
|
|
return false;
|
|
}
|
|
|
|
if (!tinyexr::DecompressRle(
|
|
reinterpret_cast<unsigned char *>(&outBuf.at(0)), dstLen, data_ptr,
|
|
static_cast<unsigned long>(data_len))) {
|
|
return false;
|
|
}
|
|
|
|
// For RLE_COMPRESSION:
|
|
// pixel sample data for channel 0 for scanline 0
|
|
// pixel sample data for channel 1 for scanline 0
|
|
// pixel sample data for channel ... for scanline 0
|
|
// pixel sample data for channel n for scanline 0
|
|
// pixel sample data for channel 0 for scanline 1
|
|
// pixel sample data for channel 1 for scanline 1
|
|
// pixel sample data for channel ... for scanline 1
|
|
// pixel sample data for channel n for scanline 1
|
|
// ...
|
|
for (size_t c = 0; c < static_cast<size_t>(num_channels); c++) {
|
|
if (channels[c].pixel_type == TINYEXR_PIXELTYPE_HALF) {
|
|
for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) {
|
|
const unsigned short *line_ptr = reinterpret_cast<unsigned short *>(
|
|
&outBuf.at(v * static_cast<size_t>(pixel_data_size) *
|
|
static_cast<size_t>(width) +
|
|
channel_offset_list[c] * static_cast<size_t>(width)));
|
|
for (size_t u = 0; u < static_cast<size_t>(width); u++) {
|
|
tinyexr::FP16 hf;
|
|
|
|
// hf.u = line_ptr[u];
|
|
tinyexr::cpy2(&(hf.u), line_ptr + u);
|
|
|
|
tinyexr::swap2(reinterpret_cast<unsigned short *>(&hf.u));
|
|
|
|
if (requested_pixel_types[c] == TINYEXR_PIXELTYPE_HALF) {
|
|
unsigned short *image =
|
|
reinterpret_cast<unsigned short **>(out_images)[c];
|
|
if (line_order == 0) {
|
|
image += (static_cast<size_t>(line_no) + v) *
|
|
static_cast<size_t>(x_stride) +
|
|
u;
|
|
} else {
|
|
image += (static_cast<size_t>(height) - 1U -
|
|
(static_cast<size_t>(line_no) + v)) *
|
|
static_cast<size_t>(x_stride) +
|
|
u;
|
|
}
|
|
*image = hf.u;
|
|
} else { // HALF -> FLOAT
|
|
tinyexr::FP32 f32 = half_to_float(hf);
|
|
float *image = reinterpret_cast<float **>(out_images)[c];
|
|
if (line_order == 0) {
|
|
image += (static_cast<size_t>(line_no) + v) *
|
|
static_cast<size_t>(x_stride) +
|
|
u;
|
|
} else {
|
|
image += (static_cast<size_t>(height) - 1U -
|
|
(static_cast<size_t>(line_no) + v)) *
|
|
static_cast<size_t>(x_stride) +
|
|
u;
|
|
}
|
|
*image = f32.f;
|
|
}
|
|
}
|
|
}
|
|
} else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_UINT) {
|
|
TINYEXR_CHECK_AND_RETURN_C(requested_pixel_types[c] == TINYEXR_PIXELTYPE_UINT, false);
|
|
|
|
for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) {
|
|
const unsigned int *line_ptr = reinterpret_cast<unsigned int *>(
|
|
&outBuf.at(v * pixel_data_size * static_cast<size_t>(width) +
|
|
channel_offset_list[c] * static_cast<size_t>(width)));
|
|
for (size_t u = 0; u < static_cast<size_t>(width); u++) {
|
|
unsigned int val;
|
|
// val = line_ptr[u];
|
|
tinyexr::cpy4(&val, line_ptr + u);
|
|
|
|
tinyexr::swap4(&val);
|
|
|
|
unsigned int *image =
|
|
reinterpret_cast<unsigned int **>(out_images)[c];
|
|
if (line_order == 0) {
|
|
image += (static_cast<size_t>(line_no) + v) *
|
|
static_cast<size_t>(x_stride) +
|
|
u;
|
|
} else {
|
|
image += (static_cast<size_t>(height) - 1U -
|
|
(static_cast<size_t>(line_no) + v)) *
|
|
static_cast<size_t>(x_stride) +
|
|
u;
|
|
}
|
|
*image = val;
|
|
}
|
|
}
|
|
} else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_FLOAT) {
|
|
TINYEXR_CHECK_AND_RETURN_C(requested_pixel_types[c] == TINYEXR_PIXELTYPE_FLOAT, false);
|
|
for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) {
|
|
const float *line_ptr = reinterpret_cast<float *>(
|
|
&outBuf.at(v * pixel_data_size * static_cast<size_t>(width) +
|
|
channel_offset_list[c] * static_cast<size_t>(width)));
|
|
for (size_t u = 0; u < static_cast<size_t>(width); u++) {
|
|
float val;
|
|
// val = line_ptr[u];
|
|
tinyexr::cpy4(&val, line_ptr + u);
|
|
|
|
tinyexr::swap4(reinterpret_cast<unsigned int *>(&val));
|
|
|
|
float *image = reinterpret_cast<float **>(out_images)[c];
|
|
if (line_order == 0) {
|
|
image += (static_cast<size_t>(line_no) + v) *
|
|
static_cast<size_t>(x_stride) +
|
|
u;
|
|
} else {
|
|
image += (static_cast<size_t>(height) - 1U -
|
|
(static_cast<size_t>(line_no) + v)) *
|
|
static_cast<size_t>(x_stride) +
|
|
u;
|
|
}
|
|
*image = val;
|
|
}
|
|
}
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
} else if (compression_type == TINYEXR_COMPRESSIONTYPE_ZFP) {
|
|
#if TINYEXR_USE_ZFP
|
|
tinyexr::ZFPCompressionParam zfp_compression_param;
|
|
std::string e;
|
|
if (!tinyexr::FindZFPCompressionParam(&zfp_compression_param, attributes,
|
|
int(num_attributes), &e)) {
|
|
// This code path should not be reachable.
|
|
return false;
|
|
}
|
|
|
|
// Allocate original data size.
|
|
std::vector<unsigned char> outBuf(static_cast<size_t>(width) *
|
|
static_cast<size_t>(num_lines) *
|
|
pixel_data_size);
|
|
|
|
unsigned long dstLen = outBuf.size();
|
|
TINYEXR_CHECK_AND_RETURN_C(dstLen > 0, false);
|
|
tinyexr::DecompressZfp(reinterpret_cast<float *>(&outBuf.at(0)), width,
|
|
num_lines, num_channels, data_ptr,
|
|
static_cast<unsigned long>(data_len),
|
|
zfp_compression_param);
|
|
|
|
// For ZFP_COMPRESSION:
|
|
// pixel sample data for channel 0 for scanline 0
|
|
// pixel sample data for channel 1 for scanline 0
|
|
// pixel sample data for channel ... for scanline 0
|
|
// pixel sample data for channel n for scanline 0
|
|
// pixel sample data for channel 0 for scanline 1
|
|
// pixel sample data for channel 1 for scanline 1
|
|
// pixel sample data for channel ... for scanline 1
|
|
// pixel sample data for channel n for scanline 1
|
|
// ...
|
|
for (size_t c = 0; c < static_cast<size_t>(num_channels); c++) {
|
|
TINYEXR_CHECK_AND_RETURN_C(channels[c].pixel_type == TINYEXR_PIXELTYPE_FLOAT, false);
|
|
if (channels[c].pixel_type == TINYEXR_PIXELTYPE_FLOAT) {
|
|
TINYEXR_CHECK_AND_RETURN_C(requested_pixel_types[c] == TINYEXR_PIXELTYPE_FLOAT, false);
|
|
for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) {
|
|
const float *line_ptr = reinterpret_cast<float *>(
|
|
&outBuf.at(v * pixel_data_size * static_cast<size_t>(width) +
|
|
channel_offset_list[c] * static_cast<size_t>(width)));
|
|
for (size_t u = 0; u < static_cast<size_t>(width); u++) {
|
|
float val;
|
|
tinyexr::cpy4(&val, line_ptr + u);
|
|
|
|
tinyexr::swap4(reinterpret_cast<unsigned int *>(&val));
|
|
|
|
float *image = reinterpret_cast<float **>(out_images)[c];
|
|
if (line_order == 0) {
|
|
image += (static_cast<size_t>(line_no) + v) *
|
|
static_cast<size_t>(x_stride) +
|
|
u;
|
|
} else {
|
|
image += (static_cast<size_t>(height) - 1U -
|
|
(static_cast<size_t>(line_no) + v)) *
|
|
static_cast<size_t>(x_stride) +
|
|
u;
|
|
}
|
|
*image = val;
|
|
}
|
|
}
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
#else
|
|
(void)attributes;
|
|
(void)num_attributes;
|
|
(void)num_channels;
|
|
return false;
|
|
#endif
|
|
} else if (compression_type == TINYEXR_COMPRESSIONTYPE_NONE) {
|
|
for (size_t c = 0; c < num_channels; c++) {
|
|
for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) {
|
|
if (channels[c].pixel_type == TINYEXR_PIXELTYPE_HALF) {
|
|
const unsigned short *line_ptr =
|
|
reinterpret_cast<const unsigned short *>(
|
|
data_ptr + v * pixel_data_size * size_t(width) +
|
|
channel_offset_list[c] * static_cast<size_t>(width));
|
|
|
|
if (requested_pixel_types[c] == TINYEXR_PIXELTYPE_HALF) {
|
|
unsigned short *outLine =
|
|
reinterpret_cast<unsigned short *>(out_images[c]);
|
|
if (line_order == 0) {
|
|
outLine += (size_t(y) + v) * size_t(x_stride);
|
|
} else {
|
|
outLine +=
|
|
(size_t(height) - 1 - (size_t(y) + v)) * size_t(x_stride);
|
|
}
|
|
|
|
for (int u = 0; u < width; u++) {
|
|
tinyexr::FP16 hf;
|
|
|
|
// hf.u = line_ptr[u];
|
|
tinyexr::cpy2(&(hf.u), line_ptr + u);
|
|
|
|
tinyexr::swap2(reinterpret_cast<unsigned short *>(&hf.u));
|
|
|
|
outLine[u] = hf.u;
|
|
}
|
|
} else if (requested_pixel_types[c] == TINYEXR_PIXELTYPE_FLOAT) {
|
|
float *outLine = reinterpret_cast<float *>(out_images[c]);
|
|
if (line_order == 0) {
|
|
outLine += (size_t(y) + v) * size_t(x_stride);
|
|
} else {
|
|
outLine +=
|
|
(size_t(height) - 1 - (size_t(y) + v)) * size_t(x_stride);
|
|
}
|
|
|
|
if (reinterpret_cast<const unsigned char *>(line_ptr + width) >
|
|
(data_ptr + data_len)) {
|
|
// Insufficient data size
|
|
return false;
|
|
}
|
|
|
|
for (int u = 0; u < width; u++) {
|
|
tinyexr::FP16 hf;
|
|
|
|
// address may not be aligned. use byte-wise copy for safety.#76
|
|
// hf.u = line_ptr[u];
|
|
tinyexr::cpy2(&(hf.u), line_ptr + u);
|
|
|
|
tinyexr::swap2(reinterpret_cast<unsigned short *>(&hf.u));
|
|
|
|
tinyexr::FP32 f32 = half_to_float(hf);
|
|
|
|
outLine[u] = f32.f;
|
|
}
|
|
} else {
|
|
return false;
|
|
}
|
|
} else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_FLOAT) {
|
|
const float *line_ptr = reinterpret_cast<const float *>(
|
|
data_ptr + v * pixel_data_size * size_t(width) +
|
|
channel_offset_list[c] * static_cast<size_t>(width));
|
|
|
|
float *outLine = reinterpret_cast<float *>(out_images[c]);
|
|
if (line_order == 0) {
|
|
outLine += (size_t(y) + v) * size_t(x_stride);
|
|
} else {
|
|
outLine +=
|
|
(size_t(height) - 1 - (size_t(y) + v)) * size_t(x_stride);
|
|
}
|
|
|
|
if (reinterpret_cast<const unsigned char *>(line_ptr + width) >
|
|
(data_ptr + data_len)) {
|
|
// Insufficient data size
|
|
return false;
|
|
}
|
|
|
|
for (int u = 0; u < width; u++) {
|
|
float val;
|
|
tinyexr::cpy4(&val, line_ptr + u);
|
|
|
|
tinyexr::swap4(reinterpret_cast<unsigned int *>(&val));
|
|
|
|
outLine[u] = val;
|
|
}
|
|
} else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_UINT) {
|
|
const unsigned int *line_ptr = reinterpret_cast<const unsigned int *>(
|
|
data_ptr + v * pixel_data_size * size_t(width) +
|
|
channel_offset_list[c] * static_cast<size_t>(width));
|
|
|
|
unsigned int *outLine =
|
|
reinterpret_cast<unsigned int *>(out_images[c]);
|
|
if (line_order == 0) {
|
|
outLine += (size_t(y) + v) * size_t(x_stride);
|
|
} else {
|
|
outLine +=
|
|
(size_t(height) - 1 - (size_t(y) + v)) * size_t(x_stride);
|
|
}
|
|
|
|
if (reinterpret_cast<const unsigned char *>(line_ptr + width) >
|
|
(data_ptr + data_len)) {
|
|
// Corrupted data
|
|
return false;
|
|
}
|
|
|
|
for (int u = 0; u < width; u++) {
|
|
|
|
unsigned int val;
|
|
tinyexr::cpy4(&val, line_ptr + u);
|
|
|
|
tinyexr::swap4(reinterpret_cast<unsigned int *>(&val));
|
|
|
|
outLine[u] = val;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool DecodeTiledPixelData(
|
|
unsigned char **out_images, int *width, int *height,
|
|
const int *requested_pixel_types, const unsigned char *data_ptr,
|
|
size_t data_len, int compression_type, int line_order, int data_width,
|
|
int data_height, int tile_offset_x, int tile_offset_y, int tile_size_x,
|
|
int tile_size_y, size_t pixel_data_size, size_t num_attributes,
|
|
const EXRAttribute *attributes, size_t num_channels,
|
|
const EXRChannelInfo *channels,
|
|
const std::vector<size_t> &channel_offset_list) {
|
|
// Here, data_width and data_height are the dimensions of the current (sub)level.
|
|
if (tile_size_x * tile_offset_x > data_width ||
|
|
tile_size_y * tile_offset_y > data_height) {
|
|
return false;
|
|
}
|
|
|
|
// Compute actual image size in a tile.
|
|
if ((tile_offset_x + 1) * tile_size_x >= data_width) {
|
|
(*width) = data_width - (tile_offset_x * tile_size_x);
|
|
} else {
|
|
(*width) = tile_size_x;
|
|
}
|
|
|
|
if ((tile_offset_y + 1) * tile_size_y >= data_height) {
|
|
(*height) = data_height - (tile_offset_y * tile_size_y);
|
|
} else {
|
|
(*height) = tile_size_y;
|
|
}
|
|
|
|
// Image size = tile size.
|
|
return DecodePixelData(out_images, requested_pixel_types, data_ptr, data_len,
|
|
compression_type, line_order, (*width), tile_size_y,
|
|
/* stride */ tile_size_x, /* y */ 0, /* line_no */ 0,
|
|
(*height), pixel_data_size, num_attributes, attributes,
|
|
num_channels, channels, channel_offset_list);
|
|
}
|
|
|
|
static bool ComputeChannelLayout(std::vector<size_t> *channel_offset_list,
|
|
int *pixel_data_size, size_t *channel_offset,
|
|
int num_channels,
|
|
const EXRChannelInfo *channels) {
|
|
channel_offset_list->resize(static_cast<size_t>(num_channels));
|
|
|
|
(*pixel_data_size) = 0;
|
|
(*channel_offset) = 0;
|
|
|
|
for (size_t c = 0; c < static_cast<size_t>(num_channels); c++) {
|
|
(*channel_offset_list)[c] = (*channel_offset);
|
|
if (channels[c].pixel_type == TINYEXR_PIXELTYPE_HALF) {
|
|
(*pixel_data_size) += sizeof(unsigned short);
|
|
(*channel_offset) += sizeof(unsigned short);
|
|
} else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_FLOAT) {
|
|
(*pixel_data_size) += sizeof(float);
|
|
(*channel_offset) += sizeof(float);
|
|
} else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_UINT) {
|
|
(*pixel_data_size) += sizeof(unsigned int);
|
|
(*channel_offset) += sizeof(unsigned int);
|
|
} else {
|
|
// ???
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// TODO: Simply return nullptr when failed to allocate?
|
|
static unsigned char **AllocateImage(int num_channels,
|
|
const EXRChannelInfo *channels,
|
|
const int *requested_pixel_types,
|
|
int data_width, int data_height, bool *success) {
|
|
unsigned char **images =
|
|
reinterpret_cast<unsigned char **>(static_cast<float **>(
|
|
malloc(sizeof(float *) * static_cast<size_t>(num_channels))));
|
|
|
|
for (size_t c = 0; c < static_cast<size_t>(num_channels); c++) {
|
|
images[c] = NULL;
|
|
}
|
|
|
|
bool valid = true;
|
|
|
|
for (size_t c = 0; c < static_cast<size_t>(num_channels); c++) {
|
|
size_t data_len =
|
|
static_cast<size_t>(data_width) * static_cast<size_t>(data_height);
|
|
if (channels[c].pixel_type == TINYEXR_PIXELTYPE_HALF) {
|
|
// pixel_data_size += sizeof(unsigned short);
|
|
// channel_offset += sizeof(unsigned short);
|
|
// Alloc internal image for half type.
|
|
if (requested_pixel_types[c] == TINYEXR_PIXELTYPE_HALF) {
|
|
images[c] =
|
|
reinterpret_cast<unsigned char *>(static_cast<unsigned short *>(
|
|
malloc(sizeof(unsigned short) * data_len)));
|
|
} else if (requested_pixel_types[c] == TINYEXR_PIXELTYPE_FLOAT) {
|
|
images[c] = reinterpret_cast<unsigned char *>(
|
|
static_cast<float *>(malloc(sizeof(float) * data_len)));
|
|
} else {
|
|
images[c] = NULL; // just in case.
|
|
valid = false;
|
|
break;
|
|
}
|
|
} else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_FLOAT) {
|
|
// pixel_data_size += sizeof(float);
|
|
// channel_offset += sizeof(float);
|
|
images[c] = reinterpret_cast<unsigned char *>(
|
|
static_cast<float *>(malloc(sizeof(float) * data_len)));
|
|
} else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_UINT) {
|
|
// pixel_data_size += sizeof(unsigned int);
|
|
// channel_offset += sizeof(unsigned int);
|
|
images[c] = reinterpret_cast<unsigned char *>(
|
|
static_cast<unsigned int *>(malloc(sizeof(unsigned int) * data_len)));
|
|
} else {
|
|
images[c] = NULL; // just in case.
|
|
valid = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!valid) {
|
|
for (size_t c = 0; c < static_cast<size_t>(num_channels); c++) {
|
|
if (images[c]) {
|
|
free(images[c]);
|
|
images[c] = NULL;
|
|
}
|
|
}
|
|
|
|
if (success) {
|
|
(*success) = false;
|
|
}
|
|
} else {
|
|
if (success) {
|
|
(*success) = true;
|
|
}
|
|
}
|
|
|
|
return images;
|
|
}
|
|
|
|
#ifdef _WIN32
|
|
static inline std::wstring UTF8ToWchar(const std::string &str) {
|
|
int wstr_size =
|
|
MultiByteToWideChar(CP_UTF8, 0, str.data(), (int)str.size(), NULL, 0);
|
|
std::wstring wstr(wstr_size, 0);
|
|
MultiByteToWideChar(CP_UTF8, 0, str.data(), (int)str.size(), &wstr[0],
|
|
(int)wstr.size());
|
|
return wstr;
|
|
}
|
|
#endif
|
|
|
|
|
|
static int ParseEXRHeader(HeaderInfo *info, bool *empty_header,
|
|
const EXRVersion *version, std::string *err,
|
|
const unsigned char *buf, size_t size) {
|
|
const char *marker = reinterpret_cast<const char *>(&buf[0]);
|
|
|
|
if (empty_header) {
|
|
(*empty_header) = false;
|
|
}
|
|
|
|
if (version->multipart) {
|
|
if (size > 0 && marker[0] == '\0') {
|
|
// End of header list.
|
|
if (empty_header) {
|
|
(*empty_header) = true;
|
|
}
|
|
return TINYEXR_SUCCESS;
|
|
}
|
|
}
|
|
|
|
// According to the spec, the header of every OpenEXR file must contain at
|
|
// least the following attributes:
|
|
//
|
|
// channels chlist
|
|
// compression compression
|
|
// dataWindow box2i
|
|
// displayWindow box2i
|
|
// lineOrder lineOrder
|
|
// pixelAspectRatio float
|
|
// screenWindowCenter v2f
|
|
// screenWindowWidth float
|
|
bool has_channels = false;
|
|
bool has_compression = false;
|
|
bool has_data_window = false;
|
|
bool has_display_window = false;
|
|
bool has_line_order = false;
|
|
bool has_pixel_aspect_ratio = false;
|
|
bool has_screen_window_center = false;
|
|
bool has_screen_window_width = false;
|
|
bool has_name = false;
|
|
bool has_type = false;
|
|
|
|
info->name.clear();
|
|
info->type.clear();
|
|
|
|
info->data_window.min_x = 0;
|
|
info->data_window.min_y = 0;
|
|
info->data_window.max_x = 0;
|
|
info->data_window.max_y = 0;
|
|
info->line_order = 0; // @fixme
|
|
info->display_window.min_x = 0;
|
|
info->display_window.min_y = 0;
|
|
info->display_window.max_x = 0;
|
|
info->display_window.max_y = 0;
|
|
info->screen_window_center[0] = 0.0f;
|
|
info->screen_window_center[1] = 0.0f;
|
|
info->screen_window_width = -1.0f;
|
|
info->pixel_aspect_ratio = -1.0f;
|
|
|
|
info->tiled = 0;
|
|
info->tile_size_x = -1;
|
|
info->tile_size_y = -1;
|
|
info->tile_level_mode = -1;
|
|
info->tile_rounding_mode = -1;
|
|
|
|
info->attributes.clear();
|
|
|
|
// Read attributes
|
|
size_t orig_size = size;
|
|
for (size_t nattr = 0; nattr < TINYEXR_MAX_HEADER_ATTRIBUTES; nattr++) {
|
|
if (0 == size) {
|
|
if (err) {
|
|
(*err) += "Insufficient data size for attributes.\n";
|
|
}
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
} else if (marker[0] == '\0') {
|
|
size--;
|
|
break;
|
|
}
|
|
|
|
std::string attr_name;
|
|
std::string attr_type;
|
|
std::vector<unsigned char> data;
|
|
size_t marker_size;
|
|
if (!tinyexr::ReadAttribute(&attr_name, &attr_type, &data, &marker_size,
|
|
marker, size)) {
|
|
if (err) {
|
|
(*err) += "Failed to read attribute.\n";
|
|
}
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
marker += marker_size;
|
|
size -= marker_size;
|
|
|
|
// For a multipart file, the version field 9th bit is 0.
|
|
if ((version->tiled || version->multipart || version->non_image) && attr_name.compare("tiles") == 0) {
|
|
unsigned int x_size, y_size;
|
|
unsigned char tile_mode;
|
|
if (data.size() != 9) {
|
|
if (err) {
|
|
(*err) += "(ParseEXRHeader) Invalid attribute data size. Attribute data size must be 9.\n";
|
|
}
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
|
|
memcpy(&x_size, &data.at(0), sizeof(int));
|
|
memcpy(&y_size, &data.at(4), sizeof(int));
|
|
tile_mode = data[8];
|
|
tinyexr::swap4(&x_size);
|
|
tinyexr::swap4(&y_size);
|
|
|
|
if (x_size > static_cast<unsigned int>(std::numeric_limits<int>::max()) ||
|
|
y_size > static_cast<unsigned int>(std::numeric_limits<int>::max())) {
|
|
if (err) {
|
|
(*err) = "Tile sizes were invalid.";
|
|
}
|
|
return TINYEXR_ERROR_UNSUPPORTED_FORMAT;
|
|
}
|
|
|
|
info->tile_size_x = static_cast<int>(x_size);
|
|
info->tile_size_y = static_cast<int>(y_size);
|
|
|
|
// mode = levelMode + roundingMode * 16
|
|
info->tile_level_mode = tile_mode & 0x3;
|
|
info->tile_rounding_mode = (tile_mode >> 4) & 0x1;
|
|
info->tiled = 1;
|
|
} else if (attr_name.compare("compression") == 0) {
|
|
bool ok = false;
|
|
if (data[0] < TINYEXR_COMPRESSIONTYPE_PIZ) {
|
|
ok = true;
|
|
}
|
|
|
|
if (data[0] == TINYEXR_COMPRESSIONTYPE_PIZ) {
|
|
#if TINYEXR_USE_PIZ
|
|
ok = true;
|
|
#else
|
|
if (err) {
|
|
(*err) = "PIZ compression is not supported.";
|
|
}
|
|
return TINYEXR_ERROR_UNSUPPORTED_FORMAT;
|
|
#endif
|
|
}
|
|
|
|
if (data[0] == TINYEXR_COMPRESSIONTYPE_ZFP) {
|
|
#if TINYEXR_USE_ZFP
|
|
ok = true;
|
|
#else
|
|
if (err) {
|
|
(*err) = "ZFP compression is not supported.";
|
|
}
|
|
return TINYEXR_ERROR_UNSUPPORTED_FORMAT;
|
|
#endif
|
|
}
|
|
|
|
if (!ok) {
|
|
if (err) {
|
|
(*err) = "Unknown compression type.";
|
|
}
|
|
return TINYEXR_ERROR_UNSUPPORTED_FORMAT;
|
|
}
|
|
|
|
info->compression_type = static_cast<int>(data[0]);
|
|
has_compression = true;
|
|
|
|
} else if (attr_name.compare("channels") == 0) {
|
|
// name: zero-terminated string, from 1 to 255 bytes long
|
|
// pixel type: int, possible values are: UINT = 0 HALF = 1 FLOAT = 2
|
|
// pLinear: unsigned char, possible values are 0 and 1
|
|
// reserved: three chars, should be zero
|
|
// xSampling: int
|
|
// ySampling: int
|
|
|
|
if (!ReadChannelInfo(info->channels, data)) {
|
|
if (err) {
|
|
(*err) += "Failed to parse channel info.\n";
|
|
}
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
|
|
if (info->channels.size() < 1) {
|
|
if (err) {
|
|
(*err) += "# of channels is zero.\n";
|
|
}
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
|
|
has_channels = true;
|
|
|
|
} else if (attr_name.compare("dataWindow") == 0) {
|
|
if (data.size() >= 16) {
|
|
memcpy(&info->data_window.min_x, &data.at(0), sizeof(int));
|
|
memcpy(&info->data_window.min_y, &data.at(4), sizeof(int));
|
|
memcpy(&info->data_window.max_x, &data.at(8), sizeof(int));
|
|
memcpy(&info->data_window.max_y, &data.at(12), sizeof(int));
|
|
tinyexr::swap4(&info->data_window.min_x);
|
|
tinyexr::swap4(&info->data_window.min_y);
|
|
tinyexr::swap4(&info->data_window.max_x);
|
|
tinyexr::swap4(&info->data_window.max_y);
|
|
has_data_window = true;
|
|
}
|
|
} else if (attr_name.compare("displayWindow") == 0) {
|
|
if (data.size() >= 16) {
|
|
memcpy(&info->display_window.min_x, &data.at(0), sizeof(int));
|
|
memcpy(&info->display_window.min_y, &data.at(4), sizeof(int));
|
|
memcpy(&info->display_window.max_x, &data.at(8), sizeof(int));
|
|
memcpy(&info->display_window.max_y, &data.at(12), sizeof(int));
|
|
tinyexr::swap4(&info->display_window.min_x);
|
|
tinyexr::swap4(&info->display_window.min_y);
|
|
tinyexr::swap4(&info->display_window.max_x);
|
|
tinyexr::swap4(&info->display_window.max_y);
|
|
|
|
has_display_window = true;
|
|
}
|
|
} else if (attr_name.compare("lineOrder") == 0) {
|
|
if (data.size() >= 1) {
|
|
info->line_order = static_cast<int>(data[0]);
|
|
has_line_order = true;
|
|
}
|
|
} else if (attr_name.compare("pixelAspectRatio") == 0) {
|
|
if (data.size() >= sizeof(float)) {
|
|
memcpy(&info->pixel_aspect_ratio, &data.at(0), sizeof(float));
|
|
tinyexr::swap4(&info->pixel_aspect_ratio);
|
|
has_pixel_aspect_ratio = true;
|
|
}
|
|
} else if (attr_name.compare("screenWindowCenter") == 0) {
|
|
if (data.size() >= 8) {
|
|
memcpy(&info->screen_window_center[0], &data.at(0), sizeof(float));
|
|
memcpy(&info->screen_window_center[1], &data.at(4), sizeof(float));
|
|
tinyexr::swap4(&info->screen_window_center[0]);
|
|
tinyexr::swap4(&info->screen_window_center[1]);
|
|
has_screen_window_center = true;
|
|
}
|
|
} else if (attr_name.compare("screenWindowWidth") == 0) {
|
|
if (data.size() >= sizeof(float)) {
|
|
memcpy(&info->screen_window_width, &data.at(0), sizeof(float));
|
|
tinyexr::swap4(&info->screen_window_width);
|
|
|
|
has_screen_window_width = true;
|
|
}
|
|
} else if (attr_name.compare("chunkCount") == 0) {
|
|
if (data.size() >= sizeof(int)) {
|
|
memcpy(&info->chunk_count, &data.at(0), sizeof(int));
|
|
tinyexr::swap4(&info->chunk_count);
|
|
}
|
|
} else if (attr_name.compare("name") == 0) {
|
|
if (!data.empty() && data[0]) {
|
|
data.push_back(0);
|
|
size_t len = strlen(reinterpret_cast<const char*>(&data[0]));
|
|
info->name.resize(len);
|
|
info->name.assign(reinterpret_cast<const char*>(&data[0]), len);
|
|
has_name = true;
|
|
}
|
|
} else if (attr_name.compare("type") == 0) {
|
|
if (!data.empty() && data[0]) {
|
|
data.push_back(0);
|
|
size_t len = strlen(reinterpret_cast<const char*>(&data[0]));
|
|
info->type.resize(len);
|
|
info->type.assign(reinterpret_cast<const char*>(&data[0]), len);
|
|
has_type = true;
|
|
}
|
|
} else {
|
|
// Custom attribute(up to TINYEXR_MAX_CUSTOM_ATTRIBUTES)
|
|
if (info->attributes.size() < TINYEXR_MAX_CUSTOM_ATTRIBUTES) {
|
|
EXRAttribute attrib;
|
|
#ifdef _MSC_VER
|
|
strncpy_s(attrib.name, attr_name.c_str(), 255);
|
|
strncpy_s(attrib.type, attr_type.c_str(), 255);
|
|
#else
|
|
strncpy(attrib.name, attr_name.c_str(), 255);
|
|
strncpy(attrib.type, attr_type.c_str(), 255);
|
|
#endif
|
|
attrib.name[255] = '\0';
|
|
attrib.type[255] = '\0';
|
|
//std::cout << "i = " << info->attributes.size() << ", dsize = " << data.size() << "\n";
|
|
attrib.size = static_cast<int>(data.size());
|
|
attrib.value = static_cast<unsigned char *>(malloc(data.size()));
|
|
memcpy(reinterpret_cast<char *>(attrib.value), &data.at(0),
|
|
data.size());
|
|
info->attributes.push_back(attrib);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check if required attributes exist
|
|
{
|
|
std::stringstream ss_err;
|
|
|
|
if (!has_compression) {
|
|
ss_err << "\"compression\" attribute not found in the header."
|
|
<< std::endl;
|
|
}
|
|
|
|
if (!has_channels) {
|
|
ss_err << "\"channels\" attribute not found in the header." << std::endl;
|
|
}
|
|
|
|
if (!has_line_order) {
|
|
ss_err << "\"lineOrder\" attribute not found in the header." << std::endl;
|
|
}
|
|
|
|
if (!has_display_window) {
|
|
ss_err << "\"displayWindow\" attribute not found in the header."
|
|
<< std::endl;
|
|
}
|
|
|
|
if (!has_data_window) {
|
|
ss_err << "\"dataWindow\" attribute not found in the header or invalid."
|
|
<< std::endl;
|
|
}
|
|
|
|
if (!has_pixel_aspect_ratio) {
|
|
ss_err << "\"pixelAspectRatio\" attribute not found in the header."
|
|
<< std::endl;
|
|
}
|
|
|
|
if (!has_screen_window_width) {
|
|
ss_err << "\"screenWindowWidth\" attribute not found in the header."
|
|
<< std::endl;
|
|
}
|
|
|
|
if (!has_screen_window_center) {
|
|
ss_err << "\"screenWindowCenter\" attribute not found in the header."
|
|
<< std::endl;
|
|
}
|
|
|
|
if (version->multipart || version->non_image) {
|
|
if (!has_name) {
|
|
ss_err << "\"name\" attribute not found in the header."
|
|
<< std::endl;
|
|
}
|
|
if (!has_type) {
|
|
ss_err << "\"type\" attribute not found in the header."
|
|
<< std::endl;
|
|
}
|
|
}
|
|
|
|
if (!(ss_err.str().empty())) {
|
|
if (err) {
|
|
(*err) += ss_err.str();
|
|
}
|
|
|
|
return TINYEXR_ERROR_INVALID_HEADER;
|
|
}
|
|
}
|
|
|
|
info->header_len = static_cast<unsigned int>(orig_size - size);
|
|
|
|
return TINYEXR_SUCCESS;
|
|
}
|
|
|
|
// C++ HeaderInfo to C EXRHeader conversion.
|
|
static bool ConvertHeader(EXRHeader *exr_header, const HeaderInfo &info, std::string *warn, std::string *err) {
|
|
exr_header->pixel_aspect_ratio = info.pixel_aspect_ratio;
|
|
exr_header->screen_window_center[0] = info.screen_window_center[0];
|
|
exr_header->screen_window_center[1] = info.screen_window_center[1];
|
|
exr_header->screen_window_width = info.screen_window_width;
|
|
exr_header->chunk_count = info.chunk_count;
|
|
exr_header->display_window.min_x = info.display_window.min_x;
|
|
exr_header->display_window.min_y = info.display_window.min_y;
|
|
exr_header->display_window.max_x = info.display_window.max_x;
|
|
exr_header->display_window.max_y = info.display_window.max_y;
|
|
exr_header->data_window.min_x = info.data_window.min_x;
|
|
exr_header->data_window.min_y = info.data_window.min_y;
|
|
exr_header->data_window.max_x = info.data_window.max_x;
|
|
exr_header->data_window.max_y = info.data_window.max_y;
|
|
exr_header->line_order = info.line_order;
|
|
exr_header->compression_type = info.compression_type;
|
|
exr_header->tiled = info.tiled;
|
|
exr_header->tile_size_x = info.tile_size_x;
|
|
exr_header->tile_size_y = info.tile_size_y;
|
|
exr_header->tile_level_mode = info.tile_level_mode;
|
|
exr_header->tile_rounding_mode = info.tile_rounding_mode;
|
|
|
|
EXRSetNameAttr(exr_header, info.name.c_str());
|
|
|
|
|
|
if (!info.type.empty()) {
|
|
bool valid = true;
|
|
if (info.type == "scanlineimage") {
|
|
if (exr_header->tiled) {
|
|
if (err) {
|
|
(*err) += "(ConvertHeader) tiled bit must be off for `scanlineimage` type.\n";
|
|
}
|
|
valid = false;
|
|
}
|
|
} else if (info.type == "tiledimage") {
|
|
if (!exr_header->tiled) {
|
|
if (err) {
|
|
(*err) += "(ConvertHeader) tiled bit must be on for `tiledimage` type.\n";
|
|
}
|
|
valid = false;
|
|
}
|
|
} else if (info.type == "deeptile") {
|
|
exr_header->non_image = 1;
|
|
if (!exr_header->tiled) {
|
|
if (err) {
|
|
(*err) += "(ConvertHeader) tiled bit must be on for `deeptile` type.\n";
|
|
}
|
|
valid = false;
|
|
}
|
|
} else if (info.type == "deepscanline") {
|
|
exr_header->non_image = 1;
|
|
if (exr_header->tiled) {
|
|
if (err) {
|
|
(*err) += "(ConvertHeader) tiled bit must be off for `deepscanline` type.\n";
|
|
}
|
|
//valid = false;
|
|
}
|
|
} else {
|
|
if (warn) {
|
|
std::stringstream ss;
|
|
ss << "(ConvertHeader) Unsupported or unknown info.type: " << info.type << "\n";
|
|
(*warn) += ss.str();
|
|
}
|
|
}
|
|
|
|
if (!valid) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
exr_header->num_channels = static_cast<int>(info.channels.size());
|
|
|
|
exr_header->channels = static_cast<EXRChannelInfo *>(malloc(
|
|
sizeof(EXRChannelInfo) * static_cast<size_t>(exr_header->num_channels)));
|
|
for (size_t c = 0; c < static_cast<size_t>(exr_header->num_channels); c++) {
|
|
#ifdef _MSC_VER
|
|
strncpy_s(exr_header->channels[c].name, info.channels[c].name.c_str(), 255);
|
|
#else
|
|
strncpy(exr_header->channels[c].name, info.channels[c].name.c_str(), 255);
|
|
#endif
|
|
// manually add '\0' for safety.
|
|
exr_header->channels[c].name[255] = '\0';
|
|
|
|
exr_header->channels[c].pixel_type = info.channels[c].pixel_type;
|
|
exr_header->channels[c].p_linear = info.channels[c].p_linear;
|
|
exr_header->channels[c].x_sampling = info.channels[c].x_sampling;
|
|
exr_header->channels[c].y_sampling = info.channels[c].y_sampling;
|
|
}
|
|
|
|
exr_header->pixel_types = static_cast<int *>(
|
|
malloc(sizeof(int) * static_cast<size_t>(exr_header->num_channels)));
|
|
for (size_t c = 0; c < static_cast<size_t>(exr_header->num_channels); c++) {
|
|
exr_header->pixel_types[c] = info.channels[c].pixel_type;
|
|
}
|
|
|
|
// Initially fill with values of `pixel_types`
|
|
exr_header->requested_pixel_types = static_cast<int *>(
|
|
malloc(sizeof(int) * static_cast<size_t>(exr_header->num_channels)));
|
|
for (size_t c = 0; c < static_cast<size_t>(exr_header->num_channels); c++) {
|
|
exr_header->requested_pixel_types[c] = info.channels[c].pixel_type;
|
|
}
|
|
|
|
exr_header->num_custom_attributes = static_cast<int>(info.attributes.size());
|
|
|
|
if (exr_header->num_custom_attributes > 0) {
|
|
// TODO(syoyo): Report warning when # of attributes exceeds
|
|
// `TINYEXR_MAX_CUSTOM_ATTRIBUTES`
|
|
if (exr_header->num_custom_attributes > TINYEXR_MAX_CUSTOM_ATTRIBUTES) {
|
|
exr_header->num_custom_attributes = TINYEXR_MAX_CUSTOM_ATTRIBUTES;
|
|
}
|
|
|
|
exr_header->custom_attributes = static_cast<EXRAttribute *>(malloc(
|
|
sizeof(EXRAttribute) * size_t(exr_header->num_custom_attributes)));
|
|
|
|
for (size_t i = 0; i < size_t(exr_header->num_custom_attributes); i++) {
|
|
memcpy(exr_header->custom_attributes[i].name, info.attributes[i].name,
|
|
256);
|
|
memcpy(exr_header->custom_attributes[i].type, info.attributes[i].type,
|
|
256);
|
|
exr_header->custom_attributes[i].size = info.attributes[i].size;
|
|
// Just copy pointer
|
|
exr_header->custom_attributes[i].value = info.attributes[i].value;
|
|
}
|
|
|
|
} else {
|
|
exr_header->custom_attributes = NULL;
|
|
}
|
|
|
|
exr_header->header_len = info.header_len;
|
|
|
|
return true;
|
|
}
|
|
|
|
struct OffsetData {
|
|
OffsetData() : num_x_levels(0), num_y_levels(0) {}
|
|
std::vector<std::vector<std::vector <tinyexr::tinyexr_uint64> > > offsets;
|
|
int num_x_levels;
|
|
int num_y_levels;
|
|
};
|
|
|
|
// -1 = error
|
|
static int LevelIndex(int lx, int ly, int tile_level_mode, int num_x_levels) {
|
|
switch (tile_level_mode) {
|
|
case TINYEXR_TILE_ONE_LEVEL:
|
|
return 0;
|
|
|
|
case TINYEXR_TILE_MIPMAP_LEVELS:
|
|
return lx;
|
|
|
|
case TINYEXR_TILE_RIPMAP_LEVELS:
|
|
return lx + ly * num_x_levels;
|
|
|
|
default:
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int LevelSize(int toplevel_size, int level, int tile_rounding_mode) {
|
|
if (level < 0) {
|
|
return -1;
|
|
}
|
|
|
|
int b = static_cast<int>(1u << static_cast<unsigned int>(level));
|
|
int level_size = toplevel_size / b;
|
|
|
|
if (tile_rounding_mode == TINYEXR_TILE_ROUND_UP && level_size * b < toplevel_size)
|
|
level_size += 1;
|
|
|
|
return std::max(level_size, 1);
|
|
}
|
|
|
|
static int DecodeTiledLevel(EXRImage* exr_image, const EXRHeader* exr_header,
|
|
const OffsetData& offset_data,
|
|
const std::vector<size_t>& channel_offset_list,
|
|
int pixel_data_size,
|
|
const unsigned char* head, const size_t size,
|
|
std::string* err) {
|
|
int num_channels = exr_header->num_channels;
|
|
|
|
int level_index = LevelIndex(exr_image->level_x, exr_image->level_y, exr_header->tile_level_mode, offset_data.num_x_levels);
|
|
int num_y_tiles = int(offset_data.offsets[size_t(level_index)].size());
|
|
if (num_y_tiles < 1) {
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
int num_x_tiles = int(offset_data.offsets[size_t(level_index)][0].size());
|
|
if (num_x_tiles < 1) {
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
int num_tiles = num_x_tiles * num_y_tiles;
|
|
|
|
int err_code = TINYEXR_SUCCESS;
|
|
|
|
enum {
|
|
EF_SUCCESS = 0,
|
|
EF_INVALID_DATA = 1,
|
|
EF_INSUFFICIENT_DATA = 2,
|
|
EF_FAILED_TO_DECODE = 4
|
|
};
|
|
#if TINYEXR_HAS_CXX11 && (TINYEXR_USE_THREAD > 0)
|
|
std::atomic<unsigned> error_flag(EF_SUCCESS);
|
|
#else
|
|
unsigned error_flag(EF_SUCCESS);
|
|
#endif
|
|
|
|
// Although the spec says : "...the data window is subdivided into an array of smaller rectangles...",
|
|
// the IlmImf library allows the dimensions of the tile to be larger (or equal) than the dimensions of the data window.
|
|
#if 0
|
|
if ((exr_header->tile_size_x > exr_image->width || exr_header->tile_size_y > exr_image->height) &&
|
|
exr_image->level_x == 0 && exr_image->level_y == 0) {
|
|
if (err) {
|
|
(*err) += "Failed to decode tile data.\n";
|
|
}
|
|
err_code = TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
#endif
|
|
exr_image->tiles = static_cast<EXRTile*>(
|
|
calloc(sizeof(EXRTile), static_cast<size_t>(num_tiles)));
|
|
|
|
#if TINYEXR_HAS_CXX11 && (TINYEXR_USE_THREAD > 0)
|
|
std::vector<std::thread> workers;
|
|
std::atomic<int> tile_count(0);
|
|
|
|
int num_threads = std::max(1, int(std::thread::hardware_concurrency()));
|
|
if (num_threads > int(num_tiles)) {
|
|
num_threads = int(num_tiles);
|
|
}
|
|
|
|
for (int t = 0; t < num_threads; t++) {
|
|
workers.emplace_back(std::thread([&]()
|
|
{
|
|
int tile_idx = 0;
|
|
while ((tile_idx = tile_count++) < num_tiles) {
|
|
|
|
#else
|
|
#if TINYEXR_USE_OPENMP
|
|
#pragma omp parallel for
|
|
#endif
|
|
for (int tile_idx = 0; tile_idx < num_tiles; tile_idx++) {
|
|
#endif
|
|
// Allocate memory for each tile.
|
|
bool alloc_success = false;
|
|
exr_image->tiles[tile_idx].images = tinyexr::AllocateImage(
|
|
num_channels, exr_header->channels,
|
|
exr_header->requested_pixel_types, exr_header->tile_size_x,
|
|
exr_header->tile_size_y, &alloc_success);
|
|
|
|
if (!alloc_success) {
|
|
error_flag |= EF_INVALID_DATA;
|
|
continue;
|
|
}
|
|
|
|
int x_tile = tile_idx % num_x_tiles;
|
|
int y_tile = tile_idx / num_x_tiles;
|
|
// 16 byte: tile coordinates
|
|
// 4 byte : data size
|
|
// ~ : data(uncompressed or compressed)
|
|
tinyexr::tinyexr_uint64 offset = offset_data.offsets[size_t(level_index)][size_t(y_tile)][size_t(x_tile)];
|
|
if (offset + sizeof(int) * 5 > size) {
|
|
// Insufficient data size.
|
|
error_flag |= EF_INSUFFICIENT_DATA;
|
|
continue;
|
|
}
|
|
|
|
size_t data_size =
|
|
size_t(size - (offset + sizeof(int) * 5));
|
|
const unsigned char* data_ptr =
|
|
reinterpret_cast<const unsigned char*>(head + offset);
|
|
|
|
int tile_coordinates[4];
|
|
memcpy(tile_coordinates, data_ptr, sizeof(int) * 4);
|
|
tinyexr::swap4(&tile_coordinates[0]);
|
|
tinyexr::swap4(&tile_coordinates[1]);
|
|
tinyexr::swap4(&tile_coordinates[2]);
|
|
tinyexr::swap4(&tile_coordinates[3]);
|
|
|
|
if (tile_coordinates[2] != exr_image->level_x) {
|
|
// Invalid data.
|
|
error_flag |= EF_INVALID_DATA;
|
|
continue;
|
|
}
|
|
if (tile_coordinates[3] != exr_image->level_y) {
|
|
// Invalid data.
|
|
error_flag |= EF_INVALID_DATA;
|
|
continue;
|
|
}
|
|
|
|
int data_len;
|
|
memcpy(&data_len, data_ptr + 16,
|
|
sizeof(int)); // 16 = sizeof(tile_coordinates)
|
|
tinyexr::swap4(&data_len);
|
|
|
|
if (data_len < 2 || size_t(data_len) > data_size) {
|
|
// Insufficient data size.
|
|
error_flag |= EF_INSUFFICIENT_DATA;
|
|
continue;
|
|
}
|
|
|
|
// Move to data addr: 20 = 16 + 4;
|
|
data_ptr += 20;
|
|
bool ret = tinyexr::DecodeTiledPixelData(
|
|
exr_image->tiles[tile_idx].images,
|
|
&(exr_image->tiles[tile_idx].width),
|
|
&(exr_image->tiles[tile_idx].height),
|
|
exr_header->requested_pixel_types, data_ptr,
|
|
static_cast<size_t>(data_len), exr_header->compression_type,
|
|
exr_header->line_order,
|
|
exr_image->width, exr_image->height,
|
|
tile_coordinates[0], tile_coordinates[1], exr_header->tile_size_x,
|
|
exr_header->tile_size_y, static_cast<size_t>(pixel_data_size),
|
|
static_cast<size_t>(exr_header->num_custom_attributes),
|
|
exr_header->custom_attributes,
|
|
static_cast<size_t>(exr_header->num_channels),
|
|
exr_header->channels, channel_offset_list);
|
|
|
|
if (!ret) {
|
|
// Failed to decode tile data.
|
|
error_flag |= EF_FAILED_TO_DECODE;
|
|
}
|
|
|
|
exr_image->tiles[tile_idx].offset_x = tile_coordinates[0];
|
|
exr_image->tiles[tile_idx].offset_y = tile_coordinates[1];
|
|
exr_image->tiles[tile_idx].level_x = tile_coordinates[2];
|
|
exr_image->tiles[tile_idx].level_y = tile_coordinates[3];
|
|
|
|
#if TINYEXR_HAS_CXX11 && (TINYEXR_USE_THREAD > 0)
|
|
}
|
|
}));
|
|
} // num_thread loop
|
|
|
|
for (auto& t : workers) {
|
|
t.join();
|
|
}
|
|
|
|
#else
|
|
} // parallel for
|
|
#endif
|
|
|
|
// Even in the event of an error, the reserved memory may be freed.
|
|
exr_image->num_channels = num_channels;
|
|
exr_image->num_tiles = static_cast<int>(num_tiles);
|
|
|
|
if (error_flag) err_code = TINYEXR_ERROR_INVALID_DATA;
|
|
if (err) {
|
|
if (error_flag & EF_INSUFFICIENT_DATA) {
|
|
(*err) += "Insufficient data length.\n";
|
|
}
|
|
if (error_flag & EF_FAILED_TO_DECODE) {
|
|
(*err) += "Failed to decode tile data.\n";
|
|
}
|
|
}
|
|
return err_code;
|
|
}
|
|
|
|
static int DecodeChunk(EXRImage *exr_image, const EXRHeader *exr_header,
|
|
const OffsetData& offset_data,
|
|
const unsigned char *head, const size_t size,
|
|
std::string *err) {
|
|
int num_channels = exr_header->num_channels;
|
|
|
|
int num_scanline_blocks = 1;
|
|
if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_ZIP) {
|
|
num_scanline_blocks = 16;
|
|
} else if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_PIZ) {
|
|
num_scanline_blocks = 32;
|
|
} else if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_ZFP) {
|
|
num_scanline_blocks = 16;
|
|
|
|
#if TINYEXR_USE_ZFP
|
|
tinyexr::ZFPCompressionParam zfp_compression_param;
|
|
if (!FindZFPCompressionParam(&zfp_compression_param,
|
|
exr_header->custom_attributes,
|
|
int(exr_header->num_custom_attributes), err)) {
|
|
return TINYEXR_ERROR_INVALID_HEADER;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
if (exr_header->data_window.max_x < exr_header->data_window.min_x ||
|
|
exr_header->data_window.max_y < exr_header->data_window.min_y) {
|
|
if (err) {
|
|
(*err) += "Invalid data window.\n";
|
|
}
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
|
|
tinyexr_int64 data_width =
|
|
static_cast<tinyexr_int64>(exr_header->data_window.max_x) - static_cast<tinyexr_int64>(exr_header->data_window.min_x) + static_cast<tinyexr_int64>(1);
|
|
tinyexr_int64 data_height =
|
|
static_cast<tinyexr_int64>(exr_header->data_window.max_y) - static_cast<tinyexr_int64>(exr_header->data_window.min_y) + static_cast<tinyexr_int64>(1);
|
|
|
|
if (data_width <= 0) {
|
|
if (err) {
|
|
(*err) += "Invalid data window width.\n";
|
|
}
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
|
|
if (data_height <= 0) {
|
|
if (err) {
|
|
(*err) += "Invalid data window height.\n";
|
|
}
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
|
|
// Do not allow too large data_width and data_height. header invalid?
|
|
{
|
|
if ((data_width > TINYEXR_DIMENSION_THRESHOLD) || (data_height > TINYEXR_DIMENSION_THRESHOLD)) {
|
|
if (err) {
|
|
std::stringstream ss;
|
|
ss << "data_with or data_height too large. data_width: " << data_width
|
|
<< ", "
|
|
<< "data_height = " << data_height << std::endl;
|
|
(*err) += ss.str();
|
|
}
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
if (exr_header->tiled) {
|
|
if ((exr_header->tile_size_x > TINYEXR_DIMENSION_THRESHOLD) || (exr_header->tile_size_y > TINYEXR_DIMENSION_THRESHOLD)) {
|
|
if (err) {
|
|
std::stringstream ss;
|
|
ss << "tile with or tile height too large. tile width: " << exr_header->tile_size_x
|
|
<< ", "
|
|
<< "tile height = " << exr_header->tile_size_y << std::endl;
|
|
(*err) += ss.str();
|
|
}
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
}
|
|
}
|
|
|
|
const std::vector<tinyexr::tinyexr_uint64>& offsets = offset_data.offsets[0][0];
|
|
size_t num_blocks = offsets.size();
|
|
|
|
std::vector<size_t> channel_offset_list;
|
|
int pixel_data_size = 0;
|
|
size_t channel_offset = 0;
|
|
if (!tinyexr::ComputeChannelLayout(&channel_offset_list, &pixel_data_size,
|
|
&channel_offset, num_channels,
|
|
exr_header->channels)) {
|
|
if (err) {
|
|
(*err) += "Failed to compute channel layout.\n";
|
|
}
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
|
|
#if TINYEXR_HAS_CXX11 && (TINYEXR_USE_THREAD > 0)
|
|
std::atomic<bool> invalid_data(false);
|
|
#else
|
|
bool invalid_data(false);
|
|
#endif
|
|
|
|
if (exr_header->tiled) {
|
|
// value check
|
|
if (exr_header->tile_size_x < 0) {
|
|
if (err) {
|
|
std::stringstream ss;
|
|
ss << "Invalid tile size x : " << exr_header->tile_size_x << "\n";
|
|
(*err) += ss.str();
|
|
}
|
|
return TINYEXR_ERROR_INVALID_HEADER;
|
|
}
|
|
|
|
if (exr_header->tile_size_y < 0) {
|
|
if (err) {
|
|
std::stringstream ss;
|
|
ss << "Invalid tile size y : " << exr_header->tile_size_y << "\n";
|
|
(*err) += ss.str();
|
|
}
|
|
return TINYEXR_ERROR_INVALID_HEADER;
|
|
}
|
|
if (exr_header->tile_level_mode != TINYEXR_TILE_RIPMAP_LEVELS) {
|
|
EXRImage* level_image = NULL;
|
|
for (int level = 0; level < offset_data.num_x_levels; ++level) {
|
|
if (!level_image) {
|
|
level_image = exr_image;
|
|
} else {
|
|
level_image->next_level = new EXRImage;
|
|
InitEXRImage(level_image->next_level);
|
|
level_image = level_image->next_level;
|
|
}
|
|
level_image->width =
|
|
LevelSize(exr_header->data_window.max_x - exr_header->data_window.min_x + 1, level, exr_header->tile_rounding_mode);
|
|
if (level_image->width < 1) {
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
|
|
level_image->height =
|
|
LevelSize(exr_header->data_window.max_y - exr_header->data_window.min_y + 1, level, exr_header->tile_rounding_mode);
|
|
|
|
if (level_image->height < 1) {
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
|
|
level_image->level_x = level;
|
|
level_image->level_y = level;
|
|
|
|
int ret = DecodeTiledLevel(level_image, exr_header,
|
|
offset_data,
|
|
channel_offset_list,
|
|
pixel_data_size,
|
|
head, size,
|
|
err);
|
|
if (ret != TINYEXR_SUCCESS) return ret;
|
|
}
|
|
} else {
|
|
EXRImage* level_image = NULL;
|
|
for (int level_y = 0; level_y < offset_data.num_y_levels; ++level_y)
|
|
for (int level_x = 0; level_x < offset_data.num_x_levels; ++level_x) {
|
|
if (!level_image) {
|
|
level_image = exr_image;
|
|
} else {
|
|
level_image->next_level = new EXRImage;
|
|
InitEXRImage(level_image->next_level);
|
|
level_image = level_image->next_level;
|
|
}
|
|
|
|
level_image->width =
|
|
LevelSize(exr_header->data_window.max_x - exr_header->data_window.min_x + 1, level_x, exr_header->tile_rounding_mode);
|
|
if (level_image->width < 1) {
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
|
|
level_image->height =
|
|
LevelSize(exr_header->data_window.max_y - exr_header->data_window.min_y + 1, level_y, exr_header->tile_rounding_mode);
|
|
if (level_image->height < 1) {
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
|
|
level_image->level_x = level_x;
|
|
level_image->level_y = level_y;
|
|
|
|
int ret = DecodeTiledLevel(level_image, exr_header,
|
|
offset_data,
|
|
channel_offset_list,
|
|
pixel_data_size,
|
|
head, size,
|
|
err);
|
|
if (ret != TINYEXR_SUCCESS) return ret;
|
|
}
|
|
}
|
|
} else { // scanline format
|
|
// Don't allow too large image(256GB * pixel_data_size or more). Workaround
|
|
// for #104.
|
|
size_t total_data_len =
|
|
size_t(data_width) * size_t(data_height) * size_t(num_channels);
|
|
const bool total_data_len_overflown =
|
|
sizeof(void *) == 8 ? (total_data_len >= 0x4000000000) : false;
|
|
if ((total_data_len == 0) || total_data_len_overflown) {
|
|
if (err) {
|
|
std::stringstream ss;
|
|
ss << "Image data size is zero or too large: width = " << data_width
|
|
<< ", height = " << data_height << ", channels = " << num_channels
|
|
<< std::endl;
|
|
(*err) += ss.str();
|
|
}
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
|
|
bool alloc_success = false;
|
|
exr_image->images = tinyexr::AllocateImage(
|
|
num_channels, exr_header->channels, exr_header->requested_pixel_types,
|
|
int(data_width), int(data_height), &alloc_success);
|
|
|
|
if (!alloc_success) {
|
|
if (err) {
|
|
std::stringstream ss;
|
|
ss << "Failed to allocate memory for Images. Maybe EXR header is corrupted or Image data size is too large: width = " << data_width
|
|
<< ", height = " << data_height << ", channels = " << num_channels
|
|
<< std::endl;
|
|
(*err) += ss.str();
|
|
}
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
|
|
#if TINYEXR_HAS_CXX11 && (TINYEXR_USE_THREAD > 0)
|
|
std::vector<std::thread> workers;
|
|
std::atomic<int> y_count(0);
|
|
|
|
int num_threads = std::max(1, int(std::thread::hardware_concurrency()));
|
|
if (num_threads > int(num_blocks)) {
|
|
num_threads = int(num_blocks);
|
|
}
|
|
|
|
for (int t = 0; t < num_threads; t++) {
|
|
workers.emplace_back(std::thread([&]() {
|
|
int y = 0;
|
|
while ((y = y_count++) < int(num_blocks)) {
|
|
|
|
#else
|
|
|
|
#if TINYEXR_USE_OPENMP
|
|
#pragma omp parallel for
|
|
#endif
|
|
for (int y = 0; y < static_cast<int>(num_blocks); y++) {
|
|
|
|
#endif
|
|
size_t y_idx = static_cast<size_t>(y);
|
|
|
|
if (offsets[y_idx] + sizeof(int) * 2 > size) {
|
|
invalid_data = true;
|
|
} else {
|
|
// 4 byte: scan line
|
|
// 4 byte: data size
|
|
// ~ : pixel data(uncompressed or compressed)
|
|
size_t data_size =
|
|
size_t(size - (offsets[y_idx] + sizeof(int) * 2));
|
|
const unsigned char *data_ptr =
|
|
reinterpret_cast<const unsigned char *>(head + offsets[y_idx]);
|
|
|
|
int line_no;
|
|
memcpy(&line_no, data_ptr, sizeof(int));
|
|
int data_len;
|
|
memcpy(&data_len, data_ptr + 4, sizeof(int));
|
|
tinyexr::swap4(&line_no);
|
|
tinyexr::swap4(&data_len);
|
|
|
|
if (size_t(data_len) > data_size) {
|
|
invalid_data = true;
|
|
|
|
} else if ((line_no > (2 << 20)) || (line_no < -(2 << 20))) {
|
|
// Too large value. Assume this is invalid
|
|
// 2**20 = 1048576 = heuristic value.
|
|
invalid_data = true;
|
|
} else if (data_len == 0) {
|
|
// TODO(syoyo): May be ok to raise the threshold for example
|
|
// `data_len < 4`
|
|
invalid_data = true;
|
|
} else {
|
|
// line_no may be negative.
|
|
int end_line_no = (std::min)(line_no + num_scanline_blocks,
|
|
(exr_header->data_window.max_y + 1));
|
|
|
|
int num_lines = end_line_no - line_no;
|
|
|
|
if (num_lines <= 0) {
|
|
invalid_data = true;
|
|
} else {
|
|
// Move to data addr: 8 = 4 + 4;
|
|
data_ptr += 8;
|
|
|
|
// Adjust line_no with data_window.bmin.y
|
|
|
|
// overflow check
|
|
tinyexr_int64 lno =
|
|
static_cast<tinyexr_int64>(line_no) -
|
|
static_cast<tinyexr_int64>(exr_header->data_window.min_y);
|
|
if (lno > std::numeric_limits<int>::max()) {
|
|
line_no = -1; // invalid
|
|
} else if (lno < -std::numeric_limits<int>::max()) {
|
|
line_no = -1; // invalid
|
|
} else {
|
|
line_no -= exr_header->data_window.min_y;
|
|
}
|
|
|
|
if (line_no < 0) {
|
|
invalid_data = true;
|
|
} else {
|
|
if (!tinyexr::DecodePixelData(
|
|
exr_image->images, exr_header->requested_pixel_types,
|
|
data_ptr, static_cast<size_t>(data_len),
|
|
exr_header->compression_type, exr_header->line_order,
|
|
int(data_width), int(data_height), int(data_width), y, line_no,
|
|
num_lines, static_cast<size_t>(pixel_data_size),
|
|
static_cast<size_t>(
|
|
exr_header->num_custom_attributes),
|
|
exr_header->custom_attributes,
|
|
static_cast<size_t>(exr_header->num_channels),
|
|
exr_header->channels, channel_offset_list)) {
|
|
invalid_data = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#if TINYEXR_HAS_CXX11 && (TINYEXR_USE_THREAD > 0)
|
|
}
|
|
}));
|
|
}
|
|
|
|
for (auto &t : workers) {
|
|
t.join();
|
|
}
|
|
#else
|
|
} // omp parallel
|
|
#endif
|
|
}
|
|
|
|
if (invalid_data) {
|
|
if (err) {
|
|
(*err) += "Invalid/Corrupted data found when decoding pixels.\n";
|
|
}
|
|
|
|
// free alloced image.
|
|
for (size_t c = 0; c < static_cast<size_t>(num_channels); c++) {
|
|
if (exr_image->images[c]) {
|
|
free(exr_image->images[c]);
|
|
exr_image->images[c] = NULL;
|
|
}
|
|
}
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
|
|
// Overwrite `pixel_type` with `requested_pixel_type`.
|
|
{
|
|
for (int c = 0; c < exr_header->num_channels; c++) {
|
|
exr_header->pixel_types[c] = exr_header->requested_pixel_types[c];
|
|
}
|
|
}
|
|
|
|
{
|
|
exr_image->num_channels = num_channels;
|
|
|
|
exr_image->width = int(data_width);
|
|
exr_image->height = int(data_height);
|
|
}
|
|
|
|
return TINYEXR_SUCCESS;
|
|
}
|
|
|
|
static bool ReconstructLineOffsets(
|
|
std::vector<tinyexr::tinyexr_uint64> *offsets, size_t n,
|
|
const unsigned char *head, const unsigned char *marker, const size_t size) {
|
|
if (head >= marker) {
|
|
return false;
|
|
}
|
|
if (offsets->size() != n) {
|
|
return false;
|
|
}
|
|
|
|
for (size_t i = 0; i < n; i++) {
|
|
size_t offset = static_cast<size_t>(marker - head);
|
|
// Offset should not exceed whole EXR file/data size.
|
|
if ((offset + sizeof(tinyexr::tinyexr_uint64)) >= size) {
|
|
return false;
|
|
}
|
|
|
|
int y;
|
|
unsigned int data_len;
|
|
|
|
memcpy(&y, marker, sizeof(int));
|
|
memcpy(&data_len, marker + 4, sizeof(unsigned int));
|
|
|
|
if (data_len >= size) {
|
|
return false;
|
|
}
|
|
|
|
tinyexr::swap4(&y);
|
|
tinyexr::swap4(&data_len);
|
|
|
|
(*offsets)[i] = offset;
|
|
|
|
marker += data_len + 8; // 8 = 4 bytes(y) + 4 bytes(data_len)
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
static int FloorLog2(unsigned x) {
|
|
//
|
|
// For x > 0, floorLog2(y) returns floor(log(x)/log(2)).
|
|
//
|
|
int y = 0;
|
|
while (x > 1) {
|
|
y += 1;
|
|
x >>= 1u;
|
|
}
|
|
return y;
|
|
}
|
|
|
|
|
|
static int CeilLog2(unsigned x) {
|
|
//
|
|
// For x > 0, ceilLog2(y) returns ceil(log(x)/log(2)).
|
|
//
|
|
int y = 0;
|
|
int r = 0;
|
|
while (x > 1) {
|
|
if (x & 1)
|
|
r = 1;
|
|
|
|
y += 1;
|
|
x >>= 1u;
|
|
}
|
|
return y + r;
|
|
}
|
|
|
|
static int RoundLog2(int x, int tile_rounding_mode) {
|
|
return (tile_rounding_mode == TINYEXR_TILE_ROUND_DOWN) ? FloorLog2(static_cast<unsigned>(x)) : CeilLog2(static_cast<unsigned>(x));
|
|
}
|
|
|
|
static int CalculateNumXLevels(const EXRHeader* exr_header) {
|
|
int min_x = exr_header->data_window.min_x;
|
|
int max_x = exr_header->data_window.max_x;
|
|
int min_y = exr_header->data_window.min_y;
|
|
int max_y = exr_header->data_window.max_y;
|
|
|
|
int num = 0;
|
|
switch (exr_header->tile_level_mode) {
|
|
case TINYEXR_TILE_ONE_LEVEL:
|
|
|
|
num = 1;
|
|
break;
|
|
|
|
case TINYEXR_TILE_MIPMAP_LEVELS:
|
|
|
|
{
|
|
int w = max_x - min_x + 1;
|
|
int h = max_y - min_y + 1;
|
|
num = RoundLog2(std::max(w, h), exr_header->tile_rounding_mode) + 1;
|
|
}
|
|
break;
|
|
|
|
case TINYEXR_TILE_RIPMAP_LEVELS:
|
|
|
|
{
|
|
int w = max_x - min_x + 1;
|
|
num = RoundLog2(w, exr_header->tile_rounding_mode) + 1;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
|
|
return -1;
|
|
}
|
|
|
|
return num;
|
|
}
|
|
|
|
static int CalculateNumYLevels(const EXRHeader* exr_header) {
|
|
int min_x = exr_header->data_window.min_x;
|
|
int max_x = exr_header->data_window.max_x;
|
|
int min_y = exr_header->data_window.min_y;
|
|
int max_y = exr_header->data_window.max_y;
|
|
int num = 0;
|
|
|
|
switch (exr_header->tile_level_mode) {
|
|
case TINYEXR_TILE_ONE_LEVEL:
|
|
|
|
num = 1;
|
|
break;
|
|
|
|
case TINYEXR_TILE_MIPMAP_LEVELS:
|
|
|
|
{
|
|
int w = max_x - min_x + 1;
|
|
int h = max_y - min_y + 1;
|
|
num = RoundLog2(std::max(w, h), exr_header->tile_rounding_mode) + 1;
|
|
}
|
|
break;
|
|
|
|
case TINYEXR_TILE_RIPMAP_LEVELS:
|
|
|
|
{
|
|
int h = max_y - min_y + 1;
|
|
num = RoundLog2(h, exr_header->tile_rounding_mode) + 1;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
|
|
return -1;
|
|
}
|
|
|
|
return num;
|
|
}
|
|
|
|
static bool CalculateNumTiles(std::vector<int>& numTiles,
|
|
int toplevel_size,
|
|
int size,
|
|
int tile_rounding_mode) {
|
|
for (unsigned i = 0; i < numTiles.size(); i++) {
|
|
int l = LevelSize(toplevel_size, int(i), tile_rounding_mode);
|
|
if (l < 0) {
|
|
return false;
|
|
}
|
|
TINYEXR_CHECK_AND_RETURN_C(l <= std::numeric_limits<int>::max() - size + 1, false);
|
|
|
|
numTiles[i] = (l + size - 1) / size;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool PrecalculateTileInfo(std::vector<int>& num_x_tiles,
|
|
std::vector<int>& num_y_tiles,
|
|
const EXRHeader* exr_header) {
|
|
int min_x = exr_header->data_window.min_x;
|
|
int max_x = exr_header->data_window.max_x;
|
|
int min_y = exr_header->data_window.min_y;
|
|
int max_y = exr_header->data_window.max_y;
|
|
|
|
int num_x_levels = CalculateNumXLevels(exr_header);
|
|
|
|
if (num_x_levels < 0) {
|
|
return false;
|
|
}
|
|
|
|
int num_y_levels = CalculateNumYLevels(exr_header);
|
|
|
|
if (num_y_levels < 0) {
|
|
return false;
|
|
}
|
|
|
|
num_x_tiles.resize(size_t(num_x_levels));
|
|
num_y_tiles.resize(size_t(num_y_levels));
|
|
|
|
if (!CalculateNumTiles(num_x_tiles,
|
|
max_x - min_x + 1,
|
|
exr_header->tile_size_x,
|
|
exr_header->tile_rounding_mode)) {
|
|
return false;
|
|
}
|
|
|
|
if (!CalculateNumTiles(num_y_tiles,
|
|
max_y - min_y + 1,
|
|
exr_header->tile_size_y,
|
|
exr_header->tile_rounding_mode)) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static void InitSingleResolutionOffsets(OffsetData& offset_data, size_t num_blocks) {
|
|
offset_data.offsets.resize(1);
|
|
offset_data.offsets[0].resize(1);
|
|
offset_data.offsets[0][0].resize(num_blocks);
|
|
offset_data.num_x_levels = 1;
|
|
offset_data.num_y_levels = 1;
|
|
}
|
|
|
|
// Return sum of tile blocks.
|
|
// 0 = error
|
|
static int InitTileOffsets(OffsetData& offset_data,
|
|
const EXRHeader* exr_header,
|
|
const std::vector<int>& num_x_tiles,
|
|
const std::vector<int>& num_y_tiles) {
|
|
int num_tile_blocks = 0;
|
|
offset_data.num_x_levels = static_cast<int>(num_x_tiles.size());
|
|
offset_data.num_y_levels = static_cast<int>(num_y_tiles.size());
|
|
switch (exr_header->tile_level_mode) {
|
|
case TINYEXR_TILE_ONE_LEVEL:
|
|
case TINYEXR_TILE_MIPMAP_LEVELS:
|
|
TINYEXR_CHECK_AND_RETURN_C(offset_data.num_x_levels == offset_data.num_y_levels, 0);
|
|
offset_data.offsets.resize(size_t(offset_data.num_x_levels));
|
|
|
|
for (unsigned int l = 0; l < offset_data.offsets.size(); ++l) {
|
|
offset_data.offsets[l].resize(size_t(num_y_tiles[l]));
|
|
|
|
for (unsigned int dy = 0; dy < offset_data.offsets[l].size(); ++dy) {
|
|
offset_data.offsets[l][dy].resize(size_t(num_x_tiles[l]));
|
|
num_tile_blocks += num_x_tiles[l];
|
|
}
|
|
}
|
|
break;
|
|
|
|
case TINYEXR_TILE_RIPMAP_LEVELS:
|
|
|
|
offset_data.offsets.resize(static_cast<size_t>(offset_data.num_x_levels) * static_cast<size_t>(offset_data.num_y_levels));
|
|
|
|
for (int ly = 0; ly < offset_data.num_y_levels; ++ly) {
|
|
for (int lx = 0; lx < offset_data.num_x_levels; ++lx) {
|
|
int l = ly * offset_data.num_x_levels + lx;
|
|
offset_data.offsets[size_t(l)].resize(size_t(num_y_tiles[size_t(ly)]));
|
|
|
|
for (size_t dy = 0; dy < offset_data.offsets[size_t(l)].size(); ++dy) {
|
|
offset_data.offsets[size_t(l)][dy].resize(size_t(num_x_tiles[size_t(lx)]));
|
|
num_tile_blocks += num_x_tiles[size_t(lx)];
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
default:
|
|
return 0;
|
|
}
|
|
return num_tile_blocks;
|
|
}
|
|
|
|
static bool IsAnyOffsetsAreInvalid(const OffsetData& offset_data) {
|
|
for (unsigned int l = 0; l < offset_data.offsets.size(); ++l)
|
|
for (unsigned int dy = 0; dy < offset_data.offsets[l].size(); ++dy)
|
|
for (unsigned int dx = 0; dx < offset_data.offsets[l][dy].size(); ++dx)
|
|
if (reinterpret_cast<const tinyexr::tinyexr_int64&>(offset_data.offsets[l][dy][dx]) <= 0)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool isValidTile(const EXRHeader* exr_header,
|
|
const OffsetData& offset_data,
|
|
int dx, int dy, int lx, int ly) {
|
|
if (lx < 0 || ly < 0 || dx < 0 || dy < 0) return false;
|
|
int num_x_levels = offset_data.num_x_levels;
|
|
int num_y_levels = offset_data.num_y_levels;
|
|
switch (exr_header->tile_level_mode) {
|
|
case TINYEXR_TILE_ONE_LEVEL:
|
|
|
|
if (lx == 0 &&
|
|
ly == 0 &&
|
|
offset_data.offsets.size() > 0 &&
|
|
offset_data.offsets[0].size() > static_cast<size_t>(dy) &&
|
|
offset_data.offsets[0][size_t(dy)].size() > static_cast<size_t>(dx)) {
|
|
return true;
|
|
}
|
|
|
|
break;
|
|
|
|
case TINYEXR_TILE_MIPMAP_LEVELS:
|
|
|
|
if (lx < num_x_levels &&
|
|
ly < num_y_levels &&
|
|
offset_data.offsets.size() > static_cast<size_t>(lx) &&
|
|
offset_data.offsets[size_t(lx)].size() > static_cast<size_t>(dy) &&
|
|
offset_data.offsets[size_t(lx)][size_t(dy)].size() > static_cast<size_t>(dx)) {
|
|
return true;
|
|
}
|
|
|
|
break;
|
|
|
|
case TINYEXR_TILE_RIPMAP_LEVELS:
|
|
{
|
|
size_t idx = static_cast<size_t>(lx) + static_cast<size_t>(ly)* static_cast<size_t>(num_x_levels);
|
|
if (lx < num_x_levels &&
|
|
ly < num_y_levels &&
|
|
(offset_data.offsets.size() > idx) &&
|
|
offset_data.offsets[idx].size() > static_cast<size_t>(dy) &&
|
|
offset_data.offsets[idx][size_t(dy)].size() > static_cast<size_t>(dx)) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
return false;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool ReconstructTileOffsets(OffsetData& offset_data,
|
|
const EXRHeader* exr_header,
|
|
const unsigned char* head, const unsigned char* marker, const size_t size,
|
|
bool isMultiPartFile,
|
|
bool isDeep) {
|
|
int numXLevels = offset_data.num_x_levels;
|
|
for (unsigned int l = 0; l < offset_data.offsets.size(); ++l) {
|
|
for (unsigned int dy = 0; dy < offset_data.offsets[l].size(); ++dy) {
|
|
for (unsigned int dx = 0; dx < offset_data.offsets[l][dy].size(); ++dx) {
|
|
tinyexr::tinyexr_uint64 tileOffset = tinyexr::tinyexr_uint64(marker - head);
|
|
|
|
|
|
if (isMultiPartFile) {
|
|
if ((marker + sizeof(int)) >= (head + size)) {
|
|
return false;
|
|
}
|
|
|
|
//int partNumber;
|
|
marker += sizeof(int);
|
|
}
|
|
|
|
if ((marker + 4 * sizeof(int)) >= (head + size)) {
|
|
return false;
|
|
}
|
|
|
|
int tileX;
|
|
memcpy(&tileX, marker, sizeof(int));
|
|
tinyexr::swap4(&tileX);
|
|
marker += sizeof(int);
|
|
|
|
int tileY;
|
|
memcpy(&tileY, marker, sizeof(int));
|
|
tinyexr::swap4(&tileY);
|
|
marker += sizeof(int);
|
|
|
|
int levelX;
|
|
memcpy(&levelX, marker, sizeof(int));
|
|
tinyexr::swap4(&levelX);
|
|
marker += sizeof(int);
|
|
|
|
int levelY;
|
|
memcpy(&levelY, marker, sizeof(int));
|
|
tinyexr::swap4(&levelY);
|
|
marker += sizeof(int);
|
|
|
|
if (isDeep) {
|
|
if ((marker + 2 * sizeof(tinyexr::tinyexr_int64)) >= (head + size)) {
|
|
return false;
|
|
}
|
|
tinyexr::tinyexr_int64 packed_offset_table_size;
|
|
memcpy(&packed_offset_table_size, marker, sizeof(tinyexr::tinyexr_int64));
|
|
tinyexr::swap8(reinterpret_cast<tinyexr::tinyexr_uint64*>(&packed_offset_table_size));
|
|
marker += sizeof(tinyexr::tinyexr_int64);
|
|
|
|
tinyexr::tinyexr_int64 packed_sample_size;
|
|
memcpy(&packed_sample_size, marker, sizeof(tinyexr::tinyexr_int64));
|
|
tinyexr::swap8(reinterpret_cast<tinyexr::tinyexr_uint64*>(&packed_sample_size));
|
|
marker += sizeof(tinyexr::tinyexr_int64);
|
|
|
|
// next Int64 is unpacked sample size - skip that too
|
|
marker += packed_offset_table_size + packed_sample_size + 8;
|
|
|
|
if (marker >= (head + size)) {
|
|
return false;
|
|
}
|
|
|
|
} else {
|
|
|
|
if ((marker + sizeof(uint32_t)) >= (head + size)) {
|
|
return false;
|
|
}
|
|
|
|
uint32_t dataSize;
|
|
memcpy(&dataSize, marker, sizeof(uint32_t));
|
|
tinyexr::swap4(&dataSize);
|
|
marker += sizeof(uint32_t);
|
|
|
|
marker += dataSize;
|
|
|
|
if (marker >= (head + size)) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (!isValidTile(exr_header, offset_data,
|
|
tileX, tileY, levelX, levelY)) {
|
|
return false;
|
|
}
|
|
|
|
int level_idx = LevelIndex(levelX, levelY, exr_header->tile_level_mode, numXLevels);
|
|
if (level_idx < 0) {
|
|
return false;
|
|
}
|
|
|
|
if (size_t(level_idx) >= offset_data.offsets.size()) {
|
|
return false;
|
|
}
|
|
|
|
if (size_t(tileY) >= offset_data.offsets[size_t(level_idx)].size()) {
|
|
return false;
|
|
}
|
|
|
|
if (size_t(tileX) >= offset_data.offsets[size_t(level_idx)][size_t(tileY)].size()) {
|
|
return false;
|
|
}
|
|
|
|
offset_data.offsets[size_t(level_idx)][size_t(tileY)][size_t(tileX)] = tileOffset;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// marker output is also
|
|
static int ReadOffsets(OffsetData& offset_data,
|
|
const unsigned char* head,
|
|
const unsigned char*& marker,
|
|
const size_t size,
|
|
const char** err) {
|
|
for (unsigned int l = 0; l < offset_data.offsets.size(); ++l) {
|
|
for (unsigned int dy = 0; dy < offset_data.offsets[l].size(); ++dy) {
|
|
for (unsigned int dx = 0; dx < offset_data.offsets[l][dy].size(); ++dx) {
|
|
tinyexr::tinyexr_uint64 offset;
|
|
if ((marker + sizeof(tinyexr_uint64)) >= (head + size)) {
|
|
tinyexr::SetErrorMessage("Insufficient data size in offset table.", err);
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
|
|
memcpy(&offset, marker, sizeof(tinyexr::tinyexr_uint64));
|
|
tinyexr::swap8(&offset);
|
|
if (offset >= size) {
|
|
tinyexr::SetErrorMessage("Invalid offset value in DecodeEXRImage.", err);
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
marker += sizeof(tinyexr::tinyexr_uint64); // = 8
|
|
offset_data.offsets[l][dy][dx] = offset;
|
|
}
|
|
}
|
|
}
|
|
return TINYEXR_SUCCESS;
|
|
}
|
|
|
|
static int DecodeEXRImage(EXRImage *exr_image, const EXRHeader *exr_header,
|
|
const unsigned char *head,
|
|
const unsigned char *marker, const size_t size,
|
|
const char **err) {
|
|
if (exr_image == NULL || exr_header == NULL || head == NULL ||
|
|
marker == NULL || (size <= tinyexr::kEXRVersionSize)) {
|
|
tinyexr::SetErrorMessage("Invalid argument for DecodeEXRImage().", err);
|
|
return TINYEXR_ERROR_INVALID_ARGUMENT;
|
|
}
|
|
|
|
int num_scanline_blocks = 1;
|
|
if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_ZIP) {
|
|
num_scanline_blocks = 16;
|
|
} else if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_PIZ) {
|
|
num_scanline_blocks = 32;
|
|
} else if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_ZFP) {
|
|
num_scanline_blocks = 16;
|
|
}
|
|
|
|
if (exr_header->data_window.max_x < exr_header->data_window.min_x ||
|
|
exr_header->data_window.max_x - exr_header->data_window.min_x ==
|
|
std::numeric_limits<int>::max()) {
|
|
// Issue 63
|
|
tinyexr::SetErrorMessage("Invalid data width value", err);
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
tinyexr_int64 data_width =
|
|
static_cast<tinyexr_int64>(exr_header->data_window.max_x) - static_cast<tinyexr_int64>(exr_header->data_window.min_x) + static_cast<tinyexr_int64>(1);
|
|
if (data_width <= 0) {
|
|
tinyexr::SetErrorMessage("Invalid data window width value", err);
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
|
|
if (exr_header->data_window.max_y < exr_header->data_window.min_y ||
|
|
exr_header->data_window.max_y - exr_header->data_window.min_y ==
|
|
std::numeric_limits<int>::max()) {
|
|
tinyexr::SetErrorMessage("Invalid data height value", err);
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
tinyexr_int64 data_height =
|
|
static_cast<tinyexr_int64>(exr_header->data_window.max_y) - static_cast<tinyexr_int64>(exr_header->data_window.min_y) + static_cast<tinyexr_int64>(1);
|
|
|
|
if (data_height <= 0) {
|
|
tinyexr::SetErrorMessage("Invalid data window height value", err);
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
|
|
// Do not allow too large data_width and data_height. header invalid?
|
|
{
|
|
if (data_width > TINYEXR_DIMENSION_THRESHOLD) {
|
|
tinyexr::SetErrorMessage("data width too large.", err);
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
if (data_height > TINYEXR_DIMENSION_THRESHOLD) {
|
|
tinyexr::SetErrorMessage("data height too large.", err);
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
}
|
|
|
|
if (exr_header->tiled) {
|
|
if (exr_header->tile_size_x > TINYEXR_DIMENSION_THRESHOLD) {
|
|
tinyexr::SetErrorMessage("tile width too large.", err);
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
if (exr_header->tile_size_y > TINYEXR_DIMENSION_THRESHOLD) {
|
|
tinyexr::SetErrorMessage("tile height too large.", err);
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
}
|
|
|
|
// Read offset tables.
|
|
OffsetData offset_data;
|
|
size_t num_blocks = 0;
|
|
// For a multi-resolution image, the size of the offset table will be calculated from the other attributes of the header.
|
|
// If chunk_count > 0 then chunk_count must be equal to the calculated tile count.
|
|
if (exr_header->tiled) {
|
|
{
|
|
std::vector<int> num_x_tiles, num_y_tiles;
|
|
if (!PrecalculateTileInfo(num_x_tiles, num_y_tiles, exr_header)) {
|
|
tinyexr::SetErrorMessage("Failed to precalculate tile info.", err);
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
num_blocks = size_t(InitTileOffsets(offset_data, exr_header, num_x_tiles, num_y_tiles));
|
|
if (exr_header->chunk_count > 0) {
|
|
if (exr_header->chunk_count != static_cast<int>(num_blocks)) {
|
|
tinyexr::SetErrorMessage("Invalid offset table size.", err);
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
}
|
|
}
|
|
|
|
int ret = ReadOffsets(offset_data, head, marker, size, err);
|
|
if (ret != TINYEXR_SUCCESS) return ret;
|
|
if (IsAnyOffsetsAreInvalid(offset_data)) {
|
|
if (!ReconstructTileOffsets(offset_data, exr_header,
|
|
head, marker, size,
|
|
exr_header->multipart, exr_header->non_image)) {
|
|
|
|
tinyexr::SetErrorMessage("Invalid Tile Offsets data.", err);
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
}
|
|
} else if (exr_header->chunk_count > 0) {
|
|
// Use `chunkCount` attribute.
|
|
num_blocks = static_cast<size_t>(exr_header->chunk_count);
|
|
InitSingleResolutionOffsets(offset_data, num_blocks);
|
|
} else {
|
|
num_blocks = static_cast<size_t>(data_height) /
|
|
static_cast<size_t>(num_scanline_blocks);
|
|
if (num_blocks * static_cast<size_t>(num_scanline_blocks) <
|
|
static_cast<size_t>(data_height)) {
|
|
num_blocks++;
|
|
}
|
|
|
|
InitSingleResolutionOffsets(offset_data, num_blocks);
|
|
}
|
|
|
|
if (!exr_header->tiled) {
|
|
std::vector<tinyexr::tinyexr_uint64>& offsets = offset_data.offsets[0][0];
|
|
for (size_t y = 0; y < num_blocks; y++) {
|
|
tinyexr::tinyexr_uint64 offset;
|
|
// Issue #81
|
|
if ((marker + sizeof(tinyexr_uint64)) >= (head + size)) {
|
|
tinyexr::SetErrorMessage("Insufficient data size in offset table.", err);
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
|
|
memcpy(&offset, marker, sizeof(tinyexr::tinyexr_uint64));
|
|
tinyexr::swap8(&offset);
|
|
if (offset >= size) {
|
|
tinyexr::SetErrorMessage("Invalid offset value in DecodeEXRImage.", err);
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
marker += sizeof(tinyexr::tinyexr_uint64); // = 8
|
|
offsets[y] = offset;
|
|
}
|
|
|
|
// If line offsets are invalid, we try to reconstruct it.
|
|
// See OpenEXR/IlmImf/ImfScanLineInputFile.cpp::readLineOffsets() for details.
|
|
for (size_t y = 0; y < num_blocks; y++) {
|
|
if (offsets[y] <= 0) {
|
|
// TODO(syoyo) Report as warning?
|
|
// if (err) {
|
|
// stringstream ss;
|
|
// ss << "Incomplete lineOffsets." << std::endl;
|
|
// (*err) += ss.str();
|
|
//}
|
|
bool ret =
|
|
ReconstructLineOffsets(&offsets, num_blocks, head, marker, size);
|
|
if (ret) {
|
|
// OK
|
|
break;
|
|
} else {
|
|
tinyexr::SetErrorMessage(
|
|
"Cannot reconstruct lineOffset table in DecodeEXRImage.", err);
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
{
|
|
std::string e;
|
|
int ret = DecodeChunk(exr_image, exr_header, offset_data, head, size, &e);
|
|
|
|
if (ret != TINYEXR_SUCCESS) {
|
|
if (!e.empty()) {
|
|
tinyexr::SetErrorMessage(e, err);
|
|
}
|
|
|
|
#if 1
|
|
FreeEXRImage(exr_image);
|
|
#else
|
|
// release memory(if exists)
|
|
if ((exr_header->num_channels > 0) && exr_image && exr_image->images) {
|
|
for (size_t c = 0; c < size_t(exr_header->num_channels); c++) {
|
|
if (exr_image->images[c]) {
|
|
free(exr_image->images[c]);
|
|
exr_image->images[c] = NULL;
|
|
}
|
|
}
|
|
free(exr_image->images);
|
|
exr_image->images = NULL;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
static void GetLayers(const EXRHeader &exr_header,
|
|
std::vector<std::string> &layer_names) {
|
|
// Naive implementation
|
|
// Group channels by layers
|
|
// go over all channel names, split by periods
|
|
// collect unique names
|
|
layer_names.clear();
|
|
for (int c = 0; c < exr_header.num_channels; c++) {
|
|
std::string full_name(exr_header.channels[c].name);
|
|
const size_t pos = full_name.find_last_of('.');
|
|
if (pos != std::string::npos && pos != 0 && pos + 1 < full_name.size()) {
|
|
full_name.erase(pos);
|
|
if (std::find(layer_names.begin(), layer_names.end(), full_name) ==
|
|
layer_names.end())
|
|
layer_names.push_back(full_name);
|
|
}
|
|
}
|
|
}
|
|
|
|
struct LayerChannel {
|
|
explicit LayerChannel(size_t i, std::string n) : index(i), name(n) {}
|
|
size_t index;
|
|
std::string name;
|
|
};
|
|
|
|
static void ChannelsInLayer(const EXRHeader &exr_header,
|
|
const std::string &layer_name,
|
|
std::vector<LayerChannel> &channels) {
|
|
channels.clear();
|
|
//std::cout << "layer_name = " << layer_name << "\n";
|
|
for (int c = 0; c < exr_header.num_channels; c++) {
|
|
//std::cout << "chan[" << c << "] = " << exr_header.channels[c].name << "\n";
|
|
std::string ch_name(exr_header.channels[c].name);
|
|
if (layer_name.empty()) {
|
|
const size_t pos = ch_name.find_last_of('.');
|
|
if (pos != std::string::npos && pos < ch_name.size()) {
|
|
if (pos != 0) continue;
|
|
ch_name = ch_name.substr(pos + 1);
|
|
}
|
|
} else {
|
|
const size_t pos = ch_name.find(layer_name + '.');
|
|
if (pos == std::string::npos) continue;
|
|
if (pos == 0) {
|
|
ch_name = ch_name.substr(layer_name.size() + 1);
|
|
}
|
|
}
|
|
LayerChannel ch(size_t(c), ch_name);
|
|
channels.push_back(ch);
|
|
}
|
|
}
|
|
|
|
} // namespace tinyexr
|
|
|
|
int EXRLayers(const char *filename, const char **layer_names[], int *num_layers,
|
|
const char **err) {
|
|
EXRVersion exr_version;
|
|
EXRHeader exr_header;
|
|
InitEXRHeader(&exr_header);
|
|
|
|
{
|
|
int ret = ParseEXRVersionFromFile(&exr_version, filename);
|
|
if (ret != TINYEXR_SUCCESS) {
|
|
tinyexr::SetErrorMessage("Invalid EXR header.", err);
|
|
return ret;
|
|
}
|
|
|
|
if (exr_version.multipart || exr_version.non_image) {
|
|
tinyexr::SetErrorMessage(
|
|
"Loading multipart or DeepImage is not supported in LoadEXR() API",
|
|
err);
|
|
return TINYEXR_ERROR_INVALID_DATA; // @fixme.
|
|
}
|
|
}
|
|
|
|
int ret = ParseEXRHeaderFromFile(&exr_header, &exr_version, filename, err);
|
|
if (ret != TINYEXR_SUCCESS) {
|
|
FreeEXRHeader(&exr_header);
|
|
return ret;
|
|
}
|
|
|
|
std::vector<std::string> layer_vec;
|
|
tinyexr::GetLayers(exr_header, layer_vec);
|
|
|
|
(*num_layers) = int(layer_vec.size());
|
|
(*layer_names) = static_cast<const char **>(
|
|
malloc(sizeof(const char *) * static_cast<size_t>(layer_vec.size())));
|
|
for (size_t c = 0; c < static_cast<size_t>(layer_vec.size()); c++) {
|
|
#ifdef _MSC_VER
|
|
(*layer_names)[c] = _strdup(layer_vec[c].c_str());
|
|
#else
|
|
(*layer_names)[c] = strdup(layer_vec[c].c_str());
|
|
#endif
|
|
}
|
|
|
|
FreeEXRHeader(&exr_header);
|
|
return TINYEXR_SUCCESS;
|
|
}
|
|
|
|
int LoadEXR(float **out_rgba, int *width, int *height, const char *filename,
|
|
const char **err) {
|
|
return LoadEXRWithLayer(out_rgba, width, height, filename,
|
|
/* layername */ NULL, err);
|
|
}
|
|
|
|
int LoadEXRWithLayer(float **out_rgba, int *width, int *height,
|
|
const char *filename, const char *layername,
|
|
const char **err) {
|
|
if (out_rgba == NULL) {
|
|
tinyexr::SetErrorMessage("Invalid argument for LoadEXR()", err);
|
|
return TINYEXR_ERROR_INVALID_ARGUMENT;
|
|
}
|
|
|
|
EXRVersion exr_version;
|
|
EXRImage exr_image;
|
|
EXRHeader exr_header;
|
|
InitEXRHeader(&exr_header);
|
|
InitEXRImage(&exr_image);
|
|
|
|
{
|
|
int ret = ParseEXRVersionFromFile(&exr_version, filename);
|
|
if (ret != TINYEXR_SUCCESS) {
|
|
std::stringstream ss;
|
|
ss << "Failed to open EXR file or read version info from EXR file. code("
|
|
<< ret << ")";
|
|
tinyexr::SetErrorMessage(ss.str(), err);
|
|
return ret;
|
|
}
|
|
|
|
if (exr_version.multipart || exr_version.non_image) {
|
|
tinyexr::SetErrorMessage(
|
|
"Loading multipart or DeepImage is not supported in LoadEXR() API",
|
|
err);
|
|
return TINYEXR_ERROR_INVALID_DATA; // @fixme.
|
|
}
|
|
}
|
|
|
|
{
|
|
int ret = ParseEXRHeaderFromFile(&exr_header, &exr_version, filename, err);
|
|
if (ret != TINYEXR_SUCCESS) {
|
|
FreeEXRHeader(&exr_header);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
// Read HALF channel as FLOAT.
|
|
for (int i = 0; i < exr_header.num_channels; i++) {
|
|
if (exr_header.pixel_types[i] == TINYEXR_PIXELTYPE_HALF) {
|
|
exr_header.requested_pixel_types[i] = TINYEXR_PIXELTYPE_FLOAT;
|
|
}
|
|
}
|
|
|
|
// TODO: Probably limit loading to layers (channels) selected by layer index
|
|
{
|
|
int ret = LoadEXRImageFromFile(&exr_image, &exr_header, filename, err);
|
|
if (ret != TINYEXR_SUCCESS) {
|
|
FreeEXRHeader(&exr_header);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
// RGBA
|
|
int idxR = -1;
|
|
int idxG = -1;
|
|
int idxB = -1;
|
|
int idxA = -1;
|
|
|
|
std::vector<std::string> layer_names;
|
|
tinyexr::GetLayers(exr_header, layer_names);
|
|
|
|
std::vector<tinyexr::LayerChannel> channels;
|
|
tinyexr::ChannelsInLayer(
|
|
exr_header, layername == NULL ? "" : std::string(layername), channels);
|
|
|
|
|
|
if (channels.size() < 1) {
|
|
if (layername == NULL) {
|
|
tinyexr::SetErrorMessage("Layer Not Found. Seems EXR contains channels with layer(e.g. `diffuse.R`). if you are using LoadEXR(), please try LoadEXRWithLayer(). LoadEXR() cannot load EXR having channels with layer.", err);
|
|
|
|
} else {
|
|
tinyexr::SetErrorMessage("Layer Not Found", err);
|
|
}
|
|
FreeEXRHeader(&exr_header);
|
|
FreeEXRImage(&exr_image);
|
|
return TINYEXR_ERROR_LAYER_NOT_FOUND;
|
|
}
|
|
|
|
size_t ch_count = channels.size() < 4 ? channels.size() : 4;
|
|
for (size_t c = 0; c < ch_count; c++) {
|
|
const tinyexr::LayerChannel &ch = channels[c];
|
|
|
|
if (ch.name == "R") {
|
|
idxR = int(ch.index);
|
|
} else if (ch.name == "G") {
|
|
idxG = int(ch.index);
|
|
} else if (ch.name == "B") {
|
|
idxB = int(ch.index);
|
|
} else if (ch.name == "A") {
|
|
idxA = int(ch.index);
|
|
}
|
|
}
|
|
|
|
if (channels.size() == 1) {
|
|
int chIdx = int(channels.front().index);
|
|
// Grayscale channel only.
|
|
|
|
(*out_rgba) = reinterpret_cast<float *>(
|
|
malloc(4 * sizeof(float) * static_cast<size_t>(exr_image.width) *
|
|
static_cast<size_t>(exr_image.height)));
|
|
|
|
if (exr_header.tiled) {
|
|
const size_t tile_size_x = static_cast<size_t>(exr_header.tile_size_x);
|
|
const size_t tile_size_y = static_cast<size_t>(exr_header.tile_size_y);
|
|
for (int it = 0; it < exr_image.num_tiles; it++) {
|
|
for (size_t j = 0; j < tile_size_y; j++) {
|
|
for (size_t i = 0; i < tile_size_x; i++) {
|
|
const size_t ii =
|
|
static_cast<size_t>(exr_image.tiles[it].offset_x) * tile_size_x +
|
|
i;
|
|
const size_t jj =
|
|
static_cast<size_t>(exr_image.tiles[it].offset_y) * tile_size_y +
|
|
j;
|
|
const size_t idx = ii + jj * static_cast<size_t>(exr_image.width);
|
|
|
|
// out of region check.
|
|
if (ii >= static_cast<size_t>(exr_image.width)) {
|
|
continue;
|
|
}
|
|
if (jj >= static_cast<size_t>(exr_image.height)) {
|
|
continue;
|
|
}
|
|
const size_t srcIdx = i + j * tile_size_x;
|
|
unsigned char **src = exr_image.tiles[it].images;
|
|
(*out_rgba)[4 * idx + 0] =
|
|
reinterpret_cast<float **>(src)[chIdx][srcIdx];
|
|
(*out_rgba)[4 * idx + 1] =
|
|
reinterpret_cast<float **>(src)[chIdx][srcIdx];
|
|
(*out_rgba)[4 * idx + 2] =
|
|
reinterpret_cast<float **>(src)[chIdx][srcIdx];
|
|
(*out_rgba)[4 * idx + 3] =
|
|
reinterpret_cast<float **>(src)[chIdx][srcIdx];
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
const size_t pixel_size = static_cast<size_t>(exr_image.width) *
|
|
static_cast<size_t>(exr_image.height);
|
|
for (size_t i = 0; i < pixel_size; i++) {
|
|
const float val =
|
|
reinterpret_cast<float **>(exr_image.images)[chIdx][i];
|
|
(*out_rgba)[4 * i + 0] = val;
|
|
(*out_rgba)[4 * i + 1] = val;
|
|
(*out_rgba)[4 * i + 2] = val;
|
|
(*out_rgba)[4 * i + 3] = val;
|
|
}
|
|
}
|
|
} else {
|
|
// Assume RGB(A)
|
|
|
|
if (idxR == -1) {
|
|
tinyexr::SetErrorMessage("R channel not found", err);
|
|
|
|
FreeEXRHeader(&exr_header);
|
|
FreeEXRImage(&exr_image);
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
|
|
if (idxG == -1) {
|
|
tinyexr::SetErrorMessage("G channel not found", err);
|
|
FreeEXRHeader(&exr_header);
|
|
FreeEXRImage(&exr_image);
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
|
|
if (idxB == -1) {
|
|
tinyexr::SetErrorMessage("B channel not found", err);
|
|
FreeEXRHeader(&exr_header);
|
|
FreeEXRImage(&exr_image);
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
|
|
(*out_rgba) = reinterpret_cast<float *>(
|
|
malloc(4 * sizeof(float) * static_cast<size_t>(exr_image.width) *
|
|
static_cast<size_t>(exr_image.height)));
|
|
if (exr_header.tiled) {
|
|
const size_t tile_size_x = static_cast<size_t>(exr_header.tile_size_x);
|
|
const size_t tile_size_y = static_cast<size_t>(exr_header.tile_size_y);
|
|
for (int it = 0; it < exr_image.num_tiles; it++) {
|
|
for (size_t j = 0; j < tile_size_y; j++) {
|
|
for (size_t i = 0; i < tile_size_x; i++) {
|
|
const size_t ii =
|
|
static_cast<size_t>(exr_image.tiles[it].offset_x) *
|
|
tile_size_x +
|
|
i;
|
|
const size_t jj =
|
|
static_cast<size_t>(exr_image.tiles[it].offset_y) *
|
|
tile_size_y +
|
|
j;
|
|
const size_t idx = ii + jj * static_cast<size_t>(exr_image.width);
|
|
|
|
// out of region check.
|
|
if (ii >= static_cast<size_t>(exr_image.width)) {
|
|
continue;
|
|
}
|
|
if (jj >= static_cast<size_t>(exr_image.height)) {
|
|
continue;
|
|
}
|
|
const size_t srcIdx = i + j * tile_size_x;
|
|
unsigned char **src = exr_image.tiles[it].images;
|
|
(*out_rgba)[4 * idx + 0] =
|
|
reinterpret_cast<float **>(src)[idxR][srcIdx];
|
|
(*out_rgba)[4 * idx + 1] =
|
|
reinterpret_cast<float **>(src)[idxG][srcIdx];
|
|
(*out_rgba)[4 * idx + 2] =
|
|
reinterpret_cast<float **>(src)[idxB][srcIdx];
|
|
if (idxA != -1) {
|
|
(*out_rgba)[4 * idx + 3] =
|
|
reinterpret_cast<float **>(src)[idxA][srcIdx];
|
|
} else {
|
|
(*out_rgba)[4 * idx + 3] = 1.0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
const size_t pixel_size = static_cast<size_t>(exr_image.width) *
|
|
static_cast<size_t>(exr_image.height);
|
|
for (size_t i = 0; i < pixel_size; i++) {
|
|
(*out_rgba)[4 * i + 0] =
|
|
reinterpret_cast<float **>(exr_image.images)[idxR][i];
|
|
(*out_rgba)[4 * i + 1] =
|
|
reinterpret_cast<float **>(exr_image.images)[idxG][i];
|
|
(*out_rgba)[4 * i + 2] =
|
|
reinterpret_cast<float **>(exr_image.images)[idxB][i];
|
|
if (idxA != -1) {
|
|
(*out_rgba)[4 * i + 3] =
|
|
reinterpret_cast<float **>(exr_image.images)[idxA][i];
|
|
} else {
|
|
(*out_rgba)[4 * i + 3] = 1.0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
(*width) = exr_image.width;
|
|
(*height) = exr_image.height;
|
|
|
|
FreeEXRHeader(&exr_header);
|
|
FreeEXRImage(&exr_image);
|
|
|
|
return TINYEXR_SUCCESS;
|
|
}
|
|
|
|
int IsEXR(const char *filename) {
|
|
EXRVersion exr_version;
|
|
|
|
int ret = ParseEXRVersionFromFile(&exr_version, filename);
|
|
if (ret != TINYEXR_SUCCESS) {
|
|
return ret;
|
|
}
|
|
|
|
return TINYEXR_SUCCESS;
|
|
}
|
|
|
|
int IsEXRFromMemory(const unsigned char *memory, size_t size) {
|
|
EXRVersion exr_version;
|
|
|
|
int ret = ParseEXRVersionFromMemory(&exr_version, memory, size);
|
|
if (ret != TINYEXR_SUCCESS) {
|
|
return ret;
|
|
}
|
|
|
|
return TINYEXR_SUCCESS;
|
|
}
|
|
|
|
int ParseEXRHeaderFromMemory(EXRHeader *exr_header, const EXRVersion *version,
|
|
const unsigned char *memory, size_t size,
|
|
const char **err) {
|
|
if (memory == NULL || exr_header == NULL) {
|
|
tinyexr::SetErrorMessage(
|
|
"Invalid argument. `memory` or `exr_header` argument is null in "
|
|
"ParseEXRHeaderFromMemory()",
|
|
err);
|
|
|
|
// Invalid argument
|
|
return TINYEXR_ERROR_INVALID_ARGUMENT;
|
|
}
|
|
|
|
if (size < tinyexr::kEXRVersionSize) {
|
|
tinyexr::SetErrorMessage("Insufficient header/data size.\n", err);
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
|
|
const unsigned char *marker = memory + tinyexr::kEXRVersionSize;
|
|
size_t marker_size = size - tinyexr::kEXRVersionSize;
|
|
|
|
tinyexr::HeaderInfo info;
|
|
info.clear();
|
|
|
|
int ret;
|
|
{
|
|
std::string err_str;
|
|
ret = ParseEXRHeader(&info, NULL, version, &err_str, marker, marker_size);
|
|
|
|
if (ret != TINYEXR_SUCCESS) {
|
|
if (err && !err_str.empty()) {
|
|
tinyexr::SetErrorMessage(err_str, err);
|
|
}
|
|
}
|
|
}
|
|
|
|
{
|
|
std::string warn;
|
|
std::string err_str;
|
|
|
|
if (!ConvertHeader(exr_header, info, &warn, &err_str)) {
|
|
// release mem
|
|
for (size_t i = 0; i < info.attributes.size(); i++) {
|
|
if (info.attributes[i].value) {
|
|
free(info.attributes[i].value);
|
|
}
|
|
}
|
|
if (err && !err_str.empty()) {
|
|
tinyexr::SetErrorMessage(err_str, err);
|
|
}
|
|
ret = TINYEXR_ERROR_INVALID_HEADER;
|
|
}
|
|
}
|
|
|
|
exr_header->multipart = version->multipart ? 1 : 0;
|
|
exr_header->non_image = version->non_image ? 1 : 0;
|
|
|
|
return ret;
|
|
}
|
|
|
|
int LoadEXRFromMemory(float **out_rgba, int *width, int *height,
|
|
const unsigned char *memory, size_t size,
|
|
const char **err) {
|
|
if (out_rgba == NULL || memory == NULL) {
|
|
tinyexr::SetErrorMessage("Invalid argument for LoadEXRFromMemory", err);
|
|
return TINYEXR_ERROR_INVALID_ARGUMENT;
|
|
}
|
|
|
|
EXRVersion exr_version;
|
|
EXRImage exr_image;
|
|
EXRHeader exr_header;
|
|
|
|
InitEXRHeader(&exr_header);
|
|
|
|
int ret = ParseEXRVersionFromMemory(&exr_version, memory, size);
|
|
if (ret != TINYEXR_SUCCESS) {
|
|
std::stringstream ss;
|
|
ss << "Failed to parse EXR version. code(" << ret << ")";
|
|
tinyexr::SetErrorMessage(ss.str(), err);
|
|
return ret;
|
|
}
|
|
|
|
ret = ParseEXRHeaderFromMemory(&exr_header, &exr_version, memory, size, err);
|
|
if (ret != TINYEXR_SUCCESS) {
|
|
return ret;
|
|
}
|
|
|
|
// Read HALF channel as FLOAT.
|
|
for (int i = 0; i < exr_header.num_channels; i++) {
|
|
if (exr_header.pixel_types[i] == TINYEXR_PIXELTYPE_HALF) {
|
|
exr_header.requested_pixel_types[i] = TINYEXR_PIXELTYPE_FLOAT;
|
|
}
|
|
}
|
|
|
|
InitEXRImage(&exr_image);
|
|
ret = LoadEXRImageFromMemory(&exr_image, &exr_header, memory, size, err);
|
|
if (ret != TINYEXR_SUCCESS) {
|
|
return ret;
|
|
}
|
|
|
|
// RGBA
|
|
int idxR = -1;
|
|
int idxG = -1;
|
|
int idxB = -1;
|
|
int idxA = -1;
|
|
for (int c = 0; c < exr_header.num_channels; c++) {
|
|
if (strcmp(exr_header.channels[c].name, "R") == 0) {
|
|
idxR = c;
|
|
} else if (strcmp(exr_header.channels[c].name, "G") == 0) {
|
|
idxG = c;
|
|
} else if (strcmp(exr_header.channels[c].name, "B") == 0) {
|
|
idxB = c;
|
|
} else if (strcmp(exr_header.channels[c].name, "A") == 0) {
|
|
idxA = c;
|
|
}
|
|
}
|
|
|
|
// TODO(syoyo): Refactor removing same code as used in LoadEXR().
|
|
if (exr_header.num_channels == 1) {
|
|
// Grayscale channel only.
|
|
|
|
(*out_rgba) = reinterpret_cast<float *>(
|
|
malloc(4 * sizeof(float) * static_cast<size_t>(exr_image.width) *
|
|
static_cast<size_t>(exr_image.height)));
|
|
|
|
if (exr_header.tiled) {
|
|
const size_t tile_size_x = static_cast<size_t>(exr_header.tile_size_x);
|
|
const size_t tile_size_y = static_cast<size_t>(exr_header.tile_size_y);
|
|
for (int it = 0; it < exr_image.num_tiles; it++) {
|
|
for (size_t j = 0; j < tile_size_y; j++) {
|
|
for (size_t i = 0; i < tile_size_x; i++) {
|
|
const size_t ii =
|
|
static_cast<size_t>(exr_image.tiles[it].offset_x) *
|
|
tile_size_x +
|
|
i;
|
|
const size_t jj =
|
|
static_cast<size_t>(exr_image.tiles[it].offset_y) *
|
|
tile_size_y +
|
|
j;
|
|
const size_t idx = ii + jj * static_cast<size_t>(exr_image.width);
|
|
|
|
// out of region check.
|
|
if (ii >= static_cast<size_t>(exr_image.width)) {
|
|
continue;
|
|
}
|
|
if (jj >= static_cast<size_t>(exr_image.height)) {
|
|
continue;
|
|
}
|
|
const size_t srcIdx = i + j * tile_size_x;
|
|
unsigned char **src = exr_image.tiles[it].images;
|
|
(*out_rgba)[4 * idx + 0] =
|
|
reinterpret_cast<float **>(src)[0][srcIdx];
|
|
(*out_rgba)[4 * idx + 1] =
|
|
reinterpret_cast<float **>(src)[0][srcIdx];
|
|
(*out_rgba)[4 * idx + 2] =
|
|
reinterpret_cast<float **>(src)[0][srcIdx];
|
|
(*out_rgba)[4 * idx + 3] =
|
|
reinterpret_cast<float **>(src)[0][srcIdx];
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
const size_t pixel_size = static_cast<size_t>(exr_image.width) *
|
|
static_cast<size_t>(exr_image.height);
|
|
for (size_t i = 0; i < pixel_size; i++) {
|
|
const float val = reinterpret_cast<float **>(exr_image.images)[0][i];
|
|
(*out_rgba)[4 * i + 0] = val;
|
|
(*out_rgba)[4 * i + 1] = val;
|
|
(*out_rgba)[4 * i + 2] = val;
|
|
(*out_rgba)[4 * i + 3] = val;
|
|
}
|
|
}
|
|
|
|
} else {
|
|
// TODO(syoyo): Support non RGBA image.
|
|
|
|
if (idxR == -1) {
|
|
tinyexr::SetErrorMessage("R channel not found", err);
|
|
|
|
// @todo { free exr_image }
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
|
|
if (idxG == -1) {
|
|
tinyexr::SetErrorMessage("G channel not found", err);
|
|
// @todo { free exr_image }
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
|
|
if (idxB == -1) {
|
|
tinyexr::SetErrorMessage("B channel not found", err);
|
|
// @todo { free exr_image }
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
|
|
(*out_rgba) = reinterpret_cast<float *>(
|
|
malloc(4 * sizeof(float) * static_cast<size_t>(exr_image.width) *
|
|
static_cast<size_t>(exr_image.height)));
|
|
|
|
if (exr_header.tiled) {
|
|
const size_t tile_size_x = static_cast<size_t>(exr_header.tile_size_x);
|
|
const size_t tile_size_y = static_cast<size_t>(exr_header.tile_size_y);
|
|
for (int it = 0; it < exr_image.num_tiles; it++) {
|
|
for (size_t j = 0; j < tile_size_y; j++)
|
|
for (size_t i = 0; i < tile_size_x; i++) {
|
|
const size_t ii =
|
|
static_cast<size_t>(exr_image.tiles[it].offset_x) *
|
|
tile_size_x +
|
|
i;
|
|
const size_t jj =
|
|
static_cast<size_t>(exr_image.tiles[it].offset_y) *
|
|
tile_size_y +
|
|
j;
|
|
const size_t idx = ii + jj * static_cast<size_t>(exr_image.width);
|
|
|
|
// out of region check.
|
|
if (ii >= static_cast<size_t>(exr_image.width)) {
|
|
continue;
|
|
}
|
|
if (jj >= static_cast<size_t>(exr_image.height)) {
|
|
continue;
|
|
}
|
|
const size_t srcIdx = i + j * tile_size_x;
|
|
unsigned char **src = exr_image.tiles[it].images;
|
|
(*out_rgba)[4 * idx + 0] =
|
|
reinterpret_cast<float **>(src)[idxR][srcIdx];
|
|
(*out_rgba)[4 * idx + 1] =
|
|
reinterpret_cast<float **>(src)[idxG][srcIdx];
|
|
(*out_rgba)[4 * idx + 2] =
|
|
reinterpret_cast<float **>(src)[idxB][srcIdx];
|
|
if (idxA != -1) {
|
|
(*out_rgba)[4 * idx + 3] =
|
|
reinterpret_cast<float **>(src)[idxA][srcIdx];
|
|
} else {
|
|
(*out_rgba)[4 * idx + 3] = 1.0;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
const size_t pixel_size = static_cast<size_t>(exr_image.width) *
|
|
static_cast<size_t>(exr_image.height);
|
|
for (size_t i = 0; i < pixel_size; i++) {
|
|
(*out_rgba)[4 * i + 0] =
|
|
reinterpret_cast<float **>(exr_image.images)[idxR][i];
|
|
(*out_rgba)[4 * i + 1] =
|
|
reinterpret_cast<float **>(exr_image.images)[idxG][i];
|
|
(*out_rgba)[4 * i + 2] =
|
|
reinterpret_cast<float **>(exr_image.images)[idxB][i];
|
|
if (idxA != -1) {
|
|
(*out_rgba)[4 * i + 3] =
|
|
reinterpret_cast<float **>(exr_image.images)[idxA][i];
|
|
} else {
|
|
(*out_rgba)[4 * i + 3] = 1.0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
(*width) = exr_image.width;
|
|
(*height) = exr_image.height;
|
|
|
|
FreeEXRHeader(&exr_header);
|
|
FreeEXRImage(&exr_image);
|
|
|
|
return TINYEXR_SUCCESS;
|
|
}
|
|
|
|
// Represents a read-only file mapped to an address space in memory.
|
|
// If no memory-mapping API is available, falls back to allocating a buffer
|
|
// with a copy of the file's data.
|
|
struct MemoryMappedFile {
|
|
unsigned char *data; // To the start of the file's data.
|
|
size_t size; // The size of the file in bytes.
|
|
#ifdef TINYEXR_USE_WIN32_MMAP
|
|
HANDLE windows_file;
|
|
HANDLE windows_file_mapping;
|
|
#elif defined(TINYEXR_USE_POSIX_MMAP)
|
|
int posix_descriptor;
|
|
#endif
|
|
|
|
// MemoryMappedFile's constructor tries to map memory to a file.
|
|
// If this succeeds, valid() will return true and all fields
|
|
// are usable; otherwise, valid() will return false.
|
|
MemoryMappedFile(const char *filename) {
|
|
data = NULL;
|
|
size = 0;
|
|
#ifdef TINYEXR_USE_WIN32_MMAP
|
|
windows_file_mapping = NULL;
|
|
windows_file =
|
|
CreateFileW(tinyexr::UTF8ToWchar(filename).c_str(), // lpFileName
|
|
GENERIC_READ, // dwDesiredAccess
|
|
FILE_SHARE_READ, // dwShareMode
|
|
NULL, // lpSecurityAttributes
|
|
OPEN_EXISTING, // dwCreationDisposition
|
|
FILE_ATTRIBUTE_READONLY, // dwFlagsAndAttributes
|
|
NULL); // hTemplateFile
|
|
if (windows_file == INVALID_HANDLE_VALUE) {
|
|
return;
|
|
}
|
|
|
|
windows_file_mapping = CreateFileMapping(windows_file, // hFile
|
|
NULL, // lpFileMappingAttributes
|
|
PAGE_READONLY, // flProtect
|
|
0, // dwMaximumSizeHigh
|
|
0, // dwMaximumSizeLow
|
|
NULL); // lpName
|
|
if (windows_file_mapping == NULL) {
|
|
return;
|
|
}
|
|
|
|
data = reinterpret_cast<unsigned char *>(
|
|
MapViewOfFile(windows_file_mapping, // hFileMappingObject
|
|
FILE_MAP_READ, // dwDesiredAccess
|
|
0, // dwFileOffsetHigh
|
|
0, // dwFileOffsetLow
|
|
0)); // dwNumberOfBytesToMap
|
|
if (!data) {
|
|
return;
|
|
}
|
|
|
|
LARGE_INTEGER windows_file_size = {};
|
|
if (!GetFileSizeEx(windows_file, &windows_file_size) ||
|
|
static_cast<ULONGLONG>(windows_file_size.QuadPart) >
|
|
std::numeric_limits<size_t>::max()) {
|
|
UnmapViewOfFile(data);
|
|
data = NULL;
|
|
return;
|
|
}
|
|
size = static_cast<size_t>(windows_file_size.QuadPart);
|
|
#elif defined(TINYEXR_USE_POSIX_MMAP)
|
|
posix_descriptor = open(filename, O_RDONLY);
|
|
if (posix_descriptor == -1) {
|
|
return;
|
|
}
|
|
|
|
struct stat info;
|
|
if (fstat(posix_descriptor, &info) < 0) {
|
|
return;
|
|
}
|
|
// Make sure st_size is in the valid range for a size_t. The second case
|
|
// can only fail if a POSIX implementation defines off_t to be a larger
|
|
// type than size_t - for instance, compiling with _FILE_OFFSET_BITS=64
|
|
// on a 32-bit system. On current 64-bit systems, this check can never
|
|
// fail, so we turn off clang's Wtautological-type-limit-compare warning
|
|
// around this code.
|
|
#ifdef __clang__
|
|
#pragma clang diagnostic push
|
|
#pragma clang diagnostic ignored "-Wtautological-type-limit-compare"
|
|
#endif
|
|
if (info.st_size < 0 ||
|
|
info.st_size > std::numeric_limits<ssize_t>::max()) {
|
|
return;
|
|
}
|
|
#ifdef __clang__
|
|
#pragma clang diagnostic pop
|
|
#endif
|
|
size = static_cast<size_t>(info.st_size);
|
|
|
|
data = reinterpret_cast<unsigned char *>(
|
|
mmap(0, size, PROT_READ, MAP_SHARED, posix_descriptor, 0));
|
|
if (data == MAP_FAILED) {
|
|
data = nullptr;
|
|
return;
|
|
}
|
|
#else
|
|
FILE *fp = fopen(filename, "rb");
|
|
if (!fp) {
|
|
return;
|
|
}
|
|
|
|
// Calling fseek(fp, 0, SEEK_END) isn't strictly-conforming C code, but
|
|
// since neither the WIN32 nor POSIX APIs are available in this branch, this
|
|
// is a reasonable fallback option.
|
|
if (fseek(fp, 0, SEEK_END) != 0) {
|
|
fclose(fp);
|
|
return;
|
|
}
|
|
const long ftell_result = ftell(fp);
|
|
if (ftell_result < 0) {
|
|
// Error from ftell
|
|
fclose(fp);
|
|
return;
|
|
}
|
|
size = static_cast<size_t>(ftell_result);
|
|
if (fseek(fp, 0, SEEK_SET) != 0) {
|
|
fclose(fp);
|
|
size = 0;
|
|
return;
|
|
}
|
|
|
|
data = reinterpret_cast<unsigned char *>(malloc(size));
|
|
if (!data) {
|
|
size = 0;
|
|
fclose(fp);
|
|
return;
|
|
}
|
|
size_t read_bytes = fread(data, 1, size, fp);
|
|
if (read_bytes != size) {
|
|
// TODO: Try to read data until reading `size` bytes.
|
|
fclose(fp);
|
|
size = 0;
|
|
data = nullptr;
|
|
return;
|
|
}
|
|
fclose(fp);
|
|
#endif
|
|
}
|
|
|
|
// MemoryMappedFile's destructor closes all its handles.
|
|
~MemoryMappedFile() {
|
|
#ifdef TINYEXR_USE_WIN32_MMAP
|
|
if (data) {
|
|
(void)UnmapViewOfFile(data);
|
|
data = NULL;
|
|
}
|
|
|
|
if (windows_file_mapping != NULL) {
|
|
(void)CloseHandle(windows_file_mapping);
|
|
}
|
|
|
|
if (windows_file != INVALID_HANDLE_VALUE) {
|
|
(void)CloseHandle(windows_file);
|
|
}
|
|
#elif defined(TINYEXR_USE_POSIX_MMAP)
|
|
if (data) {
|
|
(void)munmap(data, size);
|
|
data = NULL;
|
|
}
|
|
|
|
if (posix_descriptor != -1) {
|
|
(void)close(posix_descriptor);
|
|
}
|
|
#else
|
|
if (data) {
|
|
(void)free(data);
|
|
}
|
|
data = NULL;
|
|
#endif
|
|
}
|
|
|
|
// A MemoryMappedFile cannot be copied or moved.
|
|
// Only check for this when compiling with C++11 or higher, since deleted
|
|
// function definitions were added then.
|
|
#if TINYEXR_HAS_CXX11
|
|
#ifdef __clang__
|
|
#pragma clang diagnostic push
|
|
#pragma clang diagnostic ignored "-Wc++98-compat"
|
|
#endif
|
|
MemoryMappedFile(const MemoryMappedFile &) = delete;
|
|
MemoryMappedFile &operator=(const MemoryMappedFile &) = delete;
|
|
MemoryMappedFile(MemoryMappedFile &&other) noexcept = delete;
|
|
MemoryMappedFile &operator=(MemoryMappedFile &&other) noexcept = delete;
|
|
#ifdef __clang__
|
|
#pragma clang diagnostic pop
|
|
#endif
|
|
#endif
|
|
|
|
// Returns whether this was successfully opened.
|
|
bool valid() const { return data; }
|
|
};
|
|
|
|
int LoadEXRImageFromFile(EXRImage *exr_image, const EXRHeader *exr_header,
|
|
const char *filename, const char **err) {
|
|
if (exr_image == NULL) {
|
|
tinyexr::SetErrorMessage("Invalid argument for LoadEXRImageFromFile", err);
|
|
return TINYEXR_ERROR_INVALID_ARGUMENT;
|
|
}
|
|
|
|
MemoryMappedFile file(filename);
|
|
if (!file.valid()) {
|
|
tinyexr::SetErrorMessage("Cannot read file " + std::string(filename), err);
|
|
return TINYEXR_ERROR_CANT_OPEN_FILE;
|
|
}
|
|
|
|
if (file.size < 16) {
|
|
tinyexr::SetErrorMessage("File size too short : " + std::string(filename),
|
|
err);
|
|
return TINYEXR_ERROR_INVALID_FILE;
|
|
}
|
|
|
|
return LoadEXRImageFromMemory(exr_image, exr_header, file.data, file.size,
|
|
err);
|
|
}
|
|
|
|
int LoadEXRImageFromMemory(EXRImage *exr_image, const EXRHeader *exr_header,
|
|
const unsigned char *memory, const size_t size,
|
|
const char **err) {
|
|
if (exr_image == NULL || memory == NULL ||
|
|
(size < tinyexr::kEXRVersionSize)) {
|
|
tinyexr::SetErrorMessage("Invalid argument for LoadEXRImageFromMemory",
|
|
err);
|
|
return TINYEXR_ERROR_INVALID_ARGUMENT;
|
|
}
|
|
|
|
if (exr_header->header_len == 0) {
|
|
tinyexr::SetErrorMessage("EXRHeader variable is not initialized.", err);
|
|
return TINYEXR_ERROR_INVALID_ARGUMENT;
|
|
}
|
|
|
|
const unsigned char *head = memory;
|
|
const unsigned char *marker = reinterpret_cast<const unsigned char *>(
|
|
memory + exr_header->header_len +
|
|
8); // +8 for magic number + version header.
|
|
return tinyexr::DecodeEXRImage(exr_image, exr_header, head, marker, size,
|
|
err);
|
|
}
|
|
|
|
namespace tinyexr
|
|
{
|
|
|
|
#ifdef __clang__
|
|
#pragma clang diagnostic push
|
|
#pragma clang diagnostic ignored "-Wsign-conversion"
|
|
#endif
|
|
|
|
// out_data must be allocated initially with the block-header size
|
|
// of the current image(-part) type
|
|
static bool EncodePixelData(/* out */ std::vector<unsigned char>& out_data,
|
|
const unsigned char* const* images,
|
|
int compression_type,
|
|
int /*line_order*/,
|
|
int width, // for tiled : tile.width
|
|
int /*height*/, // for tiled : header.tile_size_y
|
|
int x_stride, // for tiled : header.tile_size_x
|
|
int line_no, // for tiled : 0
|
|
int num_lines, // for tiled : tile.height
|
|
size_t pixel_data_size,
|
|
const std::vector<ChannelInfo>& channels,
|
|
const std::vector<size_t>& channel_offset_list,
|
|
std::string *err,
|
|
const void* compression_param = 0) // zfp compression param
|
|
{
|
|
size_t buf_size = static_cast<size_t>(width) *
|
|
static_cast<size_t>(num_lines) *
|
|
static_cast<size_t>(pixel_data_size);
|
|
//int last2bit = (buf_size & 3);
|
|
// buf_size must be multiple of four
|
|
//if(last2bit) buf_size += 4 - last2bit;
|
|
std::vector<unsigned char> buf(buf_size);
|
|
|
|
size_t start_y = static_cast<size_t>(line_no);
|
|
for (size_t c = 0; c < channels.size(); c++) {
|
|
if (channels[c].pixel_type == TINYEXR_PIXELTYPE_HALF) {
|
|
if (channels[c].requested_pixel_type == TINYEXR_PIXELTYPE_FLOAT) {
|
|
for (int y = 0; y < num_lines; y++) {
|
|
// Assume increasing Y
|
|
float *line_ptr = reinterpret_cast<float *>(&buf.at(
|
|
static_cast<size_t>(pixel_data_size * size_t(y) * size_t(width)) +
|
|
channel_offset_list[c] *
|
|
static_cast<size_t>(width)));
|
|
for (int x = 0; x < width; x++) {
|
|
tinyexr::FP16 h16;
|
|
h16.u = reinterpret_cast<const unsigned short * const *>(
|
|
images)[c][(y + start_y) * size_t(x_stride) + size_t(x)];
|
|
|
|
tinyexr::FP32 f32 = half_to_float(h16);
|
|
|
|
tinyexr::swap4(&f32.f);
|
|
|
|
// line_ptr[x] = f32.f;
|
|
tinyexr::cpy4(line_ptr + x, &(f32.f));
|
|
}
|
|
}
|
|
} else if (channels[c].requested_pixel_type == TINYEXR_PIXELTYPE_HALF) {
|
|
for (int y = 0; y < num_lines; y++) {
|
|
// Assume increasing Y
|
|
unsigned short *line_ptr = reinterpret_cast<unsigned short *>(
|
|
&buf.at(static_cast<size_t>(pixel_data_size * y *
|
|
width) +
|
|
channel_offset_list[c] *
|
|
static_cast<size_t>(width)));
|
|
for (int x = 0; x < width; x++) {
|
|
unsigned short val = reinterpret_cast<const unsigned short * const *>(
|
|
images)[c][(y + start_y) * x_stride + x];
|
|
|
|
tinyexr::swap2(&val);
|
|
|
|
// line_ptr[x] = val;
|
|
tinyexr::cpy2(line_ptr + x, &val);
|
|
}
|
|
}
|
|
} else {
|
|
if (err) {
|
|
(*err) += "Invalid requested_pixel_type.\n";
|
|
}
|
|
return false;
|
|
}
|
|
|
|
} else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_FLOAT) {
|
|
if (channels[c].requested_pixel_type == TINYEXR_PIXELTYPE_HALF) {
|
|
for (int y = 0; y < num_lines; y++) {
|
|
// Assume increasing Y
|
|
unsigned short *line_ptr = reinterpret_cast<unsigned short *>(
|
|
&buf.at(static_cast<size_t>(pixel_data_size * y *
|
|
width) +
|
|
channel_offset_list[c] *
|
|
static_cast<size_t>(width)));
|
|
for (int x = 0; x < width; x++) {
|
|
tinyexr::FP32 f32;
|
|
f32.f = reinterpret_cast<const float * const *>(
|
|
images)[c][(y + start_y) * x_stride + x];
|
|
|
|
tinyexr::FP16 h16;
|
|
h16 = float_to_half_full(f32);
|
|
|
|
tinyexr::swap2(reinterpret_cast<unsigned short *>(&h16.u));
|
|
|
|
// line_ptr[x] = h16.u;
|
|
tinyexr::cpy2(line_ptr + x, &(h16.u));
|
|
}
|
|
}
|
|
} else if (channels[c].requested_pixel_type == TINYEXR_PIXELTYPE_FLOAT) {
|
|
for (int y = 0; y < num_lines; y++) {
|
|
// Assume increasing Y
|
|
float *line_ptr = reinterpret_cast<float *>(&buf.at(
|
|
static_cast<size_t>(pixel_data_size * y * width) +
|
|
channel_offset_list[c] *
|
|
static_cast<size_t>(width)));
|
|
for (int x = 0; x < width; x++) {
|
|
float val = reinterpret_cast<const float * const *>(
|
|
images)[c][(y + start_y) * x_stride + x];
|
|
|
|
tinyexr::swap4(&val);
|
|
|
|
// line_ptr[x] = val;
|
|
tinyexr::cpy4(line_ptr + x, &val);
|
|
}
|
|
}
|
|
} else {
|
|
if (err) {
|
|
(*err) += "Invalid requested_pixel_type.\n";
|
|
}
|
|
return false;
|
|
}
|
|
} else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_UINT) {
|
|
for (int y = 0; y < num_lines; y++) {
|
|
// Assume increasing Y
|
|
unsigned int *line_ptr = reinterpret_cast<unsigned int *>(&buf.at(
|
|
static_cast<size_t>(pixel_data_size * y * width) +
|
|
channel_offset_list[c] * static_cast<size_t>(width)));
|
|
for (int x = 0; x < width; x++) {
|
|
unsigned int val = reinterpret_cast<const unsigned int * const *>(
|
|
images)[c][(y + start_y) * x_stride + x];
|
|
|
|
tinyexr::swap4(&val);
|
|
|
|
// line_ptr[x] = val;
|
|
tinyexr::cpy4(line_ptr + x, &val);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (compression_type == TINYEXR_COMPRESSIONTYPE_NONE) {
|
|
// 4 byte: scan line
|
|
// 4 byte: data size
|
|
// ~ : pixel data(uncompressed)
|
|
out_data.insert(out_data.end(), buf.begin(), buf.end());
|
|
|
|
} else if ((compression_type == TINYEXR_COMPRESSIONTYPE_ZIPS) ||
|
|
(compression_type == TINYEXR_COMPRESSIONTYPE_ZIP)) {
|
|
#if defined(TINYEXR_USE_MINIZ) && (TINYEXR_USE_MINIZ==1)
|
|
std::vector<unsigned char> block(mz_compressBound(
|
|
static_cast<unsigned long>(buf.size())));
|
|
#elif TINYEXR_USE_STB_ZLIB
|
|
// there is no compressBound() function, so we use a value that
|
|
// is grossly overestimated, but should always work
|
|
std::vector<unsigned char> block(256 + 2 * buf.size());
|
|
#elif defined(TINYEXR_USE_NANOZLIB) && (TINYEXR_USE_NANOZLIB == 1)
|
|
std::vector<unsigned char> block(nanoz_compressBound(
|
|
static_cast<unsigned long>(buf.size())));
|
|
#else
|
|
std::vector<unsigned char> block(
|
|
compressBound(static_cast<uLong>(buf.size())));
|
|
#endif
|
|
tinyexr::tinyexr_uint64 outSize = block.size();
|
|
|
|
if (!tinyexr::CompressZip(&block.at(0), outSize,
|
|
reinterpret_cast<const unsigned char *>(&buf.at(0)),
|
|
static_cast<unsigned long>(buf.size()))) {
|
|
if (err) {
|
|
(*err) += "Zip compresssion failed.\n";
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// 4 byte: scan line
|
|
// 4 byte: data size
|
|
// ~ : pixel data(compressed)
|
|
unsigned int data_len = static_cast<unsigned int>(outSize); // truncate
|
|
|
|
out_data.insert(out_data.end(), block.begin(), block.begin() + data_len);
|
|
|
|
} else if (compression_type == TINYEXR_COMPRESSIONTYPE_RLE) {
|
|
// (buf.size() * 3) / 2 would be enough.
|
|
std::vector<unsigned char> block((buf.size() * 3) / 2);
|
|
|
|
tinyexr::tinyexr_uint64 outSize = block.size();
|
|
|
|
if (!tinyexr::CompressRle(&block.at(0), outSize,
|
|
reinterpret_cast<const unsigned char *>(&buf.at(0)),
|
|
static_cast<unsigned long>(buf.size()))) {
|
|
if (err) {
|
|
(*err) += "RLE compresssion failed.\n";
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// 4 byte: scan line
|
|
// 4 byte: data size
|
|
// ~ : pixel data(compressed)
|
|
unsigned int data_len = static_cast<unsigned int>(outSize); // truncate
|
|
out_data.insert(out_data.end(), block.begin(), block.begin() + data_len);
|
|
|
|
} else if (compression_type == TINYEXR_COMPRESSIONTYPE_PIZ) {
|
|
#if TINYEXR_USE_PIZ
|
|
unsigned int bufLen =
|
|
8192 + static_cast<unsigned int>(
|
|
2 * static_cast<unsigned int>(
|
|
buf.size())); // @fixme { compute good bound. }
|
|
std::vector<unsigned char> block(bufLen);
|
|
unsigned int outSize = static_cast<unsigned int>(block.size());
|
|
|
|
if (!CompressPiz(&block.at(0), &outSize,
|
|
reinterpret_cast<const unsigned char *>(&buf.at(0)),
|
|
buf.size(), channels, width, num_lines)) {
|
|
if (err) {
|
|
(*err) += "PIZ compresssion failed.\n";
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// 4 byte: scan line
|
|
// 4 byte: data size
|
|
// ~ : pixel data(compressed)
|
|
unsigned int data_len = outSize;
|
|
out_data.insert(out_data.end(), block.begin(), block.begin() + data_len);
|
|
|
|
#else
|
|
if (err) {
|
|
(*err) += "PIZ compression is disabled in this build.\n";
|
|
}
|
|
return false;
|
|
#endif
|
|
} else if (compression_type == TINYEXR_COMPRESSIONTYPE_ZFP) {
|
|
#if TINYEXR_USE_ZFP
|
|
const ZFPCompressionParam* zfp_compression_param = reinterpret_cast<const ZFPCompressionParam*>(compression_param);
|
|
std::vector<unsigned char> block;
|
|
unsigned int outSize;
|
|
|
|
tinyexr::CompressZfp(
|
|
&block, &outSize, reinterpret_cast<const float *>(&buf.at(0)),
|
|
width, num_lines, static_cast<int>(channels.size()), *zfp_compression_param);
|
|
|
|
// 4 byte: scan line
|
|
// 4 byte: data size
|
|
// ~ : pixel data(compressed)
|
|
unsigned int data_len = outSize;
|
|
out_data.insert(out_data.end(), block.begin(), block.begin() + data_len);
|
|
|
|
#else
|
|
if (err) {
|
|
(*err) += "ZFP compression is disabled in this build.\n";
|
|
}
|
|
(void)compression_param;
|
|
return false;
|
|
#endif
|
|
} else {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static int EncodeTiledLevel(const EXRImage* level_image, const EXRHeader* exr_header,
|
|
const std::vector<tinyexr::ChannelInfo>& channels,
|
|
std::vector<std::vector<unsigned char> >& data_list,
|
|
size_t start_index, // for data_list
|
|
int num_x_tiles, int num_y_tiles,
|
|
const std::vector<size_t>& channel_offset_list,
|
|
int pixel_data_size,
|
|
const void* compression_param, // must be set if zfp compression is enabled
|
|
std::string* err) {
|
|
int num_tiles = num_x_tiles * num_y_tiles;
|
|
if (num_tiles != level_image->num_tiles) {
|
|
if (err) {
|
|
(*err) += "Invalid number of tiles in argument.\n";
|
|
}
|
|
return TINYEXR_ERROR_INVALID_ARGUMENT;
|
|
}
|
|
|
|
if ((exr_header->tile_size_x > level_image->width || exr_header->tile_size_y > level_image->height) &&
|
|
level_image->level_x == 0 && level_image->level_y == 0) {
|
|
if (err) {
|
|
(*err) += "Failed to encode tile data.\n";
|
|
}
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
|
|
|
|
#if TINYEXR_HAS_CXX11 && (TINYEXR_USE_THREAD > 0)
|
|
std::atomic<bool> invalid_data(false);
|
|
#else
|
|
bool invalid_data(false);
|
|
#endif
|
|
|
|
#if TINYEXR_HAS_CXX11 && (TINYEXR_USE_THREAD > 0)
|
|
std::vector<std::thread> workers;
|
|
std::atomic<int> tile_count(0);
|
|
|
|
int num_threads = std::max(1, int(std::thread::hardware_concurrency()));
|
|
if (num_threads > int(num_tiles)) {
|
|
num_threads = int(num_tiles);
|
|
}
|
|
|
|
for (int t = 0; t < num_threads; t++) {
|
|
workers.emplace_back(std::thread([&]() {
|
|
int i = 0;
|
|
while ((i = tile_count++) < num_tiles) {
|
|
|
|
#else
|
|
// Use signed int since some OpenMP compiler doesn't allow unsigned type for
|
|
// `parallel for`
|
|
#if TINYEXR_USE_OPENMP
|
|
#pragma omp parallel for
|
|
#endif
|
|
for (int i = 0; i < num_tiles; i++) {
|
|
|
|
#endif
|
|
size_t tile_idx = static_cast<size_t>(i);
|
|
size_t data_idx = tile_idx + start_index;
|
|
|
|
int x_tile = i % num_x_tiles;
|
|
int y_tile = i / num_x_tiles;
|
|
|
|
EXRTile& tile = level_image->tiles[tile_idx];
|
|
|
|
const unsigned char* const* images =
|
|
static_cast<const unsigned char* const*>(tile.images);
|
|
|
|
data_list[data_idx].resize(5*sizeof(int));
|
|
size_t data_header_size = data_list[data_idx].size();
|
|
bool ret = EncodePixelData(data_list[data_idx],
|
|
images,
|
|
exr_header->compression_type,
|
|
0, // increasing y
|
|
tile.width,
|
|
exr_header->tile_size_y,
|
|
exr_header->tile_size_x,
|
|
0,
|
|
tile.height,
|
|
pixel_data_size,
|
|
channels,
|
|
channel_offset_list,
|
|
err, compression_param);
|
|
if (!ret) {
|
|
invalid_data = true;
|
|
continue;
|
|
}
|
|
if (data_list[data_idx].size() <= data_header_size) {
|
|
invalid_data = true;
|
|
continue;
|
|
}
|
|
|
|
int data_len = static_cast<int>(data_list[data_idx].size() - data_header_size);
|
|
//tileX, tileY, levelX, levelY // pixel_data_size(int)
|
|
memcpy(&data_list[data_idx][0], &x_tile, sizeof(int));
|
|
memcpy(&data_list[data_idx][4], &y_tile, sizeof(int));
|
|
memcpy(&data_list[data_idx][8], &level_image->level_x, sizeof(int));
|
|
memcpy(&data_list[data_idx][12], &level_image->level_y, sizeof(int));
|
|
memcpy(&data_list[data_idx][16], &data_len, sizeof(int));
|
|
|
|
swap4(reinterpret_cast<int*>(&data_list[data_idx][0]));
|
|
swap4(reinterpret_cast<int*>(&data_list[data_idx][4]));
|
|
swap4(reinterpret_cast<int*>(&data_list[data_idx][8]));
|
|
swap4(reinterpret_cast<int*>(&data_list[data_idx][12]));
|
|
swap4(reinterpret_cast<int*>(&data_list[data_idx][16]));
|
|
|
|
#if TINYEXR_HAS_CXX11 && (TINYEXR_USE_THREAD > 0)
|
|
}
|
|
}));
|
|
}
|
|
|
|
for (auto &t : workers) {
|
|
t.join();
|
|
}
|
|
#else
|
|
} // omp parallel
|
|
#endif
|
|
|
|
if (invalid_data) {
|
|
if (err) {
|
|
(*err) += "Failed to encode tile data.\n";
|
|
}
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
return TINYEXR_SUCCESS;
|
|
}
|
|
|
|
static int NumScanlines(int compression_type) {
|
|
int num_scanlines = 1;
|
|
if (compression_type == TINYEXR_COMPRESSIONTYPE_ZIP) {
|
|
num_scanlines = 16;
|
|
} else if (compression_type == TINYEXR_COMPRESSIONTYPE_PIZ) {
|
|
num_scanlines = 32;
|
|
} else if (compression_type == TINYEXR_COMPRESSIONTYPE_ZFP) {
|
|
num_scanlines = 16;
|
|
}
|
|
return num_scanlines;
|
|
}
|
|
|
|
static int EncodeChunk(const EXRImage* exr_image, const EXRHeader* exr_header,
|
|
const std::vector<ChannelInfo>& channels,
|
|
int num_blocks,
|
|
tinyexr_uint64 chunk_offset, // starting offset of current chunk
|
|
bool is_multipart,
|
|
OffsetData& offset_data, // output block offsets, must be initialized
|
|
std::vector<std::vector<unsigned char> >& data_list, // output
|
|
tinyexr_uint64& total_size, // output: ending offset of current chunk
|
|
std::string* err) {
|
|
int num_scanlines = NumScanlines(exr_header->compression_type);
|
|
|
|
data_list.resize(num_blocks);
|
|
|
|
std::vector<size_t> channel_offset_list(
|
|
static_cast<size_t>(exr_header->num_channels));
|
|
|
|
int pixel_data_size = 0;
|
|
{
|
|
size_t channel_offset = 0;
|
|
for (size_t c = 0; c < static_cast<size_t>(exr_header->num_channels); c++) {
|
|
channel_offset_list[c] = channel_offset;
|
|
if (channels[c].requested_pixel_type == TINYEXR_PIXELTYPE_HALF) {
|
|
pixel_data_size += sizeof(unsigned short);
|
|
channel_offset += sizeof(unsigned short);
|
|
} else if (channels[c].requested_pixel_type ==
|
|
TINYEXR_PIXELTYPE_FLOAT) {
|
|
pixel_data_size += sizeof(float);
|
|
channel_offset += sizeof(float);
|
|
} else if (channels[c].requested_pixel_type == TINYEXR_PIXELTYPE_UINT) {
|
|
pixel_data_size += sizeof(unsigned int);
|
|
channel_offset += sizeof(unsigned int);
|
|
} else {
|
|
if (err) {
|
|
(*err) += "Invalid requested_pixel_type.\n";
|
|
}
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
}
|
|
}
|
|
|
|
const void* compression_param = 0;
|
|
#if TINYEXR_USE_ZFP
|
|
tinyexr::ZFPCompressionParam zfp_compression_param;
|
|
|
|
// Use ZFP compression parameter from custom attributes(if such a parameter
|
|
// exists)
|
|
{
|
|
std::string e;
|
|
bool ret = tinyexr::FindZFPCompressionParam(
|
|
&zfp_compression_param, exr_header->custom_attributes,
|
|
exr_header->num_custom_attributes, &e);
|
|
|
|
if (!ret) {
|
|
// Use predefined compression parameter.
|
|
zfp_compression_param.type = 0;
|
|
zfp_compression_param.rate = 2;
|
|
}
|
|
compression_param = &zfp_compression_param;
|
|
}
|
|
#endif
|
|
|
|
tinyexr_uint64 offset = chunk_offset;
|
|
tinyexr_uint64 doffset = is_multipart ? 4u : 0u;
|
|
|
|
if (exr_image->tiles) {
|
|
const EXRImage* level_image = exr_image;
|
|
size_t block_idx = 0;
|
|
//tinyexr::tinyexr_uint64 block_data_size = 0;
|
|
int num_levels = (exr_header->tile_level_mode != TINYEXR_TILE_RIPMAP_LEVELS) ?
|
|
offset_data.num_x_levels : (offset_data.num_x_levels * offset_data.num_y_levels);
|
|
for (int level_index = 0; level_index < num_levels; ++level_index) {
|
|
if (!level_image) {
|
|
if (err) {
|
|
(*err) += "Invalid number of tiled levels for EncodeChunk\n";
|
|
}
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
|
|
int level_index_from_image = LevelIndex(level_image->level_x, level_image->level_y,
|
|
exr_header->tile_level_mode, offset_data.num_x_levels);
|
|
if (level_index_from_image < 0) {
|
|
if (err) {
|
|
(*err) += "Invalid tile level mode\n";
|
|
}
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
|
|
if (level_index_from_image != level_index) {
|
|
if (err) {
|
|
(*err) += "Incorrect level ordering in tiled image\n";
|
|
}
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
int num_y_tiles = int(offset_data.offsets[level_index].size());
|
|
if (num_y_tiles <= 0) {
|
|
if (err) {
|
|
(*err) += "Invalid Y tile size\n";
|
|
}
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
|
|
int num_x_tiles = int(offset_data.offsets[level_index][0].size());
|
|
if (num_x_tiles <= 0) {
|
|
if (err) {
|
|
(*err) += "Invalid X tile size\n";
|
|
}
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
|
|
std::string e;
|
|
int ret = EncodeTiledLevel(level_image,
|
|
exr_header,
|
|
channels,
|
|
data_list,
|
|
block_idx,
|
|
num_x_tiles,
|
|
num_y_tiles,
|
|
channel_offset_list,
|
|
pixel_data_size,
|
|
compression_param,
|
|
&e);
|
|
if (ret != TINYEXR_SUCCESS) {
|
|
if (!e.empty() && err) {
|
|
(*err) += e;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
for (size_t j = 0; j < static_cast<size_t>(num_y_tiles); ++j)
|
|
for (size_t i = 0; i < static_cast<size_t>(num_x_tiles); ++i) {
|
|
offset_data.offsets[level_index][j][i] = offset;
|
|
swap8(reinterpret_cast<tinyexr_uint64*>(&offset_data.offsets[level_index][j][i]));
|
|
offset += data_list[block_idx].size() + doffset;
|
|
//block_data_size += data_list[block_idx].size();
|
|
++block_idx;
|
|
}
|
|
level_image = level_image->next_level;
|
|
}
|
|
TINYEXR_CHECK_AND_RETURN_C(static_cast<int>(block_idx) == num_blocks, TINYEXR_ERROR_INVALID_DATA);
|
|
total_size = offset;
|
|
} else { // scanlines
|
|
std::vector<tinyexr::tinyexr_uint64>& offsets = offset_data.offsets[0][0];
|
|
|
|
#if TINYEXR_HAS_CXX11 && (TINYEXR_USE_THREAD > 0)
|
|
std::atomic<bool> invalid_data(false);
|
|
std::vector<std::thread> workers;
|
|
std::atomic<int> block_count(0);
|
|
|
|
int num_threads = std::min(std::max(1, int(std::thread::hardware_concurrency())), num_blocks);
|
|
|
|
for (int t = 0; t < num_threads; t++) {
|
|
workers.emplace_back(std::thread([&]() {
|
|
int i = 0;
|
|
while ((i = block_count++) < num_blocks) {
|
|
|
|
#else
|
|
bool invalid_data(false);
|
|
#if TINYEXR_USE_OPENMP
|
|
#pragma omp parallel for
|
|
#endif
|
|
for (int i = 0; i < num_blocks; i++) {
|
|
|
|
#endif
|
|
int start_y = num_scanlines * i;
|
|
int end_Y = (std::min)(num_scanlines * (i + 1), exr_image->height);
|
|
int num_lines = end_Y - start_y;
|
|
|
|
const unsigned char* const* images =
|
|
static_cast<const unsigned char* const*>(exr_image->images);
|
|
|
|
data_list[i].resize(2*sizeof(int));
|
|
size_t data_header_size = data_list[i].size();
|
|
|
|
bool ret = EncodePixelData(data_list[i],
|
|
images,
|
|
exr_header->compression_type,
|
|
0, // increasing y
|
|
exr_image->width,
|
|
exr_image->height,
|
|
exr_image->width,
|
|
start_y,
|
|
num_lines,
|
|
pixel_data_size,
|
|
channels,
|
|
channel_offset_list,
|
|
err,
|
|
compression_param);
|
|
if (!ret) {
|
|
invalid_data = true;
|
|
continue; // "break" cannot be used with OpenMP
|
|
}
|
|
if (data_list[i].size() <= data_header_size) {
|
|
invalid_data = true;
|
|
continue; // "break" cannot be used with OpenMP
|
|
}
|
|
int data_len = static_cast<int>(data_list[i].size() - data_header_size);
|
|
memcpy(&data_list[i][0], &start_y, sizeof(int));
|
|
memcpy(&data_list[i][4], &data_len, sizeof(int));
|
|
|
|
swap4(reinterpret_cast<int*>(&data_list[i][0]));
|
|
swap4(reinterpret_cast<int*>(&data_list[i][4]));
|
|
#if TINYEXR_HAS_CXX11 && (TINYEXR_USE_THREAD > 0)
|
|
}
|
|
}));
|
|
}
|
|
|
|
for (auto &t : workers) {
|
|
t.join();
|
|
}
|
|
#else
|
|
} // omp parallel
|
|
#endif
|
|
|
|
if (invalid_data) {
|
|
if (err) {
|
|
(*err) += "Failed to encode scanline data.\n";
|
|
}
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
|
|
for (size_t i = 0; i < static_cast<size_t>(num_blocks); i++) {
|
|
offsets[i] = offset;
|
|
tinyexr::swap8(reinterpret_cast<tinyexr::tinyexr_uint64 *>(&offsets[i]));
|
|
offset += data_list[i].size() + doffset;
|
|
}
|
|
|
|
total_size = static_cast<size_t>(offset);
|
|
}
|
|
return TINYEXR_SUCCESS;
|
|
}
|
|
|
|
// can save a single or multi-part image (no deep* formats)
|
|
static size_t SaveEXRNPartImageToMemory(const EXRImage* exr_images,
|
|
const EXRHeader** exr_headers,
|
|
unsigned int num_parts,
|
|
unsigned char** memory_out, const char** err) {
|
|
if (exr_images == NULL || exr_headers == NULL || num_parts == 0 ||
|
|
memory_out == NULL) {
|
|
SetErrorMessage("Invalid argument for SaveEXRNPartImageToMemory",
|
|
err);
|
|
return 0;
|
|
}
|
|
{
|
|
for (unsigned int i = 0; i < num_parts; ++i) {
|
|
if (exr_headers[i]->compression_type < 0) {
|
|
SetErrorMessage("Invalid argument for SaveEXRNPartImageToMemory",
|
|
err);
|
|
return 0;
|
|
}
|
|
#if !TINYEXR_USE_PIZ
|
|
if (exr_headers[i]->compression_type == TINYEXR_COMPRESSIONTYPE_PIZ) {
|
|
SetErrorMessage("PIZ compression is not supported in this build",
|
|
err);
|
|
return 0;
|
|
}
|
|
#endif
|
|
if (exr_headers[i]->compression_type == TINYEXR_COMPRESSIONTYPE_ZFP) {
|
|
#if !TINYEXR_USE_ZFP
|
|
SetErrorMessage("ZFP compression is not supported in this build",
|
|
err);
|
|
return 0;
|
|
#else
|
|
// All channels must be fp32.
|
|
// No fp16 support in ZFP atm(as of 2023 June)
|
|
// https://github.com/LLNL/fpzip/issues/2
|
|
for (int c = 0; c < exr_headers[i]->num_channels; ++c) {
|
|
if (exr_headers[i]->requested_pixel_types[c] != TINYEXR_PIXELTYPE_FLOAT) {
|
|
SetErrorMessage("Pixel type must be FLOAT for ZFP compression",
|
|
err);
|
|
return 0;
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
std::vector<unsigned char> memory;
|
|
|
|
// Header
|
|
{
|
|
const char header[] = { 0x76, 0x2f, 0x31, 0x01 };
|
|
memory.insert(memory.end(), header, header + 4);
|
|
}
|
|
|
|
// Version
|
|
// using value from the first header
|
|
int long_name = exr_headers[0]->long_name;
|
|
{
|
|
char marker[] = { 2, 0, 0, 0 };
|
|
/* @todo
|
|
if (exr_header->non_image) {
|
|
marker[1] |= 0x8;
|
|
}
|
|
*/
|
|
// tiled
|
|
if (num_parts == 1 && exr_images[0].tiles) {
|
|
marker[1] |= 0x2;
|
|
}
|
|
// long_name
|
|
if (long_name) {
|
|
marker[1] |= 0x4;
|
|
}
|
|
// multipart
|
|
if (num_parts > 1) {
|
|
marker[1] |= 0x10;
|
|
}
|
|
memory.insert(memory.end(), marker, marker + 4);
|
|
}
|
|
|
|
int total_chunk_count = 0;
|
|
std::vector<int> chunk_count(num_parts);
|
|
std::vector<OffsetData> offset_data(num_parts);
|
|
for (unsigned int i = 0; i < num_parts; ++i) {
|
|
if (!exr_images[i].tiles) {
|
|
int num_scanlines = NumScanlines(exr_headers[i]->compression_type);
|
|
chunk_count[i] =
|
|
(exr_images[i].height + num_scanlines - 1) / num_scanlines;
|
|
InitSingleResolutionOffsets(offset_data[i], chunk_count[i]);
|
|
total_chunk_count += chunk_count[i];
|
|
} else {
|
|
{
|
|
std::vector<int> num_x_tiles, num_y_tiles;
|
|
if (!PrecalculateTileInfo(num_x_tiles, num_y_tiles, exr_headers[i])) {
|
|
SetErrorMessage("Failed to precalculate Tile info",
|
|
err);
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
int ntiles = InitTileOffsets(offset_data[i], exr_headers[i], num_x_tiles, num_y_tiles);
|
|
if (ntiles > 0) {
|
|
chunk_count[i] = ntiles;
|
|
} else {
|
|
SetErrorMessage("Failed to compute Tile offsets",
|
|
err);
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
|
|
}
|
|
total_chunk_count += chunk_count[i];
|
|
}
|
|
}
|
|
}
|
|
// Write attributes to memory buffer.
|
|
std::vector< std::vector<tinyexr::ChannelInfo> > channels(num_parts);
|
|
{
|
|
std::set<std::string> partnames;
|
|
for (unsigned int i = 0; i < num_parts; ++i) {
|
|
//channels
|
|
{
|
|
std::vector<unsigned char> data;
|
|
|
|
for (int c = 0; c < exr_headers[i]->num_channels; c++) {
|
|
tinyexr::ChannelInfo info;
|
|
info.p_linear = 0;
|
|
info.pixel_type = exr_headers[i]->pixel_types[c];
|
|
info.requested_pixel_type = exr_headers[i]->requested_pixel_types[c];
|
|
info.x_sampling = 1;
|
|
info.y_sampling = 1;
|
|
info.name = std::string(exr_headers[i]->channels[c].name);
|
|
channels[i].push_back(info);
|
|
}
|
|
|
|
tinyexr::WriteChannelInfo(data, channels[i]);
|
|
|
|
tinyexr::WriteAttributeToMemory(&memory, "channels", "chlist", &data.at(0),
|
|
static_cast<int>(data.size()));
|
|
}
|
|
|
|
{
|
|
int comp = exr_headers[i]->compression_type;
|
|
swap4(&comp);
|
|
WriteAttributeToMemory(
|
|
&memory, "compression", "compression",
|
|
reinterpret_cast<const unsigned char*>(&comp), 1);
|
|
}
|
|
|
|
{
|
|
int data[4] = { 0, 0, exr_images[i].width - 1, exr_images[i].height - 1 };
|
|
swap4(&data[0]);
|
|
swap4(&data[1]);
|
|
swap4(&data[2]);
|
|
swap4(&data[3]);
|
|
WriteAttributeToMemory(
|
|
&memory, "dataWindow", "box2i",
|
|
reinterpret_cast<const unsigned char*>(data), sizeof(int) * 4);
|
|
|
|
int data0[4] = { 0, 0, exr_images[0].width - 1, exr_images[0].height - 1 };
|
|
swap4(&data0[0]);
|
|
swap4(&data0[1]);
|
|
swap4(&data0[2]);
|
|
swap4(&data0[3]);
|
|
// Note: must be the same across parts (currently, using value from the first header)
|
|
WriteAttributeToMemory(
|
|
&memory, "displayWindow", "box2i",
|
|
reinterpret_cast<const unsigned char*>(data0), sizeof(int) * 4);
|
|
}
|
|
|
|
{
|
|
unsigned char line_order = 0; // @fixme { read line_order from EXRHeader }
|
|
WriteAttributeToMemory(&memory, "lineOrder", "lineOrder",
|
|
&line_order, 1);
|
|
}
|
|
|
|
{
|
|
// Note: must be the same across parts
|
|
float aspectRatio = 1.0f;
|
|
swap4(&aspectRatio);
|
|
WriteAttributeToMemory(
|
|
&memory, "pixelAspectRatio", "float",
|
|
reinterpret_cast<const unsigned char*>(&aspectRatio), sizeof(float));
|
|
}
|
|
|
|
{
|
|
float center[2] = { 0.0f, 0.0f };
|
|
swap4(¢er[0]);
|
|
swap4(¢er[1]);
|
|
WriteAttributeToMemory(
|
|
&memory, "screenWindowCenter", "v2f",
|
|
reinterpret_cast<const unsigned char*>(center), 2 * sizeof(float));
|
|
}
|
|
|
|
{
|
|
float w = 1.0f;
|
|
swap4(&w);
|
|
WriteAttributeToMemory(&memory, "screenWindowWidth", "float",
|
|
reinterpret_cast<const unsigned char*>(&w),
|
|
sizeof(float));
|
|
}
|
|
|
|
if (exr_images[i].tiles) {
|
|
unsigned char tile_mode = static_cast<unsigned char>(exr_headers[i]->tile_level_mode & 0x3);
|
|
if (exr_headers[i]->tile_rounding_mode) tile_mode |= (1u << 4u);
|
|
//unsigned char data[9] = { 0, 0, 0, 0, 0, 0, 0, 0, 0 };
|
|
unsigned int datai[3] = { 0, 0, 0 };
|
|
unsigned char* data = reinterpret_cast<unsigned char*>(&datai[0]);
|
|
datai[0] = static_cast<unsigned int>(exr_headers[i]->tile_size_x);
|
|
datai[1] = static_cast<unsigned int>(exr_headers[i]->tile_size_y);
|
|
data[8] = tile_mode;
|
|
swap4(reinterpret_cast<unsigned int*>(&data[0]));
|
|
swap4(reinterpret_cast<unsigned int*>(&data[4]));
|
|
WriteAttributeToMemory(
|
|
&memory, "tiles", "tiledesc",
|
|
reinterpret_cast<const unsigned char*>(data), 9);
|
|
}
|
|
|
|
// must be present for multi-part files - according to spec.
|
|
if (num_parts > 1) {
|
|
// name
|
|
{
|
|
size_t len = 0;
|
|
if ((len = strlen(exr_headers[i]->name)) > 0) {
|
|
#if TINYEXR_HAS_CXX11
|
|
partnames.emplace(exr_headers[i]->name);
|
|
#else
|
|
partnames.insert(std::string(exr_headers[i]->name));
|
|
#endif
|
|
if (partnames.size() != i + 1) {
|
|
SetErrorMessage("'name' attributes must be unique for a multi-part file", err);
|
|
return 0;
|
|
}
|
|
WriteAttributeToMemory(
|
|
&memory, "name", "string",
|
|
reinterpret_cast<const unsigned char*>(exr_headers[i]->name),
|
|
static_cast<int>(len));
|
|
} else {
|
|
SetErrorMessage("Invalid 'name' attribute for a multi-part file", err);
|
|
return 0;
|
|
}
|
|
}
|
|
// type
|
|
{
|
|
const char* type = "scanlineimage";
|
|
if (exr_images[i].tiles) type = "tiledimage";
|
|
WriteAttributeToMemory(
|
|
&memory, "type", "string",
|
|
reinterpret_cast<const unsigned char*>(type),
|
|
static_cast<int>(strlen(type)));
|
|
}
|
|
// chunkCount
|
|
{
|
|
WriteAttributeToMemory(
|
|
&memory, "chunkCount", "int",
|
|
reinterpret_cast<const unsigned char*>(&chunk_count[i]),
|
|
4);
|
|
}
|
|
}
|
|
|
|
// Custom attributes
|
|
if (exr_headers[i]->num_custom_attributes > 0) {
|
|
for (int j = 0; j < exr_headers[i]->num_custom_attributes; j++) {
|
|
tinyexr::WriteAttributeToMemory(
|
|
&memory, exr_headers[i]->custom_attributes[j].name,
|
|
exr_headers[i]->custom_attributes[j].type,
|
|
reinterpret_cast<const unsigned char*>(
|
|
exr_headers[i]->custom_attributes[j].value),
|
|
exr_headers[i]->custom_attributes[j].size);
|
|
}
|
|
}
|
|
|
|
{ // end of header
|
|
memory.push_back(0);
|
|
}
|
|
}
|
|
}
|
|
if (num_parts > 1) {
|
|
// end of header list
|
|
memory.push_back(0);
|
|
}
|
|
|
|
tinyexr_uint64 chunk_offset = memory.size() + size_t(total_chunk_count) * sizeof(tinyexr_uint64);
|
|
|
|
tinyexr_uint64 total_size = 0;
|
|
std::vector< std::vector< std::vector<unsigned char> > > data_lists(num_parts);
|
|
for (unsigned int i = 0; i < num_parts; ++i) {
|
|
std::string e;
|
|
int ret = EncodeChunk(&exr_images[i], exr_headers[i],
|
|
channels[i],
|
|
chunk_count[i],
|
|
// starting offset of current chunk after part-number
|
|
chunk_offset,
|
|
num_parts > 1,
|
|
offset_data[i], // output: block offsets, must be initialized
|
|
data_lists[i], // output
|
|
total_size, // output
|
|
&e);
|
|
if (ret != TINYEXR_SUCCESS) {
|
|
if (!e.empty()) {
|
|
tinyexr::SetErrorMessage(e, err);
|
|
}
|
|
return 0;
|
|
}
|
|
chunk_offset = total_size;
|
|
}
|
|
|
|
// Allocating required memory
|
|
if (total_size == 0) { // something went wrong
|
|
tinyexr::SetErrorMessage("Output memory size is zero", err);
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
(*memory_out) = static_cast<unsigned char*>(malloc(size_t(total_size)));
|
|
|
|
// Writing header
|
|
memcpy((*memory_out), &memory[0], memory.size());
|
|
unsigned char* memory_ptr = *memory_out + memory.size();
|
|
size_t sum = memory.size();
|
|
|
|
// Writing offset data for chunks
|
|
for (unsigned int i = 0; i < num_parts; ++i) {
|
|
if (exr_images[i].tiles) {
|
|
const EXRImage* level_image = &exr_images[i];
|
|
int num_levels = (exr_headers[i]->tile_level_mode != TINYEXR_TILE_RIPMAP_LEVELS) ?
|
|
offset_data[i].num_x_levels : (offset_data[i].num_x_levels * offset_data[i].num_y_levels);
|
|
for (int level_index = 0; level_index < num_levels; ++level_index) {
|
|
for (size_t j = 0; j < offset_data[i].offsets[level_index].size(); ++j) {
|
|
size_t num_bytes = sizeof(tinyexr_uint64) * offset_data[i].offsets[level_index][j].size();
|
|
sum += num_bytes;
|
|
if (sum > total_size) {
|
|
tinyexr::SetErrorMessage("Invalid offset bytes in Tiled Part image.", err);
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
|
|
memcpy(memory_ptr,
|
|
reinterpret_cast<unsigned char*>(&offset_data[i].offsets[level_index][j][0]),
|
|
num_bytes);
|
|
memory_ptr += num_bytes;
|
|
}
|
|
level_image = level_image->next_level;
|
|
}
|
|
} else {
|
|
size_t num_bytes = sizeof(tinyexr::tinyexr_uint64) * static_cast<size_t>(chunk_count[i]);
|
|
sum += num_bytes;
|
|
if (sum > total_size) {
|
|
tinyexr::SetErrorMessage("Invalid offset bytes in Part image.", err);
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
std::vector<tinyexr::tinyexr_uint64>& offsets = offset_data[i].offsets[0][0];
|
|
memcpy(memory_ptr, reinterpret_cast<unsigned char*>(&offsets[0]), num_bytes);
|
|
memory_ptr += num_bytes;
|
|
}
|
|
}
|
|
|
|
// Writing chunk data
|
|
for (unsigned int i = 0; i < num_parts; ++i) {
|
|
for (size_t j = 0; j < static_cast<size_t>(chunk_count[i]); ++j) {
|
|
if (num_parts > 1) {
|
|
sum += 4;
|
|
if (sum > total_size) {
|
|
tinyexr::SetErrorMessage("Buffer overrun in reading Part image chunk data.", err);
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
unsigned int part_number = i;
|
|
swap4(&part_number);
|
|
memcpy(memory_ptr, &part_number, 4);
|
|
memory_ptr += 4;
|
|
}
|
|
sum += data_lists[i][j].size();
|
|
if (sum > total_size) {
|
|
tinyexr::SetErrorMessage("Buffer overrun in reading Part image chunk data.", err);
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
memcpy(memory_ptr, &data_lists[i][j][0], data_lists[i][j].size());
|
|
memory_ptr += data_lists[i][j].size();
|
|
}
|
|
}
|
|
|
|
if (sum != total_size) {
|
|
tinyexr::SetErrorMessage("Corrupted Part image chunk data.", err);
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
|
|
return size_t(total_size); // OK
|
|
}
|
|
|
|
#ifdef __clang__
|
|
#pragma clang diagnostic pop
|
|
#endif
|
|
|
|
} // tinyexr
|
|
|
|
size_t SaveEXRImageToMemory(const EXRImage* exr_image,
|
|
const EXRHeader* exr_header,
|
|
unsigned char** memory_out, const char** err) {
|
|
return tinyexr::SaveEXRNPartImageToMemory(exr_image, &exr_header, 1, memory_out, err);
|
|
}
|
|
|
|
int SaveEXRImageToFile(const EXRImage *exr_image, const EXRHeader *exr_header,
|
|
const char *filename, const char **err) {
|
|
if (exr_image == NULL || filename == NULL ||
|
|
exr_header->compression_type < 0) {
|
|
tinyexr::SetErrorMessage("Invalid argument for SaveEXRImageToFile", err);
|
|
return TINYEXR_ERROR_INVALID_ARGUMENT;
|
|
}
|
|
|
|
#if !TINYEXR_USE_PIZ
|
|
if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_PIZ) {
|
|
tinyexr::SetErrorMessage("PIZ compression is not supported in this build",
|
|
err);
|
|
return TINYEXR_ERROR_UNSUPPORTED_FEATURE;
|
|
}
|
|
#endif
|
|
|
|
#if !TINYEXR_USE_ZFP
|
|
if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_ZFP) {
|
|
tinyexr::SetErrorMessage("ZFP compression is not supported in this build",
|
|
err);
|
|
return TINYEXR_ERROR_UNSUPPORTED_FEATURE;
|
|
}
|
|
#endif
|
|
|
|
FILE *fp = NULL;
|
|
#ifdef _WIN32
|
|
#if defined(_MSC_VER) || (defined(MINGW_HAS_SECURE_API) && MINGW_HAS_SECURE_API) // MSVC, MinGW GCC, or Clang
|
|
errno_t errcode =
|
|
_wfopen_s(&fp, tinyexr::UTF8ToWchar(filename).c_str(), L"wb");
|
|
if (errcode != 0) {
|
|
tinyexr::SetErrorMessage("Cannot write a file: " + std::string(filename),
|
|
err);
|
|
return TINYEXR_ERROR_CANT_WRITE_FILE;
|
|
}
|
|
#else
|
|
// Unknown compiler or MinGW without MINGW_HAS_SECURE_API.
|
|
fp = fopen(filename, "wb");
|
|
#endif
|
|
#else
|
|
fp = fopen(filename, "wb");
|
|
#endif
|
|
if (!fp) {
|
|
tinyexr::SetErrorMessage("Cannot write a file: " + std::string(filename),
|
|
err);
|
|
return TINYEXR_ERROR_CANT_WRITE_FILE;
|
|
}
|
|
|
|
unsigned char *mem = NULL;
|
|
size_t mem_size = SaveEXRImageToMemory(exr_image, exr_header, &mem, err);
|
|
if (mem_size == 0) {
|
|
fclose(fp);
|
|
return TINYEXR_ERROR_SERIALIZATION_FAILED;
|
|
}
|
|
|
|
size_t written_size = 0;
|
|
if ((mem_size > 0) && mem) {
|
|
written_size = fwrite(mem, 1, mem_size, fp);
|
|
}
|
|
free(mem);
|
|
|
|
fclose(fp);
|
|
|
|
if (written_size != mem_size) {
|
|
tinyexr::SetErrorMessage("Cannot write a file", err);
|
|
return TINYEXR_ERROR_CANT_WRITE_FILE;
|
|
}
|
|
|
|
return TINYEXR_SUCCESS;
|
|
}
|
|
|
|
size_t SaveEXRMultipartImageToMemory(const EXRImage* exr_images,
|
|
const EXRHeader** exr_headers,
|
|
unsigned int num_parts,
|
|
unsigned char** memory_out, const char** err) {
|
|
if (exr_images == NULL || exr_headers == NULL || num_parts < 2 ||
|
|
memory_out == NULL) {
|
|
tinyexr::SetErrorMessage("Invalid argument for SaveEXRNPartImageToMemory",
|
|
err);
|
|
return 0;
|
|
}
|
|
return tinyexr::SaveEXRNPartImageToMemory(exr_images, exr_headers, num_parts, memory_out, err);
|
|
}
|
|
|
|
int SaveEXRMultipartImageToFile(const EXRImage* exr_images,
|
|
const EXRHeader** exr_headers,
|
|
unsigned int num_parts,
|
|
const char* filename,
|
|
const char** err) {
|
|
if (exr_images == NULL || exr_headers == NULL || num_parts < 2) {
|
|
tinyexr::SetErrorMessage("Invalid argument for SaveEXRMultipartImageToFile",
|
|
err);
|
|
return TINYEXR_ERROR_INVALID_ARGUMENT;
|
|
}
|
|
|
|
FILE *fp = NULL;
|
|
#ifdef _WIN32
|
|
#if defined(_MSC_VER) || (defined(MINGW_HAS_SECURE_API) && MINGW_HAS_SECURE_API) // MSVC, MinGW GCC, or Clang.
|
|
errno_t errcode =
|
|
_wfopen_s(&fp, tinyexr::UTF8ToWchar(filename).c_str(), L"wb");
|
|
if (errcode != 0) {
|
|
tinyexr::SetErrorMessage("Cannot write a file: " + std::string(filename),
|
|
err);
|
|
return TINYEXR_ERROR_CANT_WRITE_FILE;
|
|
}
|
|
#else
|
|
// Unknown compiler or MinGW without MINGW_HAS_SECURE_API.
|
|
fp = fopen(filename, "wb");
|
|
#endif
|
|
#else
|
|
fp = fopen(filename, "wb");
|
|
#endif
|
|
if (!fp) {
|
|
tinyexr::SetErrorMessage("Cannot write a file: " + std::string(filename),
|
|
err);
|
|
return TINYEXR_ERROR_CANT_WRITE_FILE;
|
|
}
|
|
|
|
unsigned char *mem = NULL;
|
|
size_t mem_size = SaveEXRMultipartImageToMemory(exr_images, exr_headers, num_parts, &mem, err);
|
|
if (mem_size == 0) {
|
|
fclose(fp);
|
|
return TINYEXR_ERROR_SERIALIZATION_FAILED;
|
|
}
|
|
|
|
size_t written_size = 0;
|
|
if ((mem_size > 0) && mem) {
|
|
written_size = fwrite(mem, 1, mem_size, fp);
|
|
}
|
|
free(mem);
|
|
|
|
fclose(fp);
|
|
|
|
if (written_size != mem_size) {
|
|
tinyexr::SetErrorMessage("Cannot write a file", err);
|
|
return TINYEXR_ERROR_CANT_WRITE_FILE;
|
|
}
|
|
|
|
return TINYEXR_SUCCESS;
|
|
}
|
|
|
|
int LoadDeepEXR(DeepImage *deep_image, const char *filename, const char **err) {
|
|
if (deep_image == NULL) {
|
|
tinyexr::SetErrorMessage("Invalid argument for LoadDeepEXR", err);
|
|
return TINYEXR_ERROR_INVALID_ARGUMENT;
|
|
}
|
|
|
|
MemoryMappedFile file(filename);
|
|
if (!file.valid()) {
|
|
tinyexr::SetErrorMessage("Cannot read file " + std::string(filename), err);
|
|
return TINYEXR_ERROR_CANT_OPEN_FILE;
|
|
}
|
|
|
|
if (file.size == 0) {
|
|
tinyexr::SetErrorMessage("File size is zero : " + std::string(filename),
|
|
err);
|
|
return TINYEXR_ERROR_INVALID_FILE;
|
|
}
|
|
|
|
const char *head = reinterpret_cast<const char *>(file.data);
|
|
const char *marker = reinterpret_cast<const char *>(file.data);
|
|
|
|
// Header check.
|
|
{
|
|
const char header[] = {0x76, 0x2f, 0x31, 0x01};
|
|
|
|
if (memcmp(marker, header, 4) != 0) {
|
|
tinyexr::SetErrorMessage("Invalid magic number", err);
|
|
return TINYEXR_ERROR_INVALID_MAGIC_NUMBER;
|
|
}
|
|
marker += 4;
|
|
}
|
|
|
|
// Version, scanline.
|
|
{
|
|
// ver 2.0, scanline, deep bit on(0x800)
|
|
// must be [2, 0, 0, 0]
|
|
if (marker[0] != 2 || marker[1] != 8 || marker[2] != 0 || marker[3] != 0) {
|
|
tinyexr::SetErrorMessage("Unsupported version or scanline", err);
|
|
return TINYEXR_ERROR_UNSUPPORTED_FORMAT;
|
|
}
|
|
|
|
marker += 4;
|
|
}
|
|
|
|
int dx = -1;
|
|
int dy = -1;
|
|
int dw = -1;
|
|
int dh = -1;
|
|
int num_scanline_blocks = 1; // 16 for ZIP compression.
|
|
int compression_type = -1;
|
|
int num_channels = -1;
|
|
std::vector<tinyexr::ChannelInfo> channels;
|
|
|
|
// Read attributes
|
|
size_t size = file.size - tinyexr::kEXRVersionSize;
|
|
for (;;) {
|
|
if (0 == size) {
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
} else if (marker[0] == '\0') {
|
|
marker++;
|
|
size--;
|
|
break;
|
|
}
|
|
|
|
std::string attr_name;
|
|
std::string attr_type;
|
|
std::vector<unsigned char> data;
|
|
size_t marker_size;
|
|
if (!tinyexr::ReadAttribute(&attr_name, &attr_type, &data, &marker_size,
|
|
marker, size)) {
|
|
std::stringstream ss;
|
|
ss << "Failed to parse attribute\n";
|
|
tinyexr::SetErrorMessage(ss.str(), err);
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
marker += marker_size;
|
|
size -= marker_size;
|
|
|
|
if (attr_name.compare("compression") == 0) {
|
|
compression_type = data[0];
|
|
if (compression_type > TINYEXR_COMPRESSIONTYPE_PIZ) {
|
|
std::stringstream ss;
|
|
ss << "Unsupported compression type : " << compression_type;
|
|
tinyexr::SetErrorMessage(ss.str(), err);
|
|
return TINYEXR_ERROR_UNSUPPORTED_FORMAT;
|
|
}
|
|
|
|
if (compression_type == TINYEXR_COMPRESSIONTYPE_ZIP) {
|
|
num_scanline_blocks = 16;
|
|
}
|
|
|
|
} else if (attr_name.compare("channels") == 0) {
|
|
// name: zero-terminated string, from 1 to 255 bytes long
|
|
// pixel type: int, possible values are: UINT = 0 HALF = 1 FLOAT = 2
|
|
// pLinear: unsigned char, possible values are 0 and 1
|
|
// reserved: three chars, should be zero
|
|
// xSampling: int
|
|
// ySampling: int
|
|
|
|
if (!tinyexr::ReadChannelInfo(channels, data)) {
|
|
tinyexr::SetErrorMessage("Failed to parse channel info", err);
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
|
|
num_channels = static_cast<int>(channels.size());
|
|
|
|
if (num_channels < 1) {
|
|
tinyexr::SetErrorMessage("Invalid channels format", err);
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
|
|
} else if (attr_name.compare("dataWindow") == 0) {
|
|
memcpy(&dx, &data.at(0), sizeof(int));
|
|
memcpy(&dy, &data.at(4), sizeof(int));
|
|
memcpy(&dw, &data.at(8), sizeof(int));
|
|
memcpy(&dh, &data.at(12), sizeof(int));
|
|
tinyexr::swap4(&dx);
|
|
tinyexr::swap4(&dy);
|
|
tinyexr::swap4(&dw);
|
|
tinyexr::swap4(&dh);
|
|
|
|
} else if (attr_name.compare("displayWindow") == 0) {
|
|
int x;
|
|
int y;
|
|
int w;
|
|
int h;
|
|
memcpy(&x, &data.at(0), sizeof(int));
|
|
memcpy(&y, &data.at(4), sizeof(int));
|
|
memcpy(&w, &data.at(8), sizeof(int));
|
|
memcpy(&h, &data.at(12), sizeof(int));
|
|
tinyexr::swap4(&x);
|
|
tinyexr::swap4(&y);
|
|
tinyexr::swap4(&w);
|
|
tinyexr::swap4(&h);
|
|
}
|
|
}
|
|
|
|
TINYEXR_CHECK_AND_RETURN_C(dx >= 0, TINYEXR_ERROR_INVALID_DATA);
|
|
TINYEXR_CHECK_AND_RETURN_C(dy >= 0, TINYEXR_ERROR_INVALID_DATA);
|
|
TINYEXR_CHECK_AND_RETURN_C(dw >= 0, TINYEXR_ERROR_INVALID_DATA);
|
|
TINYEXR_CHECK_AND_RETURN_C(dh >= 0, TINYEXR_ERROR_INVALID_DATA);
|
|
TINYEXR_CHECK_AND_RETURN_C(num_channels >= 1, TINYEXR_ERROR_INVALID_DATA);
|
|
|
|
int data_width = dw - dx + 1;
|
|
int data_height = dh - dy + 1;
|
|
|
|
// Read offset tables.
|
|
int num_blocks = data_height / num_scanline_blocks;
|
|
if (num_blocks * num_scanline_blocks < data_height) {
|
|
num_blocks++;
|
|
}
|
|
|
|
std::vector<tinyexr::tinyexr_int64> offsets(static_cast<size_t>(num_blocks));
|
|
|
|
for (size_t y = 0; y < static_cast<size_t>(num_blocks); y++) {
|
|
tinyexr::tinyexr_int64 offset;
|
|
memcpy(&offset, marker, sizeof(tinyexr::tinyexr_int64));
|
|
tinyexr::swap8(reinterpret_cast<tinyexr::tinyexr_uint64 *>(&offset));
|
|
marker += sizeof(tinyexr::tinyexr_int64); // = 8
|
|
offsets[y] = offset;
|
|
}
|
|
|
|
#if TINYEXR_USE_PIZ
|
|
if ((compression_type == TINYEXR_COMPRESSIONTYPE_NONE) ||
|
|
(compression_type == TINYEXR_COMPRESSIONTYPE_RLE) ||
|
|
(compression_type == TINYEXR_COMPRESSIONTYPE_ZIPS) ||
|
|
(compression_type == TINYEXR_COMPRESSIONTYPE_ZIP) ||
|
|
(compression_type == TINYEXR_COMPRESSIONTYPE_PIZ)) {
|
|
#else
|
|
if ((compression_type == TINYEXR_COMPRESSIONTYPE_NONE) ||
|
|
(compression_type == TINYEXR_COMPRESSIONTYPE_RLE) ||
|
|
(compression_type == TINYEXR_COMPRESSIONTYPE_ZIPS) ||
|
|
(compression_type == TINYEXR_COMPRESSIONTYPE_ZIP)) {
|
|
#endif
|
|
// OK
|
|
} else {
|
|
tinyexr::SetErrorMessage("Unsupported compression format", err);
|
|
return TINYEXR_ERROR_UNSUPPORTED_FORMAT;
|
|
}
|
|
|
|
deep_image->image = static_cast<float ***>(
|
|
malloc(sizeof(float **) * static_cast<size_t>(num_channels)));
|
|
for (int c = 0; c < num_channels; c++) {
|
|
deep_image->image[c] = static_cast<float **>(
|
|
malloc(sizeof(float *) * static_cast<size_t>(data_height)));
|
|
for (int y = 0; y < data_height; y++) {
|
|
}
|
|
}
|
|
|
|
deep_image->offset_table = static_cast<int **>(
|
|
malloc(sizeof(int *) * static_cast<size_t>(data_height)));
|
|
for (int y = 0; y < data_height; y++) {
|
|
deep_image->offset_table[y] = static_cast<int *>(
|
|
malloc(sizeof(int) * static_cast<size_t>(data_width)));
|
|
}
|
|
|
|
for (size_t y = 0; y < static_cast<size_t>(num_blocks); y++) {
|
|
const unsigned char *data_ptr =
|
|
reinterpret_cast<const unsigned char *>(head + offsets[y]);
|
|
|
|
// int: y coordinate
|
|
// int64: packed size of pixel offset table
|
|
// int64: packed size of sample data
|
|
// int64: unpacked size of sample data
|
|
// compressed pixel offset table
|
|
// compressed sample data
|
|
int line_no;
|
|
tinyexr::tinyexr_int64 packedOffsetTableSize;
|
|
tinyexr::tinyexr_int64 packedSampleDataSize;
|
|
tinyexr::tinyexr_int64 unpackedSampleDataSize;
|
|
memcpy(&line_no, data_ptr, sizeof(int));
|
|
memcpy(&packedOffsetTableSize, data_ptr + 4,
|
|
sizeof(tinyexr::tinyexr_int64));
|
|
memcpy(&packedSampleDataSize, data_ptr + 12,
|
|
sizeof(tinyexr::tinyexr_int64));
|
|
memcpy(&unpackedSampleDataSize, data_ptr + 20,
|
|
sizeof(tinyexr::tinyexr_int64));
|
|
|
|
tinyexr::swap4(&line_no);
|
|
tinyexr::swap8(
|
|
reinterpret_cast<tinyexr::tinyexr_uint64 *>(&packedOffsetTableSize));
|
|
tinyexr::swap8(
|
|
reinterpret_cast<tinyexr::tinyexr_uint64 *>(&packedSampleDataSize));
|
|
tinyexr::swap8(
|
|
reinterpret_cast<tinyexr::tinyexr_uint64 *>(&unpackedSampleDataSize));
|
|
|
|
std::vector<int> pixelOffsetTable(static_cast<size_t>(data_width));
|
|
|
|
// decode pixel offset table.
|
|
{
|
|
unsigned long dstLen =
|
|
static_cast<unsigned long>(pixelOffsetTable.size() * sizeof(int));
|
|
if (!tinyexr::DecompressZip(
|
|
reinterpret_cast<unsigned char *>(&pixelOffsetTable.at(0)),
|
|
&dstLen, data_ptr + 28,
|
|
static_cast<unsigned long>(packedOffsetTableSize))) {
|
|
return false;
|
|
}
|
|
|
|
TINYEXR_CHECK_AND_RETURN_C(dstLen == pixelOffsetTable.size() * sizeof(int), TINYEXR_ERROR_INVALID_DATA);
|
|
for (size_t i = 0; i < static_cast<size_t>(data_width); i++) {
|
|
deep_image->offset_table[y][i] = pixelOffsetTable[i];
|
|
}
|
|
}
|
|
|
|
std::vector<unsigned char> sample_data(
|
|
static_cast<size_t>(unpackedSampleDataSize));
|
|
|
|
// decode sample data.
|
|
{
|
|
unsigned long dstLen = static_cast<unsigned long>(unpackedSampleDataSize);
|
|
if (dstLen) {
|
|
if (!tinyexr::DecompressZip(
|
|
reinterpret_cast<unsigned char *>(&sample_data.at(0)), &dstLen,
|
|
data_ptr + 28 + packedOffsetTableSize,
|
|
static_cast<unsigned long>(packedSampleDataSize))) {
|
|
return false;
|
|
}
|
|
TINYEXR_CHECK_AND_RETURN_C(dstLen == static_cast<unsigned long>(unpackedSampleDataSize), TINYEXR_ERROR_INVALID_DATA);
|
|
}
|
|
}
|
|
|
|
// decode sample
|
|
int sampleSize = -1;
|
|
std::vector<int> channel_offset_list(static_cast<size_t>(num_channels));
|
|
{
|
|
int channel_offset = 0;
|
|
for (size_t i = 0; i < static_cast<size_t>(num_channels); i++) {
|
|
channel_offset_list[i] = channel_offset;
|
|
if (channels[i].pixel_type == TINYEXR_PIXELTYPE_UINT) { // UINT
|
|
channel_offset += 4;
|
|
} else if (channels[i].pixel_type == TINYEXR_PIXELTYPE_HALF) { // half
|
|
channel_offset += 2;
|
|
} else if (channels[i].pixel_type ==
|
|
TINYEXR_PIXELTYPE_FLOAT) { // float
|
|
channel_offset += 4;
|
|
} else {
|
|
tinyexr::SetErrorMessage("Invalid pixel_type in chnnels.", err);
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
}
|
|
sampleSize = channel_offset;
|
|
}
|
|
TINYEXR_CHECK_AND_RETURN_C(sampleSize >= 2, TINYEXR_ERROR_INVALID_DATA);
|
|
|
|
TINYEXR_CHECK_AND_RETURN_C(static_cast<size_t>(
|
|
pixelOffsetTable[static_cast<size_t>(data_width - 1)] *
|
|
sampleSize) == sample_data.size(), TINYEXR_ERROR_INVALID_DATA);
|
|
int samples_per_line = static_cast<int>(sample_data.size()) / sampleSize;
|
|
|
|
//
|
|
// Alloc memory
|
|
//
|
|
|
|
//
|
|
// pixel data is stored as image[channels][pixel_samples]
|
|
//
|
|
{
|
|
tinyexr::tinyexr_uint64 data_offset = 0;
|
|
for (size_t c = 0; c < static_cast<size_t>(num_channels); c++) {
|
|
deep_image->image[c][y] = static_cast<float *>(
|
|
malloc(sizeof(float) * static_cast<size_t>(samples_per_line)));
|
|
|
|
if (channels[c].pixel_type == 0) { // UINT
|
|
for (size_t x = 0; x < static_cast<size_t>(samples_per_line); x++) {
|
|
unsigned int ui;
|
|
unsigned int *src_ptr = reinterpret_cast<unsigned int *>(
|
|
&sample_data.at(size_t(data_offset) + x * sizeof(int)));
|
|
tinyexr::cpy4(&ui, src_ptr);
|
|
deep_image->image[c][y][x] = static_cast<float>(ui); // @fixme
|
|
}
|
|
data_offset +=
|
|
sizeof(unsigned int) * static_cast<size_t>(samples_per_line);
|
|
} else if (channels[c].pixel_type == 1) { // half
|
|
for (size_t x = 0; x < static_cast<size_t>(samples_per_line); x++) {
|
|
tinyexr::FP16 f16;
|
|
const unsigned short *src_ptr = reinterpret_cast<unsigned short *>(
|
|
&sample_data.at(size_t(data_offset) + x * sizeof(short)));
|
|
tinyexr::cpy2(&(f16.u), src_ptr);
|
|
tinyexr::FP32 f32 = half_to_float(f16);
|
|
deep_image->image[c][y][x] = f32.f;
|
|
}
|
|
data_offset += sizeof(short) * static_cast<size_t>(samples_per_line);
|
|
} else { // float
|
|
for (size_t x = 0; x < static_cast<size_t>(samples_per_line); x++) {
|
|
float f;
|
|
const float *src_ptr = reinterpret_cast<float *>(
|
|
&sample_data.at(size_t(data_offset) + x * sizeof(float)));
|
|
tinyexr::cpy4(&f, src_ptr);
|
|
deep_image->image[c][y][x] = f;
|
|
}
|
|
data_offset += sizeof(float) * static_cast<size_t>(samples_per_line);
|
|
}
|
|
}
|
|
}
|
|
} // y
|
|
|
|
deep_image->width = data_width;
|
|
deep_image->height = data_height;
|
|
|
|
deep_image->channel_names = static_cast<const char **>(
|
|
malloc(sizeof(const char *) * static_cast<size_t>(num_channels)));
|
|
for (size_t c = 0; c < static_cast<size_t>(num_channels); c++) {
|
|
#ifdef _WIN32
|
|
deep_image->channel_names[c] = _strdup(channels[c].name.c_str());
|
|
#else
|
|
deep_image->channel_names[c] = strdup(channels[c].name.c_str());
|
|
#endif
|
|
}
|
|
deep_image->num_channels = num_channels;
|
|
|
|
return TINYEXR_SUCCESS;
|
|
}
|
|
|
|
void InitEXRImage(EXRImage *exr_image) {
|
|
if (exr_image == NULL) {
|
|
return;
|
|
}
|
|
|
|
exr_image->width = 0;
|
|
exr_image->height = 0;
|
|
exr_image->num_channels = 0;
|
|
|
|
exr_image->images = NULL;
|
|
exr_image->tiles = NULL;
|
|
exr_image->next_level = NULL;
|
|
exr_image->level_x = 0;
|
|
exr_image->level_y = 0;
|
|
|
|
exr_image->num_tiles = 0;
|
|
}
|
|
|
|
void FreeEXRErrorMessage(const char *msg) {
|
|
if (msg) {
|
|
free(reinterpret_cast<void *>(const_cast<char *>(msg)));
|
|
}
|
|
return;
|
|
}
|
|
|
|
void InitEXRHeader(EXRHeader *exr_header) {
|
|
if (exr_header == NULL) {
|
|
return;
|
|
}
|
|
|
|
memset(exr_header, 0, sizeof(EXRHeader));
|
|
}
|
|
|
|
int FreeEXRHeader(EXRHeader *exr_header) {
|
|
if (exr_header == NULL) {
|
|
return TINYEXR_ERROR_INVALID_ARGUMENT;
|
|
}
|
|
|
|
if (exr_header->channels) {
|
|
free(exr_header->channels);
|
|
}
|
|
|
|
if (exr_header->pixel_types) {
|
|
free(exr_header->pixel_types);
|
|
}
|
|
|
|
if (exr_header->requested_pixel_types) {
|
|
free(exr_header->requested_pixel_types);
|
|
}
|
|
|
|
for (int i = 0; i < exr_header->num_custom_attributes; i++) {
|
|
if (exr_header->custom_attributes[i].value) {
|
|
free(exr_header->custom_attributes[i].value);
|
|
}
|
|
}
|
|
|
|
if (exr_header->custom_attributes) {
|
|
free(exr_header->custom_attributes);
|
|
}
|
|
|
|
EXRSetNameAttr(exr_header, NULL);
|
|
|
|
return TINYEXR_SUCCESS;
|
|
}
|
|
|
|
void EXRSetNameAttr(EXRHeader* exr_header, const char* name) {
|
|
if (exr_header == NULL) {
|
|
return;
|
|
}
|
|
memset(exr_header->name, 0, 256);
|
|
if (name != NULL) {
|
|
size_t len = std::min(strlen(name), size_t(255));
|
|
if (len) {
|
|
memcpy(exr_header->name, name, len);
|
|
}
|
|
}
|
|
}
|
|
|
|
int EXRNumLevels(const EXRImage* exr_image) {
|
|
if (exr_image == NULL) return 0;
|
|
if(exr_image->images) return 1; // scanlines
|
|
int levels = 1;
|
|
const EXRImage* level_image = exr_image;
|
|
while((level_image = level_image->next_level)) ++levels;
|
|
return levels;
|
|
}
|
|
|
|
int FreeEXRImage(EXRImage *exr_image) {
|
|
if (exr_image == NULL) {
|
|
return TINYEXR_ERROR_INVALID_ARGUMENT;
|
|
}
|
|
|
|
if (exr_image->next_level) {
|
|
FreeEXRImage(exr_image->next_level);
|
|
delete exr_image->next_level;
|
|
}
|
|
|
|
for (int i = 0; i < exr_image->num_channels; i++) {
|
|
if (exr_image->images && exr_image->images[i]) {
|
|
free(exr_image->images[i]);
|
|
}
|
|
}
|
|
|
|
if (exr_image->images) {
|
|
free(exr_image->images);
|
|
}
|
|
|
|
if (exr_image->tiles) {
|
|
for (int tid = 0; tid < exr_image->num_tiles; tid++) {
|
|
for (int i = 0; i < exr_image->num_channels; i++) {
|
|
if (exr_image->tiles[tid].images && exr_image->tiles[tid].images[i]) {
|
|
free(exr_image->tiles[tid].images[i]);
|
|
}
|
|
}
|
|
if (exr_image->tiles[tid].images) {
|
|
free(exr_image->tiles[tid].images);
|
|
}
|
|
}
|
|
free(exr_image->tiles);
|
|
}
|
|
|
|
return TINYEXR_SUCCESS;
|
|
}
|
|
|
|
int ParseEXRHeaderFromFile(EXRHeader *exr_header, const EXRVersion *exr_version,
|
|
const char *filename, const char **err) {
|
|
if (exr_header == NULL || exr_version == NULL || filename == NULL) {
|
|
tinyexr::SetErrorMessage("Invalid argument for ParseEXRHeaderFromFile",
|
|
err);
|
|
return TINYEXR_ERROR_INVALID_ARGUMENT;
|
|
}
|
|
|
|
MemoryMappedFile file(filename);
|
|
if (!file.valid()) {
|
|
tinyexr::SetErrorMessage("Cannot read file " + std::string(filename), err);
|
|
return TINYEXR_ERROR_CANT_OPEN_FILE;
|
|
}
|
|
|
|
return ParseEXRHeaderFromMemory(exr_header, exr_version, file.data, file.size,
|
|
err);
|
|
}
|
|
|
|
int ParseEXRMultipartHeaderFromMemory(EXRHeader ***exr_headers,
|
|
int *num_headers,
|
|
const EXRVersion *exr_version,
|
|
const unsigned char *memory, size_t size,
|
|
const char **err) {
|
|
if (memory == NULL || exr_headers == NULL || num_headers == NULL ||
|
|
exr_version == NULL) {
|
|
// Invalid argument
|
|
tinyexr::SetErrorMessage(
|
|
"Invalid argument for ParseEXRMultipartHeaderFromMemory", err);
|
|
return TINYEXR_ERROR_INVALID_ARGUMENT;
|
|
}
|
|
|
|
if (size < tinyexr::kEXRVersionSize) {
|
|
tinyexr::SetErrorMessage("Data size too short", err);
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
|
|
const unsigned char *marker = memory + tinyexr::kEXRVersionSize;
|
|
size_t marker_size = size - tinyexr::kEXRVersionSize;
|
|
|
|
std::vector<tinyexr::HeaderInfo> infos;
|
|
|
|
for (;;) {
|
|
tinyexr::HeaderInfo info;
|
|
info.clear();
|
|
|
|
std::string err_str;
|
|
bool empty_header = false;
|
|
int ret = ParseEXRHeader(&info, &empty_header, exr_version, &err_str,
|
|
marker, marker_size);
|
|
|
|
if (ret != TINYEXR_SUCCESS) {
|
|
|
|
// Free malloc-allocated memory here.
|
|
for (size_t i = 0; i < info.attributes.size(); i++) {
|
|
if (info.attributes[i].value) {
|
|
free(info.attributes[i].value);
|
|
}
|
|
}
|
|
|
|
tinyexr::SetErrorMessage(err_str, err);
|
|
return ret;
|
|
}
|
|
|
|
if (empty_header) {
|
|
marker += 1; // skip '\0'
|
|
break;
|
|
}
|
|
|
|
// `chunkCount` must exist in the header.
|
|
if (info.chunk_count == 0) {
|
|
|
|
// Free malloc-allocated memory here.
|
|
for (size_t i = 0; i < info.attributes.size(); i++) {
|
|
if (info.attributes[i].value) {
|
|
free(info.attributes[i].value);
|
|
}
|
|
}
|
|
|
|
tinyexr::SetErrorMessage(
|
|
"`chunkCount' attribute is not found in the header.", err);
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
|
|
infos.push_back(info);
|
|
|
|
// move to next header.
|
|
marker += info.header_len;
|
|
size -= info.header_len;
|
|
}
|
|
|
|
// allocate memory for EXRHeader and create array of EXRHeader pointers.
|
|
(*exr_headers) =
|
|
static_cast<EXRHeader **>(malloc(sizeof(EXRHeader *) * infos.size()));
|
|
|
|
|
|
int retcode = TINYEXR_SUCCESS;
|
|
|
|
for (size_t i = 0; i < infos.size(); i++) {
|
|
EXRHeader *exr_header = static_cast<EXRHeader *>(malloc(sizeof(EXRHeader)));
|
|
memset(exr_header, 0, sizeof(EXRHeader));
|
|
|
|
std::string warn;
|
|
std::string _err;
|
|
if (!ConvertHeader(exr_header, infos[i], &warn, &_err)) {
|
|
|
|
// Free malloc-allocated memory here.
|
|
for (size_t k = 0; k < infos[i].attributes.size(); k++) {
|
|
if (infos[i].attributes[k].value) {
|
|
free(infos[i].attributes[k].value);
|
|
}
|
|
}
|
|
|
|
if (!_err.empty()) {
|
|
tinyexr::SetErrorMessage(
|
|
_err, err);
|
|
}
|
|
// continue to converting headers
|
|
retcode = TINYEXR_ERROR_INVALID_HEADER;
|
|
}
|
|
|
|
exr_header->multipart = exr_version->multipart ? 1 : 0;
|
|
|
|
(*exr_headers)[i] = exr_header;
|
|
}
|
|
|
|
(*num_headers) = static_cast<int>(infos.size());
|
|
|
|
return retcode;
|
|
}
|
|
|
|
int ParseEXRMultipartHeaderFromFile(EXRHeader ***exr_headers, int *num_headers,
|
|
const EXRVersion *exr_version,
|
|
const char *filename, const char **err) {
|
|
if (exr_headers == NULL || num_headers == NULL || exr_version == NULL ||
|
|
filename == NULL) {
|
|
tinyexr::SetErrorMessage(
|
|
"Invalid argument for ParseEXRMultipartHeaderFromFile()", err);
|
|
return TINYEXR_ERROR_INVALID_ARGUMENT;
|
|
}
|
|
|
|
MemoryMappedFile file(filename);
|
|
if (!file.valid()) {
|
|
tinyexr::SetErrorMessage("Cannot read file " + std::string(filename), err);
|
|
return TINYEXR_ERROR_CANT_OPEN_FILE;
|
|
}
|
|
|
|
return ParseEXRMultipartHeaderFromMemory(
|
|
exr_headers, num_headers, exr_version, file.data, file.size, err);
|
|
}
|
|
|
|
int ParseEXRVersionFromMemory(EXRVersion *version, const unsigned char *memory,
|
|
size_t size) {
|
|
if (version == NULL || memory == NULL) {
|
|
return TINYEXR_ERROR_INVALID_ARGUMENT;
|
|
}
|
|
|
|
if (size < tinyexr::kEXRVersionSize) {
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
|
|
const unsigned char *marker = memory;
|
|
|
|
// Header check.
|
|
{
|
|
const char header[] = {0x76, 0x2f, 0x31, 0x01};
|
|
|
|
if (memcmp(marker, header, 4) != 0) {
|
|
return TINYEXR_ERROR_INVALID_MAGIC_NUMBER;
|
|
}
|
|
marker += 4;
|
|
}
|
|
|
|
version->tiled = false;
|
|
version->long_name = false;
|
|
version->non_image = false;
|
|
version->multipart = false;
|
|
|
|
// Parse version header.
|
|
{
|
|
// must be 2
|
|
if (marker[0] != 2) {
|
|
return TINYEXR_ERROR_INVALID_EXR_VERSION;
|
|
}
|
|
|
|
if (version == NULL) {
|
|
return TINYEXR_SUCCESS; // May OK
|
|
}
|
|
|
|
version->version = 2;
|
|
|
|
if (marker[1] & 0x2) { // 9th bit
|
|
version->tiled = true;
|
|
}
|
|
if (marker[1] & 0x4) { // 10th bit
|
|
version->long_name = true;
|
|
}
|
|
if (marker[1] & 0x8) { // 11th bit
|
|
version->non_image = true; // (deep image)
|
|
}
|
|
if (marker[1] & 0x10) { // 12th bit
|
|
version->multipart = true;
|
|
}
|
|
}
|
|
|
|
return TINYEXR_SUCCESS;
|
|
}
|
|
|
|
int ParseEXRVersionFromFile(EXRVersion *version, const char *filename) {
|
|
if (filename == NULL) {
|
|
return TINYEXR_ERROR_INVALID_ARGUMENT;
|
|
}
|
|
|
|
FILE *fp = NULL;
|
|
#ifdef _WIN32
|
|
#if defined(_MSC_VER) || (defined(MINGW_HAS_SECURE_API) && MINGW_HAS_SECURE_API) // MSVC, MinGW GCC, or Clang.
|
|
errno_t err = _wfopen_s(&fp, tinyexr::UTF8ToWchar(filename).c_str(), L"rb");
|
|
if (err != 0) {
|
|
// TODO(syoyo): return wfopen_s erro code
|
|
return TINYEXR_ERROR_CANT_OPEN_FILE;
|
|
}
|
|
#else
|
|
// Unknown compiler or MinGW without MINGW_HAS_SECURE_API.
|
|
fp = fopen(filename, "rb");
|
|
#endif
|
|
#else
|
|
fp = fopen(filename, "rb");
|
|
#endif
|
|
if (!fp) {
|
|
return TINYEXR_ERROR_CANT_OPEN_FILE;
|
|
}
|
|
|
|
// Try to read kEXRVersionSize bytes; if the file is shorter than
|
|
// kEXRVersionSize, this will produce an error. This avoids a call to
|
|
// fseek(fp, 0, SEEK_END), which is not required to be supported by C
|
|
// implementations.
|
|
unsigned char buf[tinyexr::kEXRVersionSize];
|
|
size_t ret = fread(&buf[0], 1, tinyexr::kEXRVersionSize, fp);
|
|
fclose(fp);
|
|
|
|
if (ret != tinyexr::kEXRVersionSize) {
|
|
return TINYEXR_ERROR_INVALID_FILE;
|
|
}
|
|
|
|
return ParseEXRVersionFromMemory(version, buf, tinyexr::kEXRVersionSize);
|
|
}
|
|
|
|
int LoadEXRMultipartImageFromMemory(EXRImage *exr_images,
|
|
const EXRHeader **exr_headers,
|
|
unsigned int num_parts,
|
|
const unsigned char *memory,
|
|
const size_t size, const char **err) {
|
|
if (exr_images == NULL || exr_headers == NULL || num_parts == 0 ||
|
|
memory == NULL || (size <= tinyexr::kEXRVersionSize)) {
|
|
tinyexr::SetErrorMessage(
|
|
"Invalid argument for LoadEXRMultipartImageFromMemory()", err);
|
|
return TINYEXR_ERROR_INVALID_ARGUMENT;
|
|
}
|
|
|
|
// compute total header size.
|
|
size_t total_header_size = 0;
|
|
for (unsigned int i = 0; i < num_parts; i++) {
|
|
if (exr_headers[i]->header_len == 0) {
|
|
tinyexr::SetErrorMessage("EXRHeader variable is not initialized.", err);
|
|
return TINYEXR_ERROR_INVALID_ARGUMENT;
|
|
}
|
|
|
|
total_header_size += exr_headers[i]->header_len;
|
|
}
|
|
|
|
const char *marker = reinterpret_cast<const char *>(
|
|
memory + total_header_size + 4 +
|
|
4); // +8 for magic number and version header.
|
|
|
|
marker += 1; // Skip empty header.
|
|
|
|
// NOTE 1:
|
|
// In multipart image, There is 'part number' before chunk data.
|
|
// 4 byte : part number
|
|
// 4+ : chunk
|
|
//
|
|
// NOTE 2:
|
|
// EXR spec says 'part number' is 'unsigned long' but actually this is
|
|
// 'unsigned int(4 bytes)' in OpenEXR implementation...
|
|
// http://www.openexr.com/openexrfilelayout.pdf
|
|
|
|
// Load chunk offset table.
|
|
std::vector<tinyexr::OffsetData> chunk_offset_table_list;
|
|
chunk_offset_table_list.reserve(num_parts);
|
|
for (size_t i = 0; i < static_cast<size_t>(num_parts); i++) {
|
|
chunk_offset_table_list.resize(chunk_offset_table_list.size() + 1);
|
|
tinyexr::OffsetData& offset_data = chunk_offset_table_list.back();
|
|
if (!exr_headers[i]->tiled || exr_headers[i]->tile_level_mode == TINYEXR_TILE_ONE_LEVEL) {
|
|
tinyexr::InitSingleResolutionOffsets(offset_data, size_t(exr_headers[i]->chunk_count));
|
|
std::vector<tinyexr::tinyexr_uint64>& offset_table = offset_data.offsets[0][0];
|
|
|
|
for (size_t c = 0; c < offset_table.size(); c++) {
|
|
tinyexr::tinyexr_uint64 offset;
|
|
memcpy(&offset, marker, 8);
|
|
tinyexr::swap8(&offset);
|
|
|
|
if (offset >= size) {
|
|
tinyexr::SetErrorMessage("Invalid offset size in EXR header chunks.",
|
|
err);
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
|
|
offset_table[c] = offset + 4; // +4 to skip 'part number'
|
|
marker += 8;
|
|
}
|
|
} else {
|
|
{
|
|
std::vector<int> num_x_tiles, num_y_tiles;
|
|
if (!tinyexr::PrecalculateTileInfo(num_x_tiles, num_y_tiles, exr_headers[i])) {
|
|
tinyexr::SetErrorMessage("Invalid tile info.", err);
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
int num_blocks = InitTileOffsets(offset_data, exr_headers[i], num_x_tiles, num_y_tiles);
|
|
if (num_blocks != exr_headers[i]->chunk_count) {
|
|
tinyexr::SetErrorMessage("Invalid offset table size.", err);
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
}
|
|
for (unsigned int l = 0; l < offset_data.offsets.size(); ++l) {
|
|
for (unsigned int dy = 0; dy < offset_data.offsets[l].size(); ++dy) {
|
|
for (unsigned int dx = 0; dx < offset_data.offsets[l][dy].size(); ++dx) {
|
|
tinyexr::tinyexr_uint64 offset;
|
|
memcpy(&offset, marker, sizeof(tinyexr::tinyexr_uint64));
|
|
tinyexr::swap8(&offset);
|
|
if (offset >= size) {
|
|
tinyexr::SetErrorMessage("Invalid offset size in EXR header chunks.",
|
|
err);
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
offset_data.offsets[l][dy][dx] = offset + 4; // +4 to skip 'part number'
|
|
marker += sizeof(tinyexr::tinyexr_uint64); // = 8
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Decode image.
|
|
for (size_t i = 0; i < static_cast<size_t>(num_parts); i++) {
|
|
tinyexr::OffsetData &offset_data = chunk_offset_table_list[i];
|
|
|
|
// First check 'part number' is identical to 'i'
|
|
for (unsigned int l = 0; l < offset_data.offsets.size(); ++l)
|
|
for (unsigned int dy = 0; dy < offset_data.offsets[l].size(); ++dy)
|
|
for (unsigned int dx = 0; dx < offset_data.offsets[l][dy].size(); ++dx) {
|
|
|
|
const unsigned char *part_number_addr =
|
|
memory + offset_data.offsets[l][dy][dx] - 4; // -4 to move to 'part number' field.
|
|
unsigned int part_no;
|
|
memcpy(&part_no, part_number_addr, sizeof(unsigned int)); // 4
|
|
tinyexr::swap4(&part_no);
|
|
|
|
if (part_no != i) {
|
|
tinyexr::SetErrorMessage("Invalid `part number' in EXR header chunks.",
|
|
err);
|
|
return TINYEXR_ERROR_INVALID_DATA;
|
|
}
|
|
}
|
|
|
|
std::string e;
|
|
int ret = tinyexr::DecodeChunk(&exr_images[i], exr_headers[i], offset_data,
|
|
memory, size, &e);
|
|
if (ret != TINYEXR_SUCCESS) {
|
|
if (!e.empty()) {
|
|
tinyexr::SetErrorMessage(e, err);
|
|
}
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
return TINYEXR_SUCCESS;
|
|
}
|
|
|
|
int LoadEXRMultipartImageFromFile(EXRImage *exr_images,
|
|
const EXRHeader **exr_headers,
|
|
unsigned int num_parts, const char *filename,
|
|
const char **err) {
|
|
if (exr_images == NULL || exr_headers == NULL || num_parts == 0) {
|
|
tinyexr::SetErrorMessage(
|
|
"Invalid argument for LoadEXRMultipartImageFromFile", err);
|
|
return TINYEXR_ERROR_INVALID_ARGUMENT;
|
|
}
|
|
|
|
MemoryMappedFile file(filename);
|
|
if (!file.valid()) {
|
|
tinyexr::SetErrorMessage("Cannot read file " + std::string(filename), err);
|
|
return TINYEXR_ERROR_CANT_OPEN_FILE;
|
|
}
|
|
|
|
return LoadEXRMultipartImageFromMemory(exr_images, exr_headers, num_parts,
|
|
file.data, file.size, err);
|
|
}
|
|
|
|
int SaveEXRToMemory(const float *data, int width, int height, int components,
|
|
const int save_as_fp16, unsigned char **outbuf, const char **err) {
|
|
|
|
if ((components == 1) || components == 3 || components == 4) {
|
|
// OK
|
|
} else {
|
|
std::stringstream ss;
|
|
ss << "Unsupported component value : " << components << std::endl;
|
|
|
|
tinyexr::SetErrorMessage(ss.str(), err);
|
|
return TINYEXR_ERROR_INVALID_ARGUMENT;
|
|
}
|
|
|
|
EXRHeader header;
|
|
InitEXRHeader(&header);
|
|
|
|
if ((width < 16) && (height < 16)) {
|
|
// No compression for small image.
|
|
header.compression_type = TINYEXR_COMPRESSIONTYPE_NONE;
|
|
} else {
|
|
header.compression_type = TINYEXR_COMPRESSIONTYPE_ZIP;
|
|
}
|
|
|
|
EXRImage image;
|
|
InitEXRImage(&image);
|
|
|
|
image.num_channels = components;
|
|
|
|
std::vector<float> images[4];
|
|
|
|
if (components == 1) {
|
|
images[0].resize(static_cast<size_t>(width * height));
|
|
memcpy(images[0].data(), data, sizeof(float) * size_t(width * height));
|
|
} else {
|
|
images[0].resize(static_cast<size_t>(width * height));
|
|
images[1].resize(static_cast<size_t>(width * height));
|
|
images[2].resize(static_cast<size_t>(width * height));
|
|
images[3].resize(static_cast<size_t>(width * height));
|
|
|
|
// Split RGB(A)RGB(A)RGB(A)... into R, G and B(and A) layers
|
|
for (size_t i = 0; i < static_cast<size_t>(width * height); i++) {
|
|
images[0][i] = data[static_cast<size_t>(components) * i + 0];
|
|
images[1][i] = data[static_cast<size_t>(components) * i + 1];
|
|
images[2][i] = data[static_cast<size_t>(components) * i + 2];
|
|
if (components == 4) {
|
|
images[3][i] = data[static_cast<size_t>(components) * i + 3];
|
|
}
|
|
}
|
|
}
|
|
|
|
float *image_ptr[4] = {0, 0, 0, 0};
|
|
if (components == 4) {
|
|
image_ptr[0] = &(images[3].at(0)); // A
|
|
image_ptr[1] = &(images[2].at(0)); // B
|
|
image_ptr[2] = &(images[1].at(0)); // G
|
|
image_ptr[3] = &(images[0].at(0)); // R
|
|
} else if (components == 3) {
|
|
image_ptr[0] = &(images[2].at(0)); // B
|
|
image_ptr[1] = &(images[1].at(0)); // G
|
|
image_ptr[2] = &(images[0].at(0)); // R
|
|
} else if (components == 1) {
|
|
image_ptr[0] = &(images[0].at(0)); // A
|
|
}
|
|
|
|
image.images = reinterpret_cast<unsigned char **>(image_ptr);
|
|
image.width = width;
|
|
image.height = height;
|
|
|
|
header.num_channels = components;
|
|
header.channels = static_cast<EXRChannelInfo *>(malloc(
|
|
sizeof(EXRChannelInfo) * static_cast<size_t>(header.num_channels)));
|
|
// Must be (A)BGR order, since most of EXR viewers expect this channel order.
|
|
if (components == 4) {
|
|
#ifdef _MSC_VER
|
|
strncpy_s(header.channels[0].name, "A", 255);
|
|
strncpy_s(header.channels[1].name, "B", 255);
|
|
strncpy_s(header.channels[2].name, "G", 255);
|
|
strncpy_s(header.channels[3].name, "R", 255);
|
|
#else
|
|
strncpy(header.channels[0].name, "A", 255);
|
|
strncpy(header.channels[1].name, "B", 255);
|
|
strncpy(header.channels[2].name, "G", 255);
|
|
strncpy(header.channels[3].name, "R", 255);
|
|
#endif
|
|
header.channels[0].name[strlen("A")] = '\0';
|
|
header.channels[1].name[strlen("B")] = '\0';
|
|
header.channels[2].name[strlen("G")] = '\0';
|
|
header.channels[3].name[strlen("R")] = '\0';
|
|
} else if (components == 3) {
|
|
#ifdef _MSC_VER
|
|
strncpy_s(header.channels[0].name, "B", 255);
|
|
strncpy_s(header.channels[1].name, "G", 255);
|
|
strncpy_s(header.channels[2].name, "R", 255);
|
|
#else
|
|
strncpy(header.channels[0].name, "B", 255);
|
|
strncpy(header.channels[1].name, "G", 255);
|
|
strncpy(header.channels[2].name, "R", 255);
|
|
#endif
|
|
header.channels[0].name[strlen("B")] = '\0';
|
|
header.channels[1].name[strlen("G")] = '\0';
|
|
header.channels[2].name[strlen("R")] = '\0';
|
|
} else {
|
|
#ifdef _MSC_VER
|
|
strncpy_s(header.channels[0].name, "A", 255);
|
|
#else
|
|
strncpy(header.channels[0].name, "A", 255);
|
|
#endif
|
|
header.channels[0].name[strlen("A")] = '\0';
|
|
}
|
|
|
|
header.pixel_types = static_cast<int *>(
|
|
malloc(sizeof(int) * static_cast<size_t>(header.num_channels)));
|
|
header.requested_pixel_types = static_cast<int *>(
|
|
malloc(sizeof(int) * static_cast<size_t>(header.num_channels)));
|
|
for (int i = 0; i < header.num_channels; i++) {
|
|
header.pixel_types[i] =
|
|
TINYEXR_PIXELTYPE_FLOAT; // pixel type of input image
|
|
|
|
if (save_as_fp16 > 0) {
|
|
header.requested_pixel_types[i] =
|
|
TINYEXR_PIXELTYPE_HALF; // save with half(fp16) pixel format
|
|
} else {
|
|
header.requested_pixel_types[i] =
|
|
TINYEXR_PIXELTYPE_FLOAT; // save with float(fp32) pixel format(i.e.
|
|
// no precision reduction)
|
|
}
|
|
}
|
|
|
|
|
|
unsigned char *mem_buf;
|
|
size_t mem_size = SaveEXRImageToMemory(&image, &header, &mem_buf, err);
|
|
|
|
if (mem_size == 0) {
|
|
return TINYEXR_ERROR_SERIALIZATION_FAILED;
|
|
}
|
|
|
|
free(header.channels);
|
|
free(header.pixel_types);
|
|
free(header.requested_pixel_types);
|
|
|
|
if (mem_size > size_t(std::numeric_limits<int>::max())) {
|
|
free(mem_buf);
|
|
return TINYEXR_ERROR_DATA_TOO_LARGE;
|
|
}
|
|
|
|
(*outbuf) = mem_buf;
|
|
|
|
return int(mem_size);
|
|
}
|
|
|
|
int SaveEXR(const float *data, int width, int height, int components,
|
|
const int save_as_fp16, const char *outfilename, const char **err) {
|
|
if ((components == 1) || components == 3 || components == 4) {
|
|
// OK
|
|
} else {
|
|
std::stringstream ss;
|
|
ss << "Unsupported component value : " << components << std::endl;
|
|
|
|
tinyexr::SetErrorMessage(ss.str(), err);
|
|
return TINYEXR_ERROR_INVALID_ARGUMENT;
|
|
}
|
|
|
|
EXRHeader header;
|
|
InitEXRHeader(&header);
|
|
|
|
if ((width < 16) && (height < 16)) {
|
|
// No compression for small image.
|
|
header.compression_type = TINYEXR_COMPRESSIONTYPE_NONE;
|
|
} else {
|
|
header.compression_type = TINYEXR_COMPRESSIONTYPE_ZIP;
|
|
}
|
|
|
|
EXRImage image;
|
|
InitEXRImage(&image);
|
|
|
|
image.num_channels = components;
|
|
|
|
std::vector<float> images[4];
|
|
const size_t pixel_count =
|
|
static_cast<size_t>(width) * static_cast<size_t>(height);
|
|
|
|
if (components == 1) {
|
|
images[0].resize(pixel_count);
|
|
memcpy(images[0].data(), data, sizeof(float) * pixel_count);
|
|
} else {
|
|
images[0].resize(pixel_count);
|
|
images[1].resize(pixel_count);
|
|
images[2].resize(pixel_count);
|
|
images[3].resize(pixel_count);
|
|
|
|
// Split RGB(A)RGB(A)RGB(A)... into R, G and B(and A) layers
|
|
for (size_t i = 0; i < pixel_count; i++) {
|
|
images[0][i] = data[static_cast<size_t>(components) * i + 0];
|
|
images[1][i] = data[static_cast<size_t>(components) * i + 1];
|
|
images[2][i] = data[static_cast<size_t>(components) * i + 2];
|
|
if (components == 4) {
|
|
images[3][i] = data[static_cast<size_t>(components) * i + 3];
|
|
}
|
|
}
|
|
}
|
|
|
|
float *image_ptr[4] = {0, 0, 0, 0};
|
|
if (components == 4) {
|
|
image_ptr[0] = &(images[3].at(0)); // A
|
|
image_ptr[1] = &(images[2].at(0)); // B
|
|
image_ptr[2] = &(images[1].at(0)); // G
|
|
image_ptr[3] = &(images[0].at(0)); // R
|
|
} else if (components == 3) {
|
|
image_ptr[0] = &(images[2].at(0)); // B
|
|
image_ptr[1] = &(images[1].at(0)); // G
|
|
image_ptr[2] = &(images[0].at(0)); // R
|
|
} else if (components == 1) {
|
|
image_ptr[0] = &(images[0].at(0)); // A
|
|
}
|
|
|
|
image.images = reinterpret_cast<unsigned char **>(image_ptr);
|
|
image.width = width;
|
|
image.height = height;
|
|
|
|
header.num_channels = components;
|
|
header.channels = static_cast<EXRChannelInfo *>(malloc(
|
|
sizeof(EXRChannelInfo) * static_cast<size_t>(header.num_channels)));
|
|
// Must be (A)BGR order, since most of EXR viewers expect this channel order.
|
|
if (components == 4) {
|
|
#ifdef _MSC_VER
|
|
strncpy_s(header.channels[0].name, "A", 255);
|
|
strncpy_s(header.channels[1].name, "B", 255);
|
|
strncpy_s(header.channels[2].name, "G", 255);
|
|
strncpy_s(header.channels[3].name, "R", 255);
|
|
#else
|
|
strncpy(header.channels[0].name, "A", 255);
|
|
strncpy(header.channels[1].name, "B", 255);
|
|
strncpy(header.channels[2].name, "G", 255);
|
|
strncpy(header.channels[3].name, "R", 255);
|
|
#endif
|
|
header.channels[0].name[strlen("A")] = '\0';
|
|
header.channels[1].name[strlen("B")] = '\0';
|
|
header.channels[2].name[strlen("G")] = '\0';
|
|
header.channels[3].name[strlen("R")] = '\0';
|
|
} else if (components == 3) {
|
|
#ifdef _MSC_VER
|
|
strncpy_s(header.channels[0].name, "B", 255);
|
|
strncpy_s(header.channels[1].name, "G", 255);
|
|
strncpy_s(header.channels[2].name, "R", 255);
|
|
#else
|
|
strncpy(header.channels[0].name, "B", 255);
|
|
strncpy(header.channels[1].name, "G", 255);
|
|
strncpy(header.channels[2].name, "R", 255);
|
|
#endif
|
|
header.channels[0].name[strlen("B")] = '\0';
|
|
header.channels[1].name[strlen("G")] = '\0';
|
|
header.channels[2].name[strlen("R")] = '\0';
|
|
} else {
|
|
#ifdef _MSC_VER
|
|
strncpy_s(header.channels[0].name, "A", 255);
|
|
#else
|
|
strncpy(header.channels[0].name, "A", 255);
|
|
#endif
|
|
header.channels[0].name[strlen("A")] = '\0';
|
|
}
|
|
|
|
header.pixel_types = static_cast<int *>(
|
|
malloc(sizeof(int) * static_cast<size_t>(header.num_channels)));
|
|
header.requested_pixel_types = static_cast<int *>(
|
|
malloc(sizeof(int) * static_cast<size_t>(header.num_channels)));
|
|
for (int i = 0; i < header.num_channels; i++) {
|
|
header.pixel_types[i] =
|
|
TINYEXR_PIXELTYPE_FLOAT; // pixel type of input image
|
|
|
|
if (save_as_fp16 > 0) {
|
|
header.requested_pixel_types[i] =
|
|
TINYEXR_PIXELTYPE_HALF; // save with half(fp16) pixel format
|
|
} else {
|
|
header.requested_pixel_types[i] =
|
|
TINYEXR_PIXELTYPE_FLOAT; // save with float(fp32) pixel format(i.e.
|
|
// no precision reduction)
|
|
}
|
|
}
|
|
|
|
int ret = SaveEXRImageToFile(&image, &header, outfilename, err);
|
|
if (ret != TINYEXR_SUCCESS) {
|
|
return ret;
|
|
}
|
|
|
|
free(header.channels);
|
|
free(header.pixel_types);
|
|
free(header.requested_pixel_types);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#ifdef __clang__
|
|
// zero-as-null-pointer-constant
|
|
#pragma clang diagnostic pop
|
|
#endif
|
|
|
|
#endif // TINYEXR_IMPLEMENTATION_DEFINED
|
|
#endif // TINYEXR_IMPLEMENTATION
|