godot/servers/rendering/renderer_rd/environment/fog.cpp

1206 lines
50 KiB
C++

/*************************************************************************/
/* fog.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "fog.h"
#include "servers/rendering/renderer_rd/renderer_compositor_rd.h"
#include "servers/rendering/renderer_rd/storage_rd/material_storage.h"
#include "servers/rendering/renderer_rd/storage_rd/texture_storage.h"
#include "servers/rendering/rendering_server_default.h"
using namespace RendererRD;
Fog *Fog::singleton = nullptr;
Fog::Fog() {
singleton = this;
}
Fog::~Fog() {
singleton = nullptr;
}
/* FOG VOLUMES */
RID Fog::fog_volume_allocate() {
return fog_volume_owner.allocate_rid();
}
void Fog::fog_volume_initialize(RID p_rid) {
fog_volume_owner.initialize_rid(p_rid, FogVolume());
}
void Fog::fog_free(RID p_rid) {
FogVolume *fog_volume = fog_volume_owner.get_or_null(p_rid);
fog_volume->dependency.deleted_notify(p_rid);
fog_volume_owner.free(p_rid);
}
void Fog::fog_volume_set_shape(RID p_fog_volume, RS::FogVolumeShape p_shape) {
FogVolume *fog_volume = fog_volume_owner.get_or_null(p_fog_volume);
ERR_FAIL_COND(!fog_volume);
if (p_shape == fog_volume->shape) {
return;
}
fog_volume->shape = p_shape;
fog_volume->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_AABB);
}
void Fog::fog_volume_set_extents(RID p_fog_volume, const Vector3 &p_extents) {
FogVolume *fog_volume = fog_volume_owner.get_or_null(p_fog_volume);
ERR_FAIL_COND(!fog_volume);
fog_volume->extents = p_extents;
fog_volume->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_AABB);
}
void Fog::fog_volume_set_material(RID p_fog_volume, RID p_material) {
FogVolume *fog_volume = fog_volume_owner.get_or_null(p_fog_volume);
ERR_FAIL_COND(!fog_volume);
fog_volume->material = p_material;
}
RID Fog::fog_volume_get_material(RID p_fog_volume) const {
FogVolume *fog_volume = fog_volume_owner.get_or_null(p_fog_volume);
ERR_FAIL_COND_V(!fog_volume, RID());
return fog_volume->material;
}
RS::FogVolumeShape Fog::fog_volume_get_shape(RID p_fog_volume) const {
FogVolume *fog_volume = fog_volume_owner.get_or_null(p_fog_volume);
ERR_FAIL_COND_V(!fog_volume, RS::FOG_VOLUME_SHAPE_BOX);
return fog_volume->shape;
}
AABB Fog::fog_volume_get_aabb(RID p_fog_volume) const {
FogVolume *fog_volume = fog_volume_owner.get_or_null(p_fog_volume);
ERR_FAIL_COND_V(!fog_volume, AABB());
switch (fog_volume->shape) {
case RS::FOG_VOLUME_SHAPE_ELLIPSOID:
case RS::FOG_VOLUME_SHAPE_CONE:
case RS::FOG_VOLUME_SHAPE_CYLINDER:
case RS::FOG_VOLUME_SHAPE_BOX: {
AABB aabb;
aabb.position = -fog_volume->extents;
aabb.size = fog_volume->extents * 2;
return aabb;
}
default: {
// Need some size otherwise will get culled
return AABB(Vector3(-1, -1, -1), Vector3(2, 2, 2));
}
}
}
Vector3 Fog::fog_volume_get_extents(RID p_fog_volume) const {
const FogVolume *fog_volume = fog_volume_owner.get_or_null(p_fog_volume);
ERR_FAIL_COND_V(!fog_volume, Vector3());
return fog_volume->extents;
}
////////////////////////////////////////////////////////////////////////////////
// Fog material
bool Fog::FogMaterialData::update_parameters(const HashMap<StringName, Variant> &p_parameters, bool p_uniform_dirty, bool p_textures_dirty) {
uniform_set_updated = true;
return update_parameters_uniform_set(p_parameters, p_uniform_dirty, p_textures_dirty, shader_data->uniforms, shader_data->ubo_offsets.ptr(), shader_data->texture_uniforms, shader_data->default_texture_params, shader_data->ubo_size, uniform_set, Fog::get_singleton()->volumetric_fog.shader.version_get_shader(shader_data->version, 0), VolumetricFogShader::FogSet::FOG_SET_MATERIAL);
}
Fog::FogMaterialData::~FogMaterialData() {
free_parameters_uniform_set(uniform_set);
}
RendererRD::MaterialStorage::ShaderData *Fog::_create_fog_shader_func() {
FogShaderData *shader_data = memnew(FogShaderData);
return shader_data;
}
RendererRD::MaterialStorage::ShaderData *Fog::_create_fog_shader_funcs() {
return Fog::get_singleton()->_create_fog_shader_func();
};
RendererRD::MaterialStorage::MaterialData *Fog::_create_fog_material_func(FogShaderData *p_shader) {
FogMaterialData *material_data = memnew(FogMaterialData);
material_data->shader_data = p_shader;
//update will happen later anyway so do nothing.
return material_data;
}
RendererRD::MaterialStorage::MaterialData *Fog::_create_fog_material_funcs(RendererRD::MaterialStorage::ShaderData *p_shader) {
return Fog::get_singleton()->_create_fog_material_func(static_cast<FogShaderData *>(p_shader));
};
////////////////////////////////////////////////////////////////////////////////
// FOG VOLUMES INSTANCE
RID Fog::fog_volume_instance_create(RID p_fog_volume) {
FogVolumeInstance fvi;
fvi.volume = p_fog_volume;
return fog_volume_instance_owner.make_rid(fvi);
}
void Fog::fog_instance_free(RID p_rid) {
fog_volume_instance_owner.free(p_rid);
}
////////////////////////////////////////////////////////////////////////////////
// Volumetric Fog Shader
void Fog::init_fog_shader(uint32_t p_max_directional_lights, int p_roughness_layers, bool p_is_using_radiance_cubemap_array) {
MaterialStorage *material_storage = MaterialStorage::get_singleton();
{
// Initialize local fog shader
Vector<String> volumetric_fog_modes;
volumetric_fog_modes.push_back("");
volumetric_fog.shader.initialize(volumetric_fog_modes);
material_storage->shader_set_data_request_function(RendererRD::MaterialStorage::SHADER_TYPE_FOG, _create_fog_shader_funcs);
material_storage->material_set_data_request_function(RendererRD::MaterialStorage::SHADER_TYPE_FOG, _create_fog_material_funcs);
volumetric_fog.volume_ubo = RD::get_singleton()->uniform_buffer_create(sizeof(VolumetricFogShader::VolumeUBO));
}
{
ShaderCompiler::DefaultIdentifierActions actions;
actions.renames["TIME"] = "scene_params.time";
actions.renames["PI"] = _MKSTR(Math_PI);
actions.renames["TAU"] = _MKSTR(Math_TAU);
actions.renames["E"] = _MKSTR(Math_E);
actions.renames["WORLD_POSITION"] = "world.xyz";
actions.renames["OBJECT_POSITION"] = "params.position";
actions.renames["UVW"] = "uvw";
actions.renames["EXTENTS"] = "params.extents";
actions.renames["ALBEDO"] = "albedo";
actions.renames["DENSITY"] = "density";
actions.renames["EMISSION"] = "emission";
actions.renames["SDF"] = "sdf";
actions.usage_defines["SDF"] = "#define SDF_USED\n";
actions.usage_defines["DENSITY"] = "#define DENSITY_USED\n";
actions.usage_defines["ALBEDO"] = "#define ALBEDO_USED\n";
actions.usage_defines["EMISSION"] = "#define EMISSION_USED\n";
actions.sampler_array_name = "material_samplers";
actions.base_texture_binding_index = 1;
actions.texture_layout_set = VolumetricFogShader::FogSet::FOG_SET_MATERIAL;
actions.base_uniform_string = "material.";
actions.default_filter = ShaderLanguage::FILTER_LINEAR_MIPMAP;
actions.default_repeat = ShaderLanguage::REPEAT_DISABLE;
actions.global_buffer_array_variable = "global_variables.data";
volumetric_fog.compiler.initialize(actions);
}
{
// default material and shader for fog shader
volumetric_fog.default_shader = material_storage->shader_allocate();
material_storage->shader_initialize(volumetric_fog.default_shader);
material_storage->shader_set_code(volumetric_fog.default_shader, R"(
// Default fog shader.
shader_type fog;
void fog() {
DENSITY = 1.0;
ALBEDO = vec3(1.0);
}
)");
volumetric_fog.default_material = material_storage->material_allocate();
material_storage->material_initialize(volumetric_fog.default_material);
material_storage->material_set_shader(volumetric_fog.default_material, volumetric_fog.default_shader);
FogMaterialData *md = static_cast<FogMaterialData *>(material_storage->material_get_data(volumetric_fog.default_material, RendererRD::MaterialStorage::SHADER_TYPE_FOG));
volumetric_fog.default_shader_rd = volumetric_fog.shader.version_get_shader(md->shader_data->version, 0);
Vector<RD::Uniform> uniforms;
{
Vector<RID> ids;
ids.resize(12);
RID *ids_ptr = ids.ptrw();
ids_ptr[0] = material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED);
ids_ptr[1] = material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED);
ids_ptr[2] = material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED);
ids_ptr[3] = material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED);
ids_ptr[4] = material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIPMAPS_ANISOTROPIC, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED);
ids_ptr[5] = material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS_ANISOTROPIC, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED);
ids_ptr[6] = material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST, RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED);
ids_ptr[7] = material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED);
ids_ptr[8] = material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED);
ids_ptr[9] = material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED);
ids_ptr[10] = material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIPMAPS_ANISOTROPIC, RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED);
ids_ptr[11] = material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS_ANISOTROPIC, RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED);
RD::Uniform u(RD::UNIFORM_TYPE_SAMPLER, 1, ids);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
u.binding = 2;
u.append_id(RendererRD::MaterialStorage::get_singleton()->global_shader_uniforms_get_storage_buffer());
uniforms.push_back(u);
}
volumetric_fog.base_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, volumetric_fog.default_shader_rd, VolumetricFogShader::FogSet::FOG_SET_BASE);
}
{
String defines = "\n#define MAX_DIRECTIONAL_LIGHT_DATA_STRUCTS " + itos(p_max_directional_lights) + "\n";
defines += "\n#define MAX_SKY_LOD " + itos(p_roughness_layers - 1) + ".0\n";
if (p_is_using_radiance_cubemap_array) {
defines += "\n#define USE_RADIANCE_CUBEMAP_ARRAY \n";
}
Vector<String> volumetric_fog_modes;
volumetric_fog_modes.push_back("\n#define MODE_DENSITY\n");
volumetric_fog_modes.push_back("\n#define MODE_DENSITY\n#define ENABLE_SDFGI\n");
volumetric_fog_modes.push_back("\n#define MODE_FILTER\n");
volumetric_fog_modes.push_back("\n#define MODE_FOG\n");
volumetric_fog_modes.push_back("\n#define MODE_COPY\n");
volumetric_fog.process_shader.initialize(volumetric_fog_modes, defines);
volumetric_fog.process_shader_version = volumetric_fog.process_shader.version_create();
for (int i = 0; i < VolumetricFogShader::VOLUMETRIC_FOG_PROCESS_SHADER_MAX; i++) {
volumetric_fog.process_pipelines[i] = RD::get_singleton()->compute_pipeline_create(volumetric_fog.process_shader.version_get_shader(volumetric_fog.process_shader_version, i));
}
volumetric_fog.params_ubo = RD::get_singleton()->uniform_buffer_create(sizeof(VolumetricFogShader::ParamsUBO));
}
}
void Fog::free_fog_shader() {
MaterialStorage *material_storage = MaterialStorage::get_singleton();
volumetric_fog.process_shader.version_free(volumetric_fog.process_shader_version);
RD::get_singleton()->free(volumetric_fog.volume_ubo);
RD::get_singleton()->free(volumetric_fog.params_ubo);
material_storage->shader_free(volumetric_fog.default_shader);
material_storage->material_free(volumetric_fog.default_material);
}
void Fog::FogShaderData::set_path_hint(const String &p_path) {
path = p_path;
}
void Fog::FogShaderData::set_code(const String &p_code) {
//compile
code = p_code;
valid = false;
ubo_size = 0;
uniforms.clear();
if (code.is_empty()) {
return; //just invalid, but no error
}
ShaderCompiler::GeneratedCode gen_code;
ShaderCompiler::IdentifierActions actions;
actions.entry_point_stages["fog"] = ShaderCompiler::STAGE_COMPUTE;
uses_time = false;
actions.usage_flag_pointers["TIME"] = &uses_time;
actions.uniforms = &uniforms;
Fog *fog_singleton = Fog::get_singleton();
Error err = fog_singleton->volumetric_fog.compiler.compile(RS::SHADER_FOG, code, &actions, path, gen_code);
ERR_FAIL_COND_MSG(err != OK, "Fog shader compilation failed.");
if (version.is_null()) {
version = fog_singleton->volumetric_fog.shader.version_create();
}
fog_singleton->volumetric_fog.shader.version_set_compute_code(version, gen_code.code, gen_code.uniforms, gen_code.stage_globals[ShaderCompiler::STAGE_COMPUTE], gen_code.defines);
ERR_FAIL_COND(!fog_singleton->volumetric_fog.shader.version_is_valid(version));
ubo_size = gen_code.uniform_total_size;
ubo_offsets = gen_code.uniform_offsets;
texture_uniforms = gen_code.texture_uniforms;
pipeline = RD::get_singleton()->compute_pipeline_create(fog_singleton->volumetric_fog.shader.version_get_shader(version, 0));
valid = true;
}
void Fog::FogShaderData::set_default_texture_parameter(const StringName &p_name, RID p_texture, int p_index) {
if (!p_texture.is_valid()) {
if (default_texture_params.has(p_name) && default_texture_params[p_name].has(p_index)) {
default_texture_params[p_name].erase(p_index);
if (default_texture_params[p_name].is_empty()) {
default_texture_params.erase(p_name);
}
}
} else {
if (!default_texture_params.has(p_name)) {
default_texture_params[p_name] = HashMap<int, RID>();
}
default_texture_params[p_name][p_index] = p_texture;
}
}
void Fog::FogShaderData::get_shader_uniform_list(List<PropertyInfo> *p_param_list) const {
RBMap<int, StringName> order;
for (const KeyValue<StringName, ShaderLanguage::ShaderNode::Uniform> &E : uniforms) {
if (E.value.scope == ShaderLanguage::ShaderNode::Uniform::SCOPE_GLOBAL || E.value.scope == ShaderLanguage::ShaderNode::Uniform::SCOPE_INSTANCE) {
continue;
}
if (E.value.texture_order >= 0) {
order[E.value.texture_order + 100000] = E.key;
} else {
order[E.value.order] = E.key;
}
}
String last_group;
for (const KeyValue<int, StringName> &E : order) {
String group = uniforms[E.value].group;
if (!uniforms[E.value].subgroup.is_empty()) {
group += "::" + uniforms[E.value].subgroup;
}
if (group != last_group) {
PropertyInfo pi;
pi.usage = PROPERTY_USAGE_GROUP;
pi.name = group;
p_param_list->push_back(pi);
last_group = group;
}
PropertyInfo pi = ShaderLanguage::uniform_to_property_info(uniforms[E.value]);
pi.name = E.value;
p_param_list->push_back(pi);
}
}
void Fog::FogShaderData::get_instance_param_list(List<RendererMaterialStorage::InstanceShaderParam> *p_param_list) const {
for (const KeyValue<StringName, ShaderLanguage::ShaderNode::Uniform> &E : uniforms) {
if (E.value.scope != ShaderLanguage::ShaderNode::Uniform::SCOPE_INSTANCE) {
continue;
}
RendererMaterialStorage::InstanceShaderParam p;
p.info = ShaderLanguage::uniform_to_property_info(E.value);
p.info.name = E.key; //supply name
p.index = E.value.instance_index;
p.default_value = ShaderLanguage::constant_value_to_variant(E.value.default_value, E.value.type, E.value.array_size, E.value.hint);
p_param_list->push_back(p);
}
}
bool Fog::FogShaderData::is_parameter_texture(const StringName &p_param) const {
if (!uniforms.has(p_param)) {
return false;
}
return uniforms[p_param].texture_order >= 0;
}
bool Fog::FogShaderData::is_animated() const {
return false;
}
bool Fog::FogShaderData::casts_shadows() const {
return false;
}
Variant Fog::FogShaderData::get_default_parameter(const StringName &p_parameter) const {
if (uniforms.has(p_parameter)) {
ShaderLanguage::ShaderNode::Uniform uniform = uniforms[p_parameter];
Vector<ShaderLanguage::ConstantNode::Value> default_value = uniform.default_value;
return ShaderLanguage::constant_value_to_variant(default_value, uniform.type, uniform.array_size, uniform.hint);
}
return Variant();
}
RS::ShaderNativeSourceCode Fog::FogShaderData::get_native_source_code() const {
Fog *fog_singleton = Fog::get_singleton();
return fog_singleton->volumetric_fog.shader.version_get_native_source_code(version);
}
Fog::FogShaderData::~FogShaderData() {
Fog *fog_singleton = Fog::get_singleton();
ERR_FAIL_COND(!fog_singleton);
//pipeline variants will clear themselves if shader is gone
if (version.is_valid()) {
fog_singleton->volumetric_fog.shader.version_free(version);
}
}
////////////////////////////////////////////////////////////////////////////////
// Volumetric Fog
void Fog::VolumetricFog::init(const Vector3i &fog_size, RID p_sky_shader) {
width = fog_size.x;
height = fog_size.y;
depth = fog_size.z;
RD::TextureFormat tf;
tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
tf.width = fog_size.x;
tf.height = fog_size.y;
tf.depth = fog_size.z;
tf.texture_type = RD::TEXTURE_TYPE_3D;
tf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT;
light_density_map = RD::get_singleton()->texture_create(tf, RD::TextureView());
RD::get_singleton()->set_resource_name(light_density_map, "Fog light-density map");
tf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_COPY_TO_BIT;
prev_light_density_map = RD::get_singleton()->texture_create(tf, RD::TextureView());
RD::get_singleton()->set_resource_name(prev_light_density_map, "Fog previous light-density map");
RD::get_singleton()->texture_clear(prev_light_density_map, Color(0, 0, 0, 0), 0, 1, 0, 1);
tf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT;
fog_map = RD::get_singleton()->texture_create(tf, RD::TextureView());
RD::get_singleton()->set_resource_name(fog_map, "Fog map");
#if defined(MACOS_ENABLED) || defined(IOS_ENABLED)
Vector<uint8_t> dm;
dm.resize(fog_size.x * fog_size.y * fog_size.z * 4);
dm.fill(0);
density_map = RD::get_singleton()->storage_buffer_create(dm.size(), dm);
RD::get_singleton()->set_resource_name(density_map, "Fog density map");
light_map = RD::get_singleton()->storage_buffer_create(dm.size(), dm);
RD::get_singleton()->set_resource_name(light_map, "Fog light map");
emissive_map = RD::get_singleton()->storage_buffer_create(dm.size(), dm);
RD::get_singleton()->set_resource_name(emissive_map, "Fog emissive map");
#else
tf.format = RD::DATA_FORMAT_R32_UINT;
tf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_CAN_COPY_TO_BIT;
density_map = RD::get_singleton()->texture_create(tf, RD::TextureView());
RD::get_singleton()->set_resource_name(density_map, "Fog density map");
RD::get_singleton()->texture_clear(density_map, Color(0, 0, 0, 0), 0, 1, 0, 1);
light_map = RD::get_singleton()->texture_create(tf, RD::TextureView());
RD::get_singleton()->set_resource_name(light_map, "Fog light map");
RD::get_singleton()->texture_clear(light_map, Color(0, 0, 0, 0), 0, 1, 0, 1);
emissive_map = RD::get_singleton()->texture_create(tf, RD::TextureView());
RD::get_singleton()->set_resource_name(emissive_map, "Fog emissive map");
RD::get_singleton()->texture_clear(emissive_map, Color(0, 0, 0, 0), 0, 1, 0, 1);
#endif
Vector<RD::Uniform> uniforms;
{
RD::Uniform u;
u.binding = 0;
u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
u.append_id(fog_map);
uniforms.push_back(u);
}
sky_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, p_sky_shader, RendererRD::SkyRD::SKY_SET_FOG);
}
Fog::VolumetricFog::~VolumetricFog() {
RD::get_singleton()->free(prev_light_density_map);
RD::get_singleton()->free(light_density_map);
RD::get_singleton()->free(fog_map);
RD::get_singleton()->free(density_map);
RD::get_singleton()->free(light_map);
RD::get_singleton()->free(emissive_map);
if (fog_uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(fog_uniform_set)) {
RD::get_singleton()->free(fog_uniform_set);
}
if (process_uniform_set_density.is_valid() && RD::get_singleton()->uniform_set_is_valid(process_uniform_set_density)) {
RD::get_singleton()->free(process_uniform_set_density);
}
if (process_uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(process_uniform_set)) {
RD::get_singleton()->free(process_uniform_set);
}
if (process_uniform_set2.is_valid() && RD::get_singleton()->uniform_set_is_valid(process_uniform_set2)) {
RD::get_singleton()->free(process_uniform_set2);
}
if (sdfgi_uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(sdfgi_uniform_set)) {
RD::get_singleton()->free(sdfgi_uniform_set);
}
if (sky_uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(sky_uniform_set)) {
RD::get_singleton()->free(sky_uniform_set);
}
}
Vector3i Fog::_point_get_position_in_froxel_volume(const Vector3 &p_point, float fog_end, const Vector2 &fog_near_size, const Vector2 &fog_far_size, float volumetric_fog_detail_spread, const Vector3 &fog_size, const Transform3D &p_cam_transform) {
Vector3 view_position = p_cam_transform.affine_inverse().xform(p_point);
view_position.z = MIN(view_position.z, -0.01); // Clamp to the front of camera
Vector3 fog_position = Vector3(0, 0, 0);
view_position.y = -view_position.y;
fog_position.z = -view_position.z / fog_end;
fog_position.x = (view_position.x / (2 * (fog_near_size.x * (1.0 - fog_position.z) + fog_far_size.x * fog_position.z))) + 0.5;
fog_position.y = (view_position.y / (2 * (fog_near_size.y * (1.0 - fog_position.z) + fog_far_size.y * fog_position.z))) + 0.5;
fog_position.z = Math::pow(float(fog_position.z), float(1.0 / volumetric_fog_detail_spread));
fog_position = fog_position * fog_size - Vector3(0.5, 0.5, 0.5);
fog_position.x = CLAMP(fog_position.x, 0.0, fog_size.x);
fog_position.y = CLAMP(fog_position.y, 0.0, fog_size.y);
fog_position.z = CLAMP(fog_position.z, 0.0, fog_size.z);
return Vector3i(fog_position);
}
void Fog::volumetric_fog_update(const VolumetricFogSettings &p_settings, const Projection &p_cam_projection, const Transform3D &p_cam_transform, const Transform3D &p_prev_cam_inv_transform, RID p_shadow_atlas, int p_directional_light_count, bool p_use_directional_shadows, int p_positional_light_count, int p_voxel_gi_count, const PagedArray<RID> &p_fog_volumes) {
RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton();
RendererRD::MaterialStorage *material_storage = RendererRD::MaterialStorage::get_singleton();
RENDER_TIMESTAMP("> Volumetric Fog");
RD::get_singleton()->draw_command_begin_label("Volumetric Fog");
Ref<VolumetricFog> fog = p_settings.vfog;
if (p_fog_volumes.size() > 0) {
RD::get_singleton()->draw_command_begin_label("Render Volumetric Fog Volumes");
RENDER_TIMESTAMP("Render FogVolumes");
VolumetricFogShader::VolumeUBO params;
Vector2 frustum_near_size = p_cam_projection.get_viewport_half_extents();
Vector2 frustum_far_size = p_cam_projection.get_far_plane_half_extents();
float z_near = p_cam_projection.get_z_near();
float z_far = p_cam_projection.get_z_far();
float fog_end = RendererSceneRenderRD::get_singleton()->environment_get_volumetric_fog_length(p_settings.env);
Vector2 fog_far_size = frustum_near_size.lerp(frustum_far_size, (fog_end - z_near) / (z_far - z_near));
Vector2 fog_near_size;
if (p_cam_projection.is_orthogonal()) {
fog_near_size = fog_far_size;
} else {
fog_near_size = Vector2();
}
params.fog_frustum_size_begin[0] = fog_near_size.x;
params.fog_frustum_size_begin[1] = fog_near_size.y;
params.fog_frustum_size_end[0] = fog_far_size.x;
params.fog_frustum_size_end[1] = fog_far_size.y;
params.fog_frustum_end = fog_end;
params.z_near = z_near;
params.z_far = z_far;
params.time = p_settings.time;
params.fog_volume_size[0] = fog->width;
params.fog_volume_size[1] = fog->height;
params.fog_volume_size[2] = fog->depth;
params.use_temporal_reprojection = RendererSceneRenderRD::get_singleton()->environment_get_volumetric_fog_temporal_reprojection(p_settings.env);
params.temporal_frame = RSG::rasterizer->get_frame_number() % VolumetricFog::MAX_TEMPORAL_FRAMES;
params.detail_spread = RendererSceneRenderRD::get_singleton()->environment_get_volumetric_fog_detail_spread(p_settings.env);
params.temporal_blend = RendererSceneRenderRD::get_singleton()->environment_get_volumetric_fog_temporal_reprojection_amount(p_settings.env);
Transform3D to_prev_cam_view = p_prev_cam_inv_transform * p_cam_transform;
RendererRD::MaterialStorage::store_transform(to_prev_cam_view, params.to_prev_view);
RendererRD::MaterialStorage::store_transform(p_cam_transform, params.transform);
RD::get_singleton()->buffer_update(volumetric_fog.volume_ubo, 0, sizeof(VolumetricFogShader::VolumeUBO), &params, RD::BARRIER_MASK_COMPUTE);
if (fog->fog_uniform_set.is_null() || !RD::get_singleton()->uniform_set_is_valid(fog->fog_uniform_set)) {
Vector<RD::Uniform> uniforms;
{
RD::Uniform u;
#if defined(MACOS_ENABLED) || defined(IOS_ENABLED)
u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
#else
u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
#endif
u.binding = 1;
u.append_id(fog->emissive_map);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
u.binding = 2;
u.append_id(volumetric_fog.volume_ubo);
uniforms.push_back(u);
}
{
RD::Uniform u;
#if defined(MACOS_ENABLED) || defined(IOS_ENABLED)
u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
#else
u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
#endif
u.binding = 3;
u.append_id(fog->density_map);
uniforms.push_back(u);
}
{
RD::Uniform u;
#if defined(MACOS_ENABLED) || defined(IOS_ENABLED)
u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
#else
u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
#endif
u.binding = 4;
u.append_id(fog->light_map);
uniforms.push_back(u);
}
fog->fog_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, volumetric_fog.default_shader_rd, VolumetricFogShader::FogSet::FOG_SET_UNIFORMS);
}
RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
bool any_uses_time = false;
for (int i = 0; i < (int)p_fog_volumes.size(); i++) {
FogVolumeInstance *fog_volume_instance = fog_volume_instance_owner.get_or_null(p_fog_volumes[i]);
ERR_FAIL_COND(!fog_volume_instance);
RID fog_volume = fog_volume_instance->volume;
RID fog_material = RendererRD::Fog::get_singleton()->fog_volume_get_material(fog_volume);
FogMaterialData *material = nullptr;
if (fog_material.is_valid()) {
material = static_cast<FogMaterialData *>(material_storage->material_get_data(fog_material, RendererRD::MaterialStorage::SHADER_TYPE_FOG));
if (!material || !material->shader_data->valid) {
material = nullptr;
}
}
if (!material) {
fog_material = volumetric_fog.default_material;
material = static_cast<FogMaterialData *>(material_storage->material_get_data(fog_material, RendererRD::MaterialStorage::SHADER_TYPE_FOG));
}
ERR_FAIL_COND(!material);
FogShaderData *shader_data = material->shader_data;
ERR_FAIL_COND(!shader_data);
any_uses_time |= shader_data->uses_time;
Vector3i min = Vector3i();
Vector3i max = Vector3i();
Vector3i kernel_size = Vector3i();
Vector3 position = fog_volume_instance->transform.get_origin();
RS::FogVolumeShape volume_type = RendererRD::Fog::get_singleton()->fog_volume_get_shape(fog_volume);
Vector3 extents = RendererRD::Fog::get_singleton()->fog_volume_get_extents(fog_volume);
if (volume_type != RS::FOG_VOLUME_SHAPE_WORLD) {
// Local fog volume.
Vector3i points[8];
Vector3 fog_size = Vector3(fog->width, fog->height, fog->depth);
float volumetric_fog_detail_spread = RendererSceneRenderRD::get_singleton()->environment_get_volumetric_fog_detail_spread(p_settings.env);
points[0] = _point_get_position_in_froxel_volume(fog_volume_instance->transform.xform(Vector3(extents.x, extents.y, extents.z)), fog_end, fog_near_size, fog_far_size, volumetric_fog_detail_spread, fog_size, p_cam_transform);
points[1] = _point_get_position_in_froxel_volume(fog_volume_instance->transform.xform(Vector3(-extents.x, extents.y, extents.z)), fog_end, fog_near_size, fog_far_size, volumetric_fog_detail_spread, fog_size, p_cam_transform);
points[2] = _point_get_position_in_froxel_volume(fog_volume_instance->transform.xform(Vector3(extents.x, -extents.y, extents.z)), fog_end, fog_near_size, fog_far_size, volumetric_fog_detail_spread, fog_size, p_cam_transform);
points[3] = _point_get_position_in_froxel_volume(fog_volume_instance->transform.xform(Vector3(-extents.x, -extents.y, extents.z)), fog_end, fog_near_size, fog_far_size, volumetric_fog_detail_spread, fog_size, p_cam_transform);
points[4] = _point_get_position_in_froxel_volume(fog_volume_instance->transform.xform(Vector3(extents.x, extents.y, -extents.z)), fog_end, fog_near_size, fog_far_size, volumetric_fog_detail_spread, fog_size, p_cam_transform);
points[5] = _point_get_position_in_froxel_volume(fog_volume_instance->transform.xform(Vector3(-extents.x, extents.y, -extents.z)), fog_end, fog_near_size, fog_far_size, volumetric_fog_detail_spread, fog_size, p_cam_transform);
points[6] = _point_get_position_in_froxel_volume(fog_volume_instance->transform.xform(Vector3(extents.x, -extents.y, -extents.z)), fog_end, fog_near_size, fog_far_size, volumetric_fog_detail_spread, fog_size, p_cam_transform);
points[7] = _point_get_position_in_froxel_volume(fog_volume_instance->transform.xform(Vector3(-extents.x, -extents.y, -extents.z)), fog_end, fog_near_size, fog_far_size, volumetric_fog_detail_spread, fog_size, p_cam_transform);
min = Vector3i(int32_t(fog->width) - 1, int32_t(fog->height) - 1, int32_t(fog->depth) - 1);
max = Vector3i(1, 1, 1);
for (int j = 0; j < 8; j++) {
min = Vector3i(MIN(min.x, points[j].x), MIN(min.y, points[j].y), MIN(min.z, points[j].z));
max = Vector3i(MAX(max.x, points[j].x), MAX(max.y, points[j].y), MAX(max.z, points[j].z));
}
kernel_size = max - min;
} else {
// Volume type global runs on all cells
extents = Vector3(fog->width, fog->height, fog->depth);
min = Vector3i(0, 0, 0);
kernel_size = Vector3i(int32_t(fog->width), int32_t(fog->height), int32_t(fog->depth));
}
if (kernel_size.x == 0 || kernel_size.y == 0 || kernel_size.z == 0) {
continue;
}
VolumetricFogShader::FogPushConstant push_constant;
push_constant.position[0] = position.x;
push_constant.position[1] = position.y;
push_constant.position[2] = position.z;
push_constant.extents[0] = extents.x;
push_constant.extents[1] = extents.y;
push_constant.extents[2] = extents.z;
push_constant.corner[0] = min.x;
push_constant.corner[1] = min.y;
push_constant.corner[2] = min.z;
push_constant.shape = uint32_t(RendererRD::Fog::get_singleton()->fog_volume_get_shape(fog_volume));
RendererRD::MaterialStorage::store_transform(fog_volume_instance->transform.affine_inverse(), push_constant.transform);
RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, shader_data->pipeline);
RD::get_singleton()->compute_list_bind_uniform_set(compute_list, fog->fog_uniform_set, VolumetricFogShader::FogSet::FOG_SET_UNIFORMS);
RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(VolumetricFogShader::FogPushConstant));
RD::get_singleton()->compute_list_bind_uniform_set(compute_list, volumetric_fog.base_uniform_set, VolumetricFogShader::FogSet::FOG_SET_BASE);
if (material->uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(material->uniform_set)) { // Material may not have a uniform set.
RD::get_singleton()->compute_list_bind_uniform_set(compute_list, material->uniform_set, VolumetricFogShader::FogSet::FOG_SET_MATERIAL);
}
RD::get_singleton()->compute_list_dispatch_threads(compute_list, kernel_size.x, kernel_size.y, kernel_size.z);
}
if (any_uses_time || RendererSceneRenderRD::get_singleton()->environment_get_volumetric_fog_temporal_reprojection(p_settings.env)) {
RenderingServerDefault::redraw_request();
}
RD::get_singleton()->draw_command_end_label();
RD::get_singleton()->compute_list_end();
}
if (fog->process_uniform_set_density.is_null() || !RD::get_singleton()->uniform_set_is_valid(fog->process_uniform_set_density)) {
//re create uniform set if needed
Vector<RD::Uniform> uniforms;
Vector<RD::Uniform> copy_uniforms;
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
u.binding = 1;
if (p_settings.shadow_atlas_depth.is_null()) {
u.append_id(texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_BLACK));
} else {
u.append_id(p_settings.shadow_atlas_depth);
}
uniforms.push_back(u);
copy_uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
u.binding = 2;
if (p_settings.directional_shadow_depth.is_valid()) {
u.append_id(p_settings.directional_shadow_depth);
} else {
u.append_id(texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_BLACK));
}
uniforms.push_back(u);
copy_uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
u.binding = 3;
u.append_id(p_settings.omni_light_buffer);
uniforms.push_back(u);
copy_uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
u.binding = 4;
u.append_id(p_settings.spot_light_buffer);
uniforms.push_back(u);
copy_uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
u.binding = 5;
u.append_id(p_settings.directional_light_buffer);
uniforms.push_back(u);
copy_uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
u.binding = 6;
u.append_id(p_settings.cluster_builder->get_cluster_buffer());
uniforms.push_back(u);
copy_uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
u.binding = 7;
u.append_id(material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
uniforms.push_back(u);
copy_uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
u.binding = 8;
u.append_id(fog->light_density_map);
uniforms.push_back(u);
copy_uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
u.binding = 9;
u.append_id(fog->fog_map);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
u.binding = 9;
u.append_id(fog->prev_light_density_map);
copy_uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
u.binding = 10;
u.append_id(p_settings.shadow_sampler);
uniforms.push_back(u);
copy_uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
u.binding = 11;
u.append_id(p_settings.voxel_gi_buffer);
uniforms.push_back(u);
copy_uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
u.binding = 12;
for (int i = 0; i < RendererRD::GI::MAX_VOXEL_GI_INSTANCES; i++) {
u.append_id(p_settings.rbgi->voxel_gi_textures[i]);
}
uniforms.push_back(u);
copy_uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
u.binding = 13;
u.append_id(material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
uniforms.push_back(u);
copy_uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
u.binding = 14;
u.append_id(volumetric_fog.params_ubo);
uniforms.push_back(u);
copy_uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
u.binding = 15;
u.append_id(fog->prev_light_density_map);
uniforms.push_back(u);
}
{
RD::Uniform u;
#if defined(MACOS_ENABLED) || defined(IOS_ENABLED)
u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
#else
u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
#endif
u.binding = 16;
u.append_id(fog->density_map);
uniforms.push_back(u);
}
{
RD::Uniform u;
#if defined(MACOS_ENABLED) || defined(IOS_ENABLED)
u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
#else
u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
#endif
u.binding = 17;
u.append_id(fog->light_map);
uniforms.push_back(u);
}
{
RD::Uniform u;
#if defined(MACOS_ENABLED) || defined(IOS_ENABLED)
u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
#else
u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
#endif
u.binding = 18;
u.append_id(fog->emissive_map);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
u.binding = 19;
RID radiance_texture = texture_storage->texture_rd_get_default(p_settings.is_using_radiance_cubemap_array ? RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_CUBEMAP_ARRAY_BLACK : RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_CUBEMAP_BLACK);
RID sky_texture = RendererSceneRenderRD::get_singleton()->environment_get_sky(p_settings.env).is_valid() ? p_settings.sky->sky_get_radiance_texture_rd(RendererSceneRenderRD::get_singleton()->environment_get_sky(p_settings.env)) : RID();
u.append_id(sky_texture.is_valid() ? sky_texture : radiance_texture);
uniforms.push_back(u);
}
fog->copy_uniform_set = RD::get_singleton()->uniform_set_create(copy_uniforms, volumetric_fog.process_shader.version_get_shader(volumetric_fog.process_shader_version, VolumetricFogShader::VOLUMETRIC_FOG_PROCESS_SHADER_COPY), 0);
fog->process_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, volumetric_fog.process_shader.version_get_shader(volumetric_fog.process_shader_version, VolumetricFogShader::VOLUMETRIC_FOG_PROCESS_SHADER_FOG), 0);
RID aux7 = uniforms.write[7].get_id(0);
RID aux8 = uniforms.write[8].get_id(0);
uniforms.write[7].set_id(0, aux8);
uniforms.write[8].set_id(0, aux7);
fog->process_uniform_set2 = RD::get_singleton()->uniform_set_create(uniforms, volumetric_fog.process_shader.version_get_shader(volumetric_fog.process_shader_version, VolumetricFogShader::VOLUMETRIC_FOG_PROCESS_SHADER_FOG), 0);
uniforms.remove_at(8);
uniforms.write[7].set_id(0, aux7);
fog->process_uniform_set_density = RD::get_singleton()->uniform_set_create(uniforms, volumetric_fog.process_shader.version_get_shader(volumetric_fog.process_shader_version, VolumetricFogShader::VOLUMETRIC_FOG_PROCESS_SHADER_DENSITY), 0);
}
bool using_sdfgi = RendererSceneRenderRD::get_singleton()->environment_get_volumetric_fog_gi_inject(p_settings.env) > 0.0001 && RendererSceneRenderRD::get_singleton()->environment_get_sdfgi_enabled(p_settings.env) && (p_settings.sdfgi.is_valid());
if (using_sdfgi) {
if (fog->sdfgi_uniform_set.is_null() || !RD::get_singleton()->uniform_set_is_valid(fog->sdfgi_uniform_set)) {
Vector<RD::Uniform> uniforms;
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
u.binding = 0;
u.append_id(p_settings.gi->sdfgi_ubo);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
u.binding = 1;
u.append_id(p_settings.sdfgi->ambient_texture);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
u.binding = 2;
u.append_id(p_settings.sdfgi->occlusion_texture);
uniforms.push_back(u);
}
fog->sdfgi_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, volumetric_fog.process_shader.version_get_shader(volumetric_fog.process_shader_version, VolumetricFogShader::VOLUMETRIC_FOG_PROCESS_SHADER_DENSITY_WITH_SDFGI), 1);
}
}
fog->length = RendererSceneRenderRD::get_singleton()->environment_get_volumetric_fog_length(p_settings.env);
fog->spread = RendererSceneRenderRD::get_singleton()->environment_get_volumetric_fog_detail_spread(p_settings.env);
VolumetricFogShader::ParamsUBO params;
Vector2 frustum_near_size = p_cam_projection.get_viewport_half_extents();
Vector2 frustum_far_size = p_cam_projection.get_far_plane_half_extents();
float z_near = p_cam_projection.get_z_near();
float z_far = p_cam_projection.get_z_far();
float fog_end = RendererSceneRenderRD::get_singleton()->environment_get_volumetric_fog_length(p_settings.env);
Vector2 fog_far_size = frustum_near_size.lerp(frustum_far_size, (fog_end - z_near) / (z_far - z_near));
Vector2 fog_near_size;
if (p_cam_projection.is_orthogonal()) {
fog_near_size = fog_far_size;
} else {
fog_near_size = Vector2();
}
params.fog_frustum_size_begin[0] = fog_near_size.x;
params.fog_frustum_size_begin[1] = fog_near_size.y;
params.fog_frustum_size_end[0] = fog_far_size.x;
params.fog_frustum_size_end[1] = fog_far_size.y;
params.ambient_inject = RendererSceneRenderRD::get_singleton()->environment_get_volumetric_fog_ambient_inject(p_settings.env) * RendererSceneRenderRD::get_singleton()->environment_get_ambient_light_energy(p_settings.env);
params.z_far = z_far;
params.fog_frustum_end = fog_end;
Color ambient_color = RendererSceneRenderRD::get_singleton()->environment_get_ambient_light(p_settings.env).srgb_to_linear();
params.ambient_color[0] = ambient_color.r;
params.ambient_color[1] = ambient_color.g;
params.ambient_color[2] = ambient_color.b;
params.sky_contribution = RendererSceneRenderRD::get_singleton()->environment_get_ambient_sky_contribution(p_settings.env);
params.fog_volume_size[0] = fog->width;
params.fog_volume_size[1] = fog->height;
params.fog_volume_size[2] = fog->depth;
params.directional_light_count = p_directional_light_count;
Color emission = RendererSceneRenderRD::get_singleton()->environment_get_volumetric_fog_emission(p_settings.env).srgb_to_linear();
params.base_emission[0] = emission.r * RendererSceneRenderRD::get_singleton()->environment_get_volumetric_fog_emission_energy(p_settings.env);
params.base_emission[1] = emission.g * RendererSceneRenderRD::get_singleton()->environment_get_volumetric_fog_emission_energy(p_settings.env);
params.base_emission[2] = emission.b * RendererSceneRenderRD::get_singleton()->environment_get_volumetric_fog_emission_energy(p_settings.env);
params.base_density = RendererSceneRenderRD::get_singleton()->environment_get_volumetric_fog_density(p_settings.env);
Color base_scattering = RendererSceneRenderRD::get_singleton()->environment_get_volumetric_fog_scattering(p_settings.env).srgb_to_linear();
params.base_scattering[0] = base_scattering.r;
params.base_scattering[1] = base_scattering.g;
params.base_scattering[2] = base_scattering.b;
params.phase_g = RendererSceneRenderRD::get_singleton()->environment_get_volumetric_fog_anisotropy(p_settings.env);
params.detail_spread = RendererSceneRenderRD::get_singleton()->environment_get_volumetric_fog_detail_spread(p_settings.env);
params.gi_inject = RendererSceneRenderRD::get_singleton()->environment_get_volumetric_fog_gi_inject(p_settings.env);
params.cam_rotation[0] = p_cam_transform.basis[0][0];
params.cam_rotation[1] = p_cam_transform.basis[1][0];
params.cam_rotation[2] = p_cam_transform.basis[2][0];
params.cam_rotation[3] = 0;
params.cam_rotation[4] = p_cam_transform.basis[0][1];
params.cam_rotation[5] = p_cam_transform.basis[1][1];
params.cam_rotation[6] = p_cam_transform.basis[2][1];
params.cam_rotation[7] = 0;
params.cam_rotation[8] = p_cam_transform.basis[0][2];
params.cam_rotation[9] = p_cam_transform.basis[1][2];
params.cam_rotation[10] = p_cam_transform.basis[2][2];
params.cam_rotation[11] = 0;
params.filter_axis = 0;
params.max_voxel_gi_instances = RendererSceneRenderRD::get_singleton()->environment_get_volumetric_fog_gi_inject(p_settings.env) > 0.001 ? p_voxel_gi_count : 0;
params.temporal_frame = RSG::rasterizer->get_frame_number() % VolumetricFog::MAX_TEMPORAL_FRAMES;
Transform3D to_prev_cam_view = p_prev_cam_inv_transform * p_cam_transform;
RendererRD::MaterialStorage::store_transform(to_prev_cam_view, params.to_prev_view);
params.use_temporal_reprojection = RendererSceneRenderRD::get_singleton()->environment_get_volumetric_fog_temporal_reprojection(p_settings.env);
params.temporal_blend = RendererSceneRenderRD::get_singleton()->environment_get_volumetric_fog_temporal_reprojection_amount(p_settings.env);
{
uint32_t cluster_size = p_settings.cluster_builder->get_cluster_size();
params.cluster_shift = get_shift_from_power_of_2(cluster_size);
uint32_t cluster_screen_width = (p_settings.rb_size.x - 1) / cluster_size + 1;
uint32_t cluster_screen_height = (p_settings.rb_size.y - 1) / cluster_size + 1;
params.max_cluster_element_count_div_32 = p_settings.max_cluster_elements / 32;
params.cluster_type_size = cluster_screen_width * cluster_screen_height * (params.max_cluster_element_count_div_32 + 32);
params.cluster_width = cluster_screen_width;
params.screen_size[0] = p_settings.rb_size.x;
params.screen_size[1] = p_settings.rb_size.y;
}
Basis sky_transform = RendererSceneRenderRD::get_singleton()->environment_get_sky_orientation(p_settings.env);
sky_transform = sky_transform.inverse() * p_cam_transform.basis;
RendererRD::MaterialStorage::store_transform_3x3(sky_transform, params.radiance_inverse_xform);
RD::get_singleton()->draw_command_begin_label("Render Volumetric Fog");
RENDER_TIMESTAMP("Render Fog");
RD::get_singleton()->buffer_update(volumetric_fog.params_ubo, 0, sizeof(VolumetricFogShader::ParamsUBO), &params, RD::BARRIER_MASK_COMPUTE);
RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, volumetric_fog.process_pipelines[using_sdfgi ? VolumetricFogShader::VOLUMETRIC_FOG_PROCESS_SHADER_DENSITY_WITH_SDFGI : VolumetricFogShader::VOLUMETRIC_FOG_PROCESS_SHADER_DENSITY]);
RD::get_singleton()->compute_list_bind_uniform_set(compute_list, fog->process_uniform_set_density, 0);
if (using_sdfgi) {
RD::get_singleton()->compute_list_bind_uniform_set(compute_list, fog->sdfgi_uniform_set, 1);
}
RD::get_singleton()->compute_list_dispatch_threads(compute_list, fog->width, fog->height, fog->depth);
RD::get_singleton()->compute_list_add_barrier(compute_list);
// Copy fog to history buffer
if (RendererSceneRenderRD::get_singleton()->environment_get_volumetric_fog_temporal_reprojection(p_settings.env)) {
RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, volumetric_fog.process_pipelines[VolumetricFogShader::VOLUMETRIC_FOG_PROCESS_SHADER_COPY]);
RD::get_singleton()->compute_list_bind_uniform_set(compute_list, fog->copy_uniform_set, 0);
RD::get_singleton()->compute_list_dispatch_threads(compute_list, fog->width, fog->height, fog->depth);
RD::get_singleton()->compute_list_add_barrier(compute_list);
}
RD::get_singleton()->draw_command_end_label();
if (p_settings.volumetric_fog_filter_active) {
RD::get_singleton()->draw_command_begin_label("Filter Fog");
RENDER_TIMESTAMP("Filter Fog");
RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, volumetric_fog.process_pipelines[VolumetricFogShader::VOLUMETRIC_FOG_PROCESS_SHADER_FILTER]);
RD::get_singleton()->compute_list_bind_uniform_set(compute_list, fog->process_uniform_set, 0);
RD::get_singleton()->compute_list_dispatch_threads(compute_list, fog->width, fog->height, fog->depth);
RD::get_singleton()->compute_list_end();
//need restart for buffer update
params.filter_axis = 1;
RD::get_singleton()->buffer_update(volumetric_fog.params_ubo, 0, sizeof(VolumetricFogShader::ParamsUBO), &params);
compute_list = RD::get_singleton()->compute_list_begin();
RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, volumetric_fog.process_pipelines[VolumetricFogShader::VOLUMETRIC_FOG_PROCESS_SHADER_FILTER]);
RD::get_singleton()->compute_list_bind_uniform_set(compute_list, fog->process_uniform_set2, 0);
RD::get_singleton()->compute_list_dispatch_threads(compute_list, fog->width, fog->height, fog->depth);
RD::get_singleton()->compute_list_add_barrier(compute_list);
RD::get_singleton()->draw_command_end_label();
}
RENDER_TIMESTAMP("Integrate Fog");
RD::get_singleton()->draw_command_begin_label("Integrate Fog");
RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, volumetric_fog.process_pipelines[VolumetricFogShader::VOLUMETRIC_FOG_PROCESS_SHADER_FOG]);
RD::get_singleton()->compute_list_bind_uniform_set(compute_list, fog->process_uniform_set, 0);
RD::get_singleton()->compute_list_dispatch_threads(compute_list, fog->width, fog->height, 1);
RD::get_singleton()->compute_list_end(RD::BARRIER_MASK_RASTER);
RENDER_TIMESTAMP("< Volumetric Fog");
RD::get_singleton()->draw_command_end_label();
RD::get_singleton()->draw_command_end_label();
}