1426cd3b3a
As many open source projects have started doing it, we're removing the current year from the copyright notice, so that we don't need to bump it every year. It seems like only the first year of publication is technically relevant for copyright notices, and even that seems to be something that many companies stopped listing altogether (in a version controlled codebase, the commits are a much better source of date of publication than a hardcoded copyright statement). We also now list Godot Engine contributors first as we're collectively the current maintainers of the project, and we clarify that the "exclusive" copyright of the co-founders covers the timespan before opensourcing (their further contributions are included as part of Godot Engine contributors). Also fixed "cf." Frenchism - it's meant as "refer to / see". Backported from #70885.
1474 lines
59 KiB
C++
1474 lines
59 KiB
C++
/**************************************************************************/
|
|
/* space_bullet.cpp */
|
|
/**************************************************************************/
|
|
/* This file is part of: */
|
|
/* GODOT ENGINE */
|
|
/* https://godotengine.org */
|
|
/**************************************************************************/
|
|
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
|
|
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/**************************************************************************/
|
|
|
|
#include "space_bullet.h"
|
|
|
|
#include "bullet_physics_server.h"
|
|
#include "bullet_types_converter.h"
|
|
#include "bullet_utilities.h"
|
|
#include "constraint_bullet.h"
|
|
#include "core/project_settings.h"
|
|
#include "core/ustring.h"
|
|
#include "godot_collision_configuration.h"
|
|
#include "godot_collision_dispatcher.h"
|
|
#include "rigid_body_bullet.h"
|
|
#include "servers/physics_server.h"
|
|
#include "soft_body_bullet.h"
|
|
|
|
#include <BulletCollision/BroadphaseCollision/btBroadphaseProxy.h>
|
|
#include <BulletCollision/CollisionDispatch/btCollisionObject.h>
|
|
#include <BulletCollision/CollisionDispatch/btGhostObject.h>
|
|
#include <BulletCollision/NarrowPhaseCollision/btGjkEpaPenetrationDepthSolver.h>
|
|
#include <BulletCollision/NarrowPhaseCollision/btGjkPairDetector.h>
|
|
#include <BulletCollision/NarrowPhaseCollision/btPointCollector.h>
|
|
#include <BulletSoftBody/btSoftBodyRigidBodyCollisionConfiguration.h>
|
|
#include <BulletSoftBody/btSoftRigidDynamicsWorld.h>
|
|
#include <btBulletDynamicsCommon.h>
|
|
|
|
#include <assert.h>
|
|
|
|
/**
|
|
@author AndreaCatania
|
|
*/
|
|
|
|
BulletPhysicsDirectSpaceState::BulletPhysicsDirectSpaceState(SpaceBullet *p_space) :
|
|
PhysicsDirectSpaceState(),
|
|
space(p_space) {}
|
|
|
|
int BulletPhysicsDirectSpaceState::intersect_point(const Vector3 &p_point, ShapeResult *r_results, int p_result_max, const Set<RID> &p_exclude, uint32_t p_collision_mask, bool p_collide_with_bodies, bool p_collide_with_areas) {
|
|
if (p_result_max <= 0) {
|
|
return 0;
|
|
}
|
|
|
|
btVector3 bt_point;
|
|
G_TO_B(p_point, bt_point);
|
|
|
|
btSphereShape sphere_point(0.001f);
|
|
btCollisionObject collision_object_point;
|
|
collision_object_point.setCollisionShape(&sphere_point);
|
|
collision_object_point.setWorldTransform(btTransform(btQuaternion::getIdentity(), bt_point));
|
|
|
|
// Setup query
|
|
GodotAllContactResultCallback btResult(&collision_object_point, r_results, p_result_max, &p_exclude, p_collide_with_bodies, p_collide_with_areas);
|
|
btResult.m_collisionFilterGroup = 0;
|
|
btResult.m_collisionFilterMask = p_collision_mask;
|
|
space->dynamicsWorld->contactTest(&collision_object_point, btResult);
|
|
|
|
// The results is already populated by GodotAllConvexResultCallback
|
|
return btResult.m_count;
|
|
}
|
|
|
|
bool BulletPhysicsDirectSpaceState::intersect_ray(const Vector3 &p_from, const Vector3 &p_to, RayResult &r_result, const Set<RID> &p_exclude, uint32_t p_collision_mask, bool p_collide_with_bodies, bool p_collide_with_areas, bool p_pick_ray) {
|
|
btVector3 btVec_from;
|
|
btVector3 btVec_to;
|
|
|
|
G_TO_B(p_from, btVec_from);
|
|
G_TO_B(p_to, btVec_to);
|
|
|
|
// setup query
|
|
GodotClosestRayResultCallback btResult(btVec_from, btVec_to, &p_exclude, p_collide_with_bodies, p_collide_with_areas);
|
|
btResult.m_collisionFilterGroup = 0;
|
|
btResult.m_collisionFilterMask = p_collision_mask;
|
|
btResult.m_pickRay = p_pick_ray;
|
|
|
|
space->dynamicsWorld->rayTest(btVec_from, btVec_to, btResult);
|
|
if (btResult.hasHit()) {
|
|
B_TO_G(btResult.m_hitPointWorld, r_result.position);
|
|
B_TO_G(btResult.m_hitNormalWorld.normalize(), r_result.normal);
|
|
CollisionObjectBullet *gObj = static_cast<CollisionObjectBullet *>(btResult.m_collisionObject->getUserPointer());
|
|
if (gObj) {
|
|
r_result.shape = btResult.m_shapeId;
|
|
r_result.rid = gObj->get_self();
|
|
r_result.collider_id = gObj->get_instance_id();
|
|
r_result.collider = 0 == r_result.collider_id ? nullptr : ObjectDB::get_instance(r_result.collider_id);
|
|
} else {
|
|
WARN_PRINT("The raycast performed has hit a collision object that is not part of Godot scene, please check it.");
|
|
}
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
int BulletPhysicsDirectSpaceState::intersect_shape(const RID &p_shape, const Transform &p_xform, float p_margin, ShapeResult *r_results, int p_result_max, const Set<RID> &p_exclude, uint32_t p_collision_mask, bool p_collide_with_bodies, bool p_collide_with_areas) {
|
|
if (p_result_max <= 0) {
|
|
return 0;
|
|
}
|
|
|
|
ShapeBullet *shape = space->get_physics_server()->get_shape_owner()->get(p_shape);
|
|
ERR_FAIL_COND_V(!shape, 0);
|
|
|
|
btCollisionShape *btShape = shape->create_bt_shape(p_xform.basis.get_scale_abs(), p_margin);
|
|
if (!btShape->isConvex()) {
|
|
bulletdelete(btShape);
|
|
ERR_PRINT("The shape is not a convex shape, then is not supported: shape type: " + itos(shape->get_type()));
|
|
return 0;
|
|
}
|
|
btConvexShape *btConvex = static_cast<btConvexShape *>(btShape);
|
|
|
|
btTransform bt_xform;
|
|
G_TO_B(p_xform, bt_xform);
|
|
UNSCALE_BT_BASIS(bt_xform);
|
|
|
|
btCollisionObject collision_object;
|
|
collision_object.setCollisionShape(btConvex);
|
|
collision_object.setWorldTransform(bt_xform);
|
|
|
|
GodotAllContactResultCallback btQuery(&collision_object, r_results, p_result_max, &p_exclude, p_collide_with_bodies, p_collide_with_areas);
|
|
btQuery.m_collisionFilterGroup = 0;
|
|
btQuery.m_collisionFilterMask = p_collision_mask;
|
|
btQuery.m_closestDistanceThreshold = 0;
|
|
space->dynamicsWorld->contactTest(&collision_object, btQuery);
|
|
|
|
bulletdelete(btConvex);
|
|
|
|
return btQuery.m_count;
|
|
}
|
|
|
|
bool BulletPhysicsDirectSpaceState::cast_motion(const RID &p_shape, const Transform &p_xform, const Vector3 &p_motion, float p_margin, float &r_closest_safe, float &r_closest_unsafe, const Set<RID> &p_exclude, uint32_t p_collision_mask, bool p_collide_with_bodies, bool p_collide_with_areas, ShapeRestInfo *r_info) {
|
|
r_closest_safe = 0.0f;
|
|
r_closest_unsafe = 0.0f;
|
|
|
|
btVector3 bt_motion;
|
|
G_TO_B(p_motion, bt_motion);
|
|
|
|
ShapeBullet *shape = space->get_physics_server()->get_shape_owner()->get(p_shape);
|
|
ERR_FAIL_COND_V(!shape, false);
|
|
|
|
btCollisionShape *btShape = shape->create_bt_shape(p_xform.basis.get_scale(), p_margin);
|
|
if (!btShape->isConvex()) {
|
|
bulletdelete(btShape);
|
|
ERR_PRINT("The shape is not a convex shape, then is not supported: shape type: " + itos(shape->get_type()));
|
|
return false;
|
|
}
|
|
btConvexShape *bt_convex_shape = static_cast<btConvexShape *>(btShape);
|
|
|
|
btTransform bt_xform_from;
|
|
G_TO_B(p_xform, bt_xform_from);
|
|
UNSCALE_BT_BASIS(bt_xform_from);
|
|
|
|
btTransform bt_xform_to(bt_xform_from);
|
|
bt_xform_to.getOrigin() += bt_motion;
|
|
|
|
if ((bt_xform_to.getOrigin() - bt_xform_from.getOrigin()).fuzzyZero()) {
|
|
r_closest_safe = 1.0f;
|
|
r_closest_unsafe = 1.0f;
|
|
bulletdelete(btShape);
|
|
return true;
|
|
}
|
|
|
|
GodotClosestConvexResultCallback btResult(bt_xform_from.getOrigin(), bt_xform_to.getOrigin(), &p_exclude, p_collide_with_bodies, p_collide_with_areas);
|
|
btResult.m_collisionFilterGroup = 0;
|
|
btResult.m_collisionFilterMask = p_collision_mask;
|
|
|
|
space->dynamicsWorld->convexSweepTest(bt_convex_shape, bt_xform_from, bt_xform_to, btResult, space->dynamicsWorld->getDispatchInfo().m_allowedCcdPenetration);
|
|
|
|
if (btResult.hasHit()) {
|
|
const btScalar l = bt_motion.length();
|
|
r_closest_unsafe = btResult.m_closestHitFraction;
|
|
r_closest_safe = MAX(r_closest_unsafe - (1 - ((l - 0.01) / l)), 0);
|
|
if (r_info) {
|
|
if (btCollisionObject::CO_RIGID_BODY == btResult.m_hitCollisionObject->getInternalType()) {
|
|
B_TO_G(static_cast<const btRigidBody *>(btResult.m_hitCollisionObject)->getVelocityInLocalPoint(btResult.m_hitPointWorld), r_info->linear_velocity);
|
|
}
|
|
CollisionObjectBullet *collision_object = static_cast<CollisionObjectBullet *>(btResult.m_hitCollisionObject->getUserPointer());
|
|
B_TO_G(btResult.m_hitPointWorld, r_info->point);
|
|
B_TO_G(btResult.m_hitNormalWorld, r_info->normal);
|
|
r_info->rid = collision_object->get_self();
|
|
r_info->collider_id = collision_object->get_instance_id();
|
|
r_info->shape = btResult.m_shapeId;
|
|
}
|
|
} else {
|
|
r_closest_safe = 1.0f;
|
|
r_closest_unsafe = 1.0f;
|
|
}
|
|
|
|
bulletdelete(bt_convex_shape);
|
|
return true; // Mean success
|
|
}
|
|
|
|
/// Returns the list of contacts pairs in this order: Local contact, other body contact
|
|
bool BulletPhysicsDirectSpaceState::collide_shape(RID p_shape, const Transform &p_shape_xform, float p_margin, Vector3 *r_results, int p_result_max, int &r_result_count, const Set<RID> &p_exclude, uint32_t p_collision_mask, bool p_collide_with_bodies, bool p_collide_with_areas) {
|
|
if (p_result_max <= 0) {
|
|
return false;
|
|
}
|
|
|
|
ShapeBullet *shape = space->get_physics_server()->get_shape_owner()->get(p_shape);
|
|
ERR_FAIL_COND_V(!shape, false);
|
|
|
|
btCollisionShape *btShape = shape->create_bt_shape(p_shape_xform.basis.get_scale_abs(), p_margin);
|
|
if (!btShape->isConvex()) {
|
|
bulletdelete(btShape);
|
|
ERR_PRINT("The shape is not a convex shape, then is not supported: shape type: " + itos(shape->get_type()));
|
|
return false;
|
|
}
|
|
btConvexShape *btConvex = static_cast<btConvexShape *>(btShape);
|
|
|
|
btTransform bt_xform;
|
|
G_TO_B(p_shape_xform, bt_xform);
|
|
UNSCALE_BT_BASIS(bt_xform);
|
|
|
|
btCollisionObject collision_object;
|
|
collision_object.setCollisionShape(btConvex);
|
|
collision_object.setWorldTransform(bt_xform);
|
|
|
|
GodotContactPairContactResultCallback btQuery(&collision_object, r_results, p_result_max, &p_exclude, p_collide_with_bodies, p_collide_with_areas);
|
|
btQuery.m_collisionFilterGroup = 0;
|
|
btQuery.m_collisionFilterMask = p_collision_mask;
|
|
btQuery.m_closestDistanceThreshold = 0;
|
|
space->dynamicsWorld->contactTest(&collision_object, btQuery);
|
|
|
|
r_result_count = btQuery.m_count;
|
|
bulletdelete(btConvex);
|
|
|
|
return btQuery.m_count;
|
|
}
|
|
|
|
bool BulletPhysicsDirectSpaceState::rest_info(RID p_shape, const Transform &p_shape_xform, float p_margin, ShapeRestInfo *r_info, const Set<RID> &p_exclude, uint32_t p_collision_mask, bool p_collide_with_bodies, bool p_collide_with_areas) {
|
|
ShapeBullet *shape = space->get_physics_server()->get_shape_owner()->get(p_shape);
|
|
ERR_FAIL_COND_V(!shape, false);
|
|
|
|
btCollisionShape *btShape = shape->create_bt_shape(p_shape_xform.basis.get_scale_abs(), p_margin);
|
|
if (!btShape->isConvex()) {
|
|
bulletdelete(btShape);
|
|
ERR_PRINT("The shape is not a convex shape, then is not supported: shape type: " + itos(shape->get_type()));
|
|
return false;
|
|
}
|
|
btConvexShape *btConvex = static_cast<btConvexShape *>(btShape);
|
|
|
|
btTransform bt_xform;
|
|
G_TO_B(p_shape_xform, bt_xform);
|
|
UNSCALE_BT_BASIS(bt_xform);
|
|
|
|
btCollisionObject collision_object;
|
|
collision_object.setCollisionShape(btConvex);
|
|
collision_object.setWorldTransform(bt_xform);
|
|
|
|
GodotRestInfoContactResultCallback btQuery(&collision_object, r_info, &p_exclude, p_collide_with_bodies, p_collide_with_areas);
|
|
btQuery.m_collisionFilterGroup = 0;
|
|
btQuery.m_collisionFilterMask = p_collision_mask;
|
|
btQuery.m_closestDistanceThreshold = 0;
|
|
space->dynamicsWorld->contactTest(&collision_object, btQuery);
|
|
|
|
bulletdelete(btConvex);
|
|
|
|
if (btQuery.m_collided) {
|
|
if (btCollisionObject::CO_RIGID_BODY == btQuery.m_rest_info_collision_object->getInternalType()) {
|
|
B_TO_G(static_cast<const btRigidBody *>(btQuery.m_rest_info_collision_object)->getVelocityInLocalPoint(btQuery.m_rest_info_bt_point), r_info->linear_velocity);
|
|
}
|
|
B_TO_G(btQuery.m_rest_info_bt_point, r_info->point);
|
|
}
|
|
|
|
return btQuery.m_collided;
|
|
}
|
|
|
|
Vector3 BulletPhysicsDirectSpaceState::get_closest_point_to_object_volume(RID p_object, const Vector3 p_point) const {
|
|
RigidCollisionObjectBullet *rigid_object = space->get_physics_server()->get_rigid_collision_object(p_object);
|
|
ERR_FAIL_COND_V(!rigid_object, Vector3());
|
|
|
|
btVector3 out_closest_point(0, 0, 0);
|
|
btScalar out_distance = 1e20;
|
|
|
|
btVector3 bt_point;
|
|
G_TO_B(p_point, bt_point);
|
|
|
|
btSphereShape point_shape(0.);
|
|
|
|
btCollisionShape *shape;
|
|
btConvexShape *convex_shape;
|
|
btTransform child_transform;
|
|
btTransform body_transform(rigid_object->get_bt_collision_object()->getWorldTransform());
|
|
|
|
btGjkPairDetector::ClosestPointInput input;
|
|
input.m_transformA.getBasis().setIdentity();
|
|
input.m_transformA.setOrigin(bt_point);
|
|
|
|
bool shapes_found = false;
|
|
|
|
for (int i = rigid_object->get_shape_count() - 1; 0 <= i; --i) {
|
|
shape = rigid_object->get_bt_shape(i);
|
|
if (shape->isConvex()) {
|
|
child_transform = rigid_object->get_bt_shape_transform(i);
|
|
convex_shape = static_cast<btConvexShape *>(shape);
|
|
|
|
input.m_transformB = body_transform * child_transform;
|
|
|
|
btPointCollector result;
|
|
btGjkPairDetector gjk_pair_detector(&point_shape, convex_shape, space->gjk_simplex_solver, space->gjk_epa_pen_solver);
|
|
gjk_pair_detector.getClosestPoints(input, result, nullptr);
|
|
|
|
if (out_distance > result.m_distance) {
|
|
out_distance = result.m_distance;
|
|
out_closest_point = result.m_pointInWorld;
|
|
}
|
|
}
|
|
shapes_found = true;
|
|
}
|
|
|
|
if (shapes_found) {
|
|
Vector3 out;
|
|
B_TO_G(out_closest_point, out);
|
|
return out;
|
|
} else {
|
|
// no shapes found, use distance to origin.
|
|
return rigid_object->get_transform().get_origin();
|
|
}
|
|
}
|
|
|
|
SpaceBullet::SpaceBullet() :
|
|
broadphase(nullptr),
|
|
collisionConfiguration(nullptr),
|
|
dispatcher(nullptr),
|
|
solver(nullptr),
|
|
dynamicsWorld(nullptr),
|
|
soft_body_world_info(nullptr),
|
|
ghostPairCallback(nullptr),
|
|
godotFilterCallback(nullptr),
|
|
gravityDirection(0, -1, 0),
|
|
gravityMagnitude(10),
|
|
linear_damp(0.0),
|
|
angular_damp(0.0),
|
|
contactDebugCount(0),
|
|
delta_time(0.) {
|
|
create_empty_world(GLOBAL_DEF("physics/3d/active_soft_world", true));
|
|
direct_access = memnew(BulletPhysicsDirectSpaceState(this));
|
|
}
|
|
|
|
SpaceBullet::~SpaceBullet() {
|
|
memdelete(direct_access);
|
|
destroy_world();
|
|
}
|
|
|
|
void SpaceBullet::flush_queries() {
|
|
const btCollisionObjectArray &colObjArray = dynamicsWorld->getCollisionObjectArray();
|
|
for (int i = colObjArray.size() - 1; 0 <= i; --i) {
|
|
static_cast<CollisionObjectBullet *>(colObjArray[i]->getUserPointer())->dispatch_callbacks();
|
|
}
|
|
}
|
|
|
|
void SpaceBullet::step(real_t p_delta_time) {
|
|
delta_time = p_delta_time;
|
|
dynamicsWorld->stepSimulation(p_delta_time, 0, 0);
|
|
}
|
|
|
|
void SpaceBullet::set_param(PhysicsServer::AreaParameter p_param, const Variant &p_value) {
|
|
assert(dynamicsWorld);
|
|
|
|
switch (p_param) {
|
|
case PhysicsServer::AREA_PARAM_GRAVITY:
|
|
gravityMagnitude = p_value;
|
|
update_gravity();
|
|
break;
|
|
case PhysicsServer::AREA_PARAM_GRAVITY_VECTOR:
|
|
gravityDirection = p_value;
|
|
update_gravity();
|
|
break;
|
|
case PhysicsServer::AREA_PARAM_LINEAR_DAMP:
|
|
linear_damp = p_value;
|
|
break;
|
|
case PhysicsServer::AREA_PARAM_ANGULAR_DAMP:
|
|
angular_damp = p_value;
|
|
break;
|
|
case PhysicsServer::AREA_PARAM_PRIORITY:
|
|
// Priority is always 0, the lower
|
|
break;
|
|
case PhysicsServer::AREA_PARAM_GRAVITY_IS_POINT:
|
|
case PhysicsServer::AREA_PARAM_GRAVITY_DISTANCE_SCALE:
|
|
case PhysicsServer::AREA_PARAM_GRAVITY_POINT_ATTENUATION:
|
|
break;
|
|
default:
|
|
WARN_PRINT("This set parameter (" + itos(p_param) + ") is ignored, the SpaceBullet doesn't support it.");
|
|
break;
|
|
}
|
|
}
|
|
|
|
Variant SpaceBullet::get_param(PhysicsServer::AreaParameter p_param) {
|
|
switch (p_param) {
|
|
case PhysicsServer::AREA_PARAM_GRAVITY:
|
|
return gravityMagnitude;
|
|
case PhysicsServer::AREA_PARAM_GRAVITY_VECTOR:
|
|
return gravityDirection;
|
|
case PhysicsServer::AREA_PARAM_LINEAR_DAMP:
|
|
return linear_damp;
|
|
case PhysicsServer::AREA_PARAM_ANGULAR_DAMP:
|
|
return angular_damp;
|
|
case PhysicsServer::AREA_PARAM_PRIORITY:
|
|
return 0; // Priority is always 0, the lower
|
|
case PhysicsServer::AREA_PARAM_GRAVITY_IS_POINT:
|
|
return false;
|
|
case PhysicsServer::AREA_PARAM_GRAVITY_DISTANCE_SCALE:
|
|
return 0;
|
|
case PhysicsServer::AREA_PARAM_GRAVITY_POINT_ATTENUATION:
|
|
return 0;
|
|
default:
|
|
WARN_PRINT("This get parameter (" + itos(p_param) + ") is ignored, the SpaceBullet doesn't support it.");
|
|
return Variant();
|
|
}
|
|
}
|
|
|
|
void SpaceBullet::set_param(PhysicsServer::SpaceParameter p_param, real_t p_value) {
|
|
switch (p_param) {
|
|
case PhysicsServer::SPACE_PARAM_CONTACT_RECYCLE_RADIUS:
|
|
case PhysicsServer::SPACE_PARAM_CONTACT_MAX_SEPARATION:
|
|
case PhysicsServer::SPACE_PARAM_BODY_MAX_ALLOWED_PENETRATION:
|
|
case PhysicsServer::SPACE_PARAM_BODY_LINEAR_VELOCITY_SLEEP_THRESHOLD:
|
|
case PhysicsServer::SPACE_PARAM_BODY_ANGULAR_VELOCITY_SLEEP_THRESHOLD:
|
|
case PhysicsServer::SPACE_PARAM_BODY_TIME_TO_SLEEP:
|
|
case PhysicsServer::SPACE_PARAM_BODY_ANGULAR_VELOCITY_DAMP_RATIO:
|
|
case PhysicsServer::SPACE_PARAM_CONSTRAINT_DEFAULT_BIAS:
|
|
default:
|
|
WARN_PRINT("This set parameter (" + itos(p_param) + ") is ignored, the SpaceBullet doesn't support it.");
|
|
break;
|
|
}
|
|
}
|
|
|
|
real_t SpaceBullet::get_param(PhysicsServer::SpaceParameter p_param) {
|
|
switch (p_param) {
|
|
case PhysicsServer::SPACE_PARAM_CONTACT_RECYCLE_RADIUS:
|
|
case PhysicsServer::SPACE_PARAM_CONTACT_MAX_SEPARATION:
|
|
case PhysicsServer::SPACE_PARAM_BODY_MAX_ALLOWED_PENETRATION:
|
|
case PhysicsServer::SPACE_PARAM_BODY_LINEAR_VELOCITY_SLEEP_THRESHOLD:
|
|
case PhysicsServer::SPACE_PARAM_BODY_ANGULAR_VELOCITY_SLEEP_THRESHOLD:
|
|
case PhysicsServer::SPACE_PARAM_BODY_TIME_TO_SLEEP:
|
|
case PhysicsServer::SPACE_PARAM_BODY_ANGULAR_VELOCITY_DAMP_RATIO:
|
|
case PhysicsServer::SPACE_PARAM_CONSTRAINT_DEFAULT_BIAS:
|
|
default:
|
|
WARN_PRINT("The SpaceBullet doesn't support this get parameter (" + itos(p_param) + "), 0 is returned.");
|
|
return 0.f;
|
|
}
|
|
}
|
|
|
|
void SpaceBullet::add_area(AreaBullet *p_area) {
|
|
areas.push_back(p_area);
|
|
dynamicsWorld->addCollisionObject(p_area->get_bt_ghost(), p_area->get_collision_layer(), p_area->get_collision_mask());
|
|
}
|
|
|
|
void SpaceBullet::remove_area(AreaBullet *p_area) {
|
|
areas.erase(p_area);
|
|
dynamicsWorld->removeCollisionObject(p_area->get_bt_ghost());
|
|
}
|
|
|
|
void SpaceBullet::reload_collision_filters(AreaBullet *p_area) {
|
|
btGhostObject *ghost_object = p_area->get_bt_ghost();
|
|
|
|
btBroadphaseProxy *ghost_proxy = ghost_object->getBroadphaseHandle();
|
|
ghost_proxy->m_collisionFilterGroup = p_area->get_collision_layer();
|
|
ghost_proxy->m_collisionFilterMask = p_area->get_collision_mask();
|
|
|
|
dynamicsWorld->refreshBroadphaseProxy(ghost_object);
|
|
}
|
|
|
|
void SpaceBullet::add_rigid_body(RigidBodyBullet *p_body) {
|
|
if (p_body->is_static()) {
|
|
dynamicsWorld->addCollisionObject(p_body->get_bt_rigid_body(), p_body->get_collision_layer(), p_body->get_collision_mask());
|
|
} else {
|
|
dynamicsWorld->addRigidBody(p_body->get_bt_rigid_body(), p_body->get_collision_layer(), p_body->get_collision_mask());
|
|
p_body->scratch_space_override_modificator();
|
|
}
|
|
}
|
|
|
|
void SpaceBullet::remove_rigid_body_constraints(RigidBodyBullet *p_body) {
|
|
btRigidBody *btBody = p_body->get_bt_rigid_body();
|
|
|
|
int constraints = btBody->getNumConstraintRefs();
|
|
if (constraints > 0) {
|
|
ERR_PRINT("A body connected to joints was removed.");
|
|
for (int i = 0; i < constraints; i++) {
|
|
dynamicsWorld->removeConstraint(btBody->getConstraintRef(i));
|
|
}
|
|
}
|
|
}
|
|
|
|
void SpaceBullet::remove_rigid_body(RigidBodyBullet *p_body) {
|
|
btRigidBody *btBody = p_body->get_bt_rigid_body();
|
|
|
|
if (p_body->is_static()) {
|
|
dynamicsWorld->removeCollisionObject(btBody);
|
|
} else {
|
|
dynamicsWorld->removeRigidBody(btBody);
|
|
}
|
|
}
|
|
|
|
void SpaceBullet::reload_collision_filters(RigidBodyBullet *p_body) {
|
|
btRigidBody *rigid_body = p_body->get_bt_rigid_body();
|
|
|
|
btBroadphaseProxy *body_proxy = rigid_body->getBroadphaseProxy();
|
|
body_proxy->m_collisionFilterGroup = p_body->get_collision_layer();
|
|
body_proxy->m_collisionFilterMask = p_body->get_collision_mask();
|
|
|
|
dynamicsWorld->refreshBroadphaseProxy(rigid_body);
|
|
}
|
|
|
|
void SpaceBullet::add_soft_body(SoftBodyBullet *p_body) {
|
|
if (is_using_soft_world()) {
|
|
if (p_body->get_bt_soft_body()) {
|
|
p_body->get_bt_soft_body()->m_worldInfo = get_soft_body_world_info();
|
|
static_cast<btSoftRigidDynamicsWorld *>(dynamicsWorld)->addSoftBody(p_body->get_bt_soft_body(), p_body->get_collision_layer(), p_body->get_collision_mask());
|
|
}
|
|
} else {
|
|
ERR_PRINT("This soft body can't be added to non soft world");
|
|
}
|
|
}
|
|
|
|
void SpaceBullet::remove_soft_body(SoftBodyBullet *p_body) {
|
|
if (is_using_soft_world()) {
|
|
if (p_body->get_bt_soft_body()) {
|
|
static_cast<btSoftRigidDynamicsWorld *>(dynamicsWorld)->removeSoftBody(p_body->get_bt_soft_body());
|
|
p_body->get_bt_soft_body()->m_worldInfo = nullptr;
|
|
}
|
|
}
|
|
}
|
|
|
|
void SpaceBullet::reload_collision_filters(SoftBodyBullet *p_body) {
|
|
// This is necessary to change collision filter
|
|
remove_soft_body(p_body);
|
|
add_soft_body(p_body);
|
|
}
|
|
|
|
void SpaceBullet::add_constraint(ConstraintBullet *p_constraint, bool disableCollisionsBetweenLinkedBodies) {
|
|
p_constraint->set_space(this);
|
|
dynamicsWorld->addConstraint(p_constraint->get_bt_constraint(), disableCollisionsBetweenLinkedBodies);
|
|
}
|
|
|
|
void SpaceBullet::remove_constraint(ConstraintBullet *p_constraint) {
|
|
dynamicsWorld->removeConstraint(p_constraint->get_bt_constraint());
|
|
}
|
|
|
|
int SpaceBullet::get_num_collision_objects() const {
|
|
return dynamicsWorld->getNumCollisionObjects();
|
|
}
|
|
|
|
void SpaceBullet::remove_all_collision_objects() {
|
|
for (int i = dynamicsWorld->getNumCollisionObjects() - 1; 0 <= i; --i) {
|
|
btCollisionObject *btObj = dynamicsWorld->getCollisionObjectArray()[i];
|
|
CollisionObjectBullet *colObj = static_cast<CollisionObjectBullet *>(btObj->getUserPointer());
|
|
colObj->set_space(nullptr);
|
|
}
|
|
}
|
|
|
|
void onBulletPreTickCallback(btDynamicsWorld *p_dynamicsWorld, btScalar timeStep) {
|
|
static_cast<SpaceBullet *>(p_dynamicsWorld->getWorldUserInfo())->flush_queries();
|
|
}
|
|
|
|
void onBulletTickCallback(btDynamicsWorld *p_dynamicsWorld, btScalar timeStep) {
|
|
const btCollisionObjectArray &colObjArray = p_dynamicsWorld->getCollisionObjectArray();
|
|
|
|
// Notify all Collision objects the collision checker is started
|
|
for (int i = colObjArray.size() - 1; 0 <= i; --i) {
|
|
static_cast<CollisionObjectBullet *>(colObjArray[i]->getUserPointer())->on_collision_checker_start();
|
|
}
|
|
|
|
SpaceBullet *sb = static_cast<SpaceBullet *>(p_dynamicsWorld->getWorldUserInfo());
|
|
sb->check_ghost_overlaps();
|
|
sb->check_body_collision();
|
|
|
|
for (int i = colObjArray.size() - 1; 0 <= i; --i) {
|
|
static_cast<CollisionObjectBullet *>(colObjArray[i]->getUserPointer())->on_collision_checker_end();
|
|
}
|
|
}
|
|
|
|
BulletPhysicsDirectSpaceState *SpaceBullet::get_direct_state() {
|
|
return direct_access;
|
|
}
|
|
|
|
btScalar calculateGodotCombinedRestitution(const btCollisionObject *body0, const btCollisionObject *body1) {
|
|
return CLAMP(body0->getRestitution() + body1->getRestitution(), 0, 1);
|
|
}
|
|
|
|
btScalar calculateGodotCombinedFriction(const btCollisionObject *body0, const btCollisionObject *body1) {
|
|
return ABS(MIN(body0->getFriction(), body1->getFriction()));
|
|
}
|
|
|
|
void SpaceBullet::create_empty_world(bool p_create_soft_world) {
|
|
gjk_epa_pen_solver = bulletnew(btGjkEpaPenetrationDepthSolver);
|
|
gjk_simplex_solver = bulletnew(btVoronoiSimplexSolver);
|
|
|
|
void *world_mem;
|
|
if (p_create_soft_world) {
|
|
world_mem = malloc(sizeof(btSoftRigidDynamicsWorld));
|
|
} else {
|
|
world_mem = malloc(sizeof(btDiscreteDynamicsWorld));
|
|
}
|
|
|
|
ERR_FAIL_COND_MSG(!world_mem, "Out of memory.");
|
|
|
|
if (p_create_soft_world) {
|
|
collisionConfiguration = bulletnew(GodotSoftCollisionConfiguration(static_cast<btDiscreteDynamicsWorld *>(world_mem)));
|
|
} else {
|
|
collisionConfiguration = bulletnew(GodotCollisionConfiguration(static_cast<btDiscreteDynamicsWorld *>(world_mem)));
|
|
}
|
|
|
|
dispatcher = bulletnew(GodotCollisionDispatcher(collisionConfiguration));
|
|
broadphase = bulletnew(btDbvtBroadphase);
|
|
solver = bulletnew(btSequentialImpulseConstraintSolver);
|
|
|
|
if (p_create_soft_world) {
|
|
dynamicsWorld = new (world_mem) btSoftRigidDynamicsWorld(dispatcher, broadphase, solver, collisionConfiguration);
|
|
soft_body_world_info = bulletnew(btSoftBodyWorldInfo);
|
|
} else {
|
|
dynamicsWorld = new (world_mem) btDiscreteDynamicsWorld(dispatcher, broadphase, solver, collisionConfiguration);
|
|
}
|
|
|
|
ghostPairCallback = bulletnew(btGhostPairCallback);
|
|
godotFilterCallback = bulletnew(GodotFilterCallback);
|
|
gCalculateCombinedRestitutionCallback = &calculateGodotCombinedRestitution;
|
|
gCalculateCombinedFrictionCallback = &calculateGodotCombinedFriction;
|
|
gContactAddedCallback = &godotContactAddedCallback;
|
|
|
|
dynamicsWorld->setWorldUserInfo(this);
|
|
|
|
dynamicsWorld->setInternalTickCallback(onBulletPreTickCallback, this, true);
|
|
dynamicsWorld->setInternalTickCallback(onBulletTickCallback, this, false);
|
|
dynamicsWorld->getBroadphase()->getOverlappingPairCache()->setInternalGhostPairCallback(ghostPairCallback); // Setup ghost check
|
|
dynamicsWorld->getPairCache()->setOverlapFilterCallback(godotFilterCallback);
|
|
|
|
if (soft_body_world_info) {
|
|
soft_body_world_info->m_broadphase = broadphase;
|
|
soft_body_world_info->m_dispatcher = dispatcher;
|
|
soft_body_world_info->m_sparsesdf.Initialize();
|
|
}
|
|
|
|
update_gravity();
|
|
}
|
|
|
|
void SpaceBullet::destroy_world() {
|
|
/// The world elements (like: Collision Objects, Constraints, Shapes) are managed by godot
|
|
|
|
dynamicsWorld->getBroadphase()->getOverlappingPairCache()->setInternalGhostPairCallback(nullptr);
|
|
dynamicsWorld->getPairCache()->setOverlapFilterCallback(nullptr);
|
|
|
|
bulletdelete(ghostPairCallback);
|
|
bulletdelete(godotFilterCallback);
|
|
|
|
// Deallocate world
|
|
dynamicsWorld->~btDiscreteDynamicsWorld();
|
|
free(dynamicsWorld);
|
|
dynamicsWorld = nullptr;
|
|
|
|
bulletdelete(solver);
|
|
bulletdelete(broadphase);
|
|
bulletdelete(dispatcher);
|
|
bulletdelete(collisionConfiguration);
|
|
bulletdelete(soft_body_world_info);
|
|
bulletdelete(gjk_simplex_solver);
|
|
bulletdelete(gjk_epa_pen_solver);
|
|
}
|
|
|
|
void SpaceBullet::check_ghost_overlaps() {
|
|
// For each area
|
|
for (int area_idx = 0; area_idx < areas.size(); area_idx++) {
|
|
AreaBullet *area = areas[area_idx];
|
|
if (!area->is_monitoring()) {
|
|
continue;
|
|
}
|
|
|
|
btGhostObject *bt_ghost = area->get_bt_ghost();
|
|
const btTransform &area_transform = area->get_transform__bullet();
|
|
const btVector3 &area_scale(area->get_bt_body_scale());
|
|
|
|
// Mark all current overlapping shapes dirty.
|
|
area->mark_all_overlaps_dirty();
|
|
|
|
// Broadphase
|
|
const btAlignedObjectArray<btCollisionObject *> overlapping_pairs = bt_ghost->getOverlappingPairs();
|
|
// Narrowphase
|
|
for (int pair_idx = 0; pair_idx < overlapping_pairs.size(); pair_idx++) {
|
|
btCollisionObject *other_bt_collision_object = overlapping_pairs[pair_idx];
|
|
RigidCollisionObjectBullet *other_object = static_cast<RigidCollisionObjectBullet *>(other_bt_collision_object->getUserPointer());
|
|
const btTransform &other_transform = other_object->get_transform__bullet();
|
|
const btVector3 &other_scale(other_object->get_bt_body_scale());
|
|
|
|
if (!area->is_updated() && !other_object->is_updated()) {
|
|
area->mark_object_overlaps_inside(other_object);
|
|
continue;
|
|
}
|
|
|
|
if (other_bt_collision_object->getUserIndex() == CollisionObjectBullet::TYPE_AREA) {
|
|
if (!static_cast<AreaBullet *>(other_bt_collision_object->getUserPointer())->is_monitorable()) {
|
|
continue;
|
|
}
|
|
} else if (other_bt_collision_object->getUserIndex() != CollisionObjectBullet::TYPE_RIGID_BODY) {
|
|
continue;
|
|
}
|
|
|
|
// For each area shape
|
|
for (int our_shape_id = 0; our_shape_id < area->get_shape_count(); our_shape_id++) {
|
|
btCollisionShape *area_shape = area->get_bt_shape(our_shape_id);
|
|
if (!area_shape->isConvex()) {
|
|
continue;
|
|
}
|
|
btConvexShape *area_convex_shape = static_cast<btConvexShape *>(area_shape);
|
|
|
|
btTransform area_shape_transform(area->get_bt_shape_transform(our_shape_id));
|
|
area_shape_transform.getOrigin() *= area_scale;
|
|
btGjkPairDetector::ClosestPointInput gjk_input;
|
|
gjk_input.m_transformA = area_transform * area_shape_transform;
|
|
|
|
// For each other object shape
|
|
for (int other_shape_id = 0; other_shape_id < other_object->get_shape_count(); other_shape_id++) {
|
|
btCollisionShape *other_shape = other_object->get_bt_shape(other_shape_id);
|
|
btTransform other_shape_transform(other_object->get_bt_shape_transform(other_shape_id));
|
|
other_shape_transform.getOrigin() *= other_scale;
|
|
gjk_input.m_transformB = other_transform * other_shape_transform;
|
|
|
|
if (other_shape->isConvex()) {
|
|
btPointCollector result;
|
|
btGjkPairDetector gjk_pair_detector(
|
|
area_convex_shape,
|
|
static_cast<btConvexShape *>(other_shape),
|
|
gjk_simplex_solver,
|
|
gjk_epa_pen_solver);
|
|
|
|
gjk_pair_detector.getClosestPoints(gjk_input, result, 0);
|
|
if (result.m_distance <= 0) {
|
|
area->set_overlap(other_object, other_shape_id, our_shape_id);
|
|
}
|
|
} else { // Other shape is not convex.
|
|
btCollisionObjectWrapper obA(NULL, area_convex_shape, bt_ghost, gjk_input.m_transformA, -1, our_shape_id);
|
|
btCollisionObjectWrapper obB(NULL, other_shape, other_bt_collision_object, gjk_input.m_transformB, -1, other_shape_id);
|
|
btCollisionAlgorithm *algorithm = dispatcher->findAlgorithm(&obA, &obB, NULL, BT_CONTACT_POINT_ALGORITHMS);
|
|
|
|
if (!algorithm) {
|
|
continue;
|
|
}
|
|
|
|
GodotDeepPenetrationContactResultCallback contactPointResult(&obA, &obB);
|
|
algorithm->processCollision(&obA, &obB, dynamicsWorld->getDispatchInfo(), &contactPointResult);
|
|
algorithm->~btCollisionAlgorithm();
|
|
dispatcher->freeCollisionAlgorithm(algorithm);
|
|
|
|
if (contactPointResult.hasHit()) {
|
|
area->set_overlap(other_object, our_shape_id, other_shape_id);
|
|
}
|
|
}
|
|
} // End for each other object shape
|
|
} // End for each area shape
|
|
} // End for each overlapping pair
|
|
|
|
// All overlapping shapes still marked dirty must have exited.
|
|
area->mark_all_dirty_overlaps_as_exit();
|
|
} // End for each area
|
|
}
|
|
|
|
void SpaceBullet::check_body_collision() {
|
|
#ifdef DEBUG_ENABLED
|
|
reset_debug_contact_count();
|
|
#endif
|
|
|
|
const int numManifolds = dynamicsWorld->getDispatcher()->getNumManifolds();
|
|
for (int i = 0; i < numManifolds; ++i) {
|
|
btPersistentManifold *contactManifold = dynamicsWorld->getDispatcher()->getManifoldByIndexInternal(i);
|
|
|
|
// I know this static cast is a bit risky. But I'm checking its type just after it.
|
|
// This allow me to avoid a lot of other cast and checks
|
|
RigidBodyBullet *bodyA = static_cast<RigidBodyBullet *>(contactManifold->getBody0()->getUserPointer());
|
|
RigidBodyBullet *bodyB = static_cast<RigidBodyBullet *>(contactManifold->getBody1()->getUserPointer());
|
|
|
|
if (CollisionObjectBullet::TYPE_RIGID_BODY == bodyA->getType() && CollisionObjectBullet::TYPE_RIGID_BODY == bodyB->getType()) {
|
|
if (!bodyA->can_add_collision() && !bodyB->can_add_collision()) {
|
|
continue;
|
|
}
|
|
|
|
const int numContacts = contactManifold->getNumContacts();
|
|
|
|
/// Since I don't need report all contacts for these objects,
|
|
/// So report only the first
|
|
#define REPORT_ALL_CONTACTS 0
|
|
#if REPORT_ALL_CONTACTS
|
|
for (int j = 0; j < numContacts; j++) {
|
|
btManifoldPoint &pt = contactManifold->getContactPoint(j);
|
|
#else
|
|
if (numContacts) {
|
|
btManifoldPoint &pt = contactManifold->getContactPoint(0);
|
|
#endif
|
|
if (
|
|
pt.getDistance() < 0.0 ||
|
|
bodyA->was_colliding(bodyB) ||
|
|
bodyB->was_colliding(bodyA)) {
|
|
Vector3 collisionWorldPosition;
|
|
Vector3 collisionLocalPosition;
|
|
Vector3 normalOnB;
|
|
float appliedImpulse = pt.m_appliedImpulse;
|
|
B_TO_G(pt.m_normalWorldOnB, normalOnB);
|
|
|
|
// The pt.m_index only contains the shape index when more than one collision shape is used
|
|
// and only if the collision shape is not a concave collision shape.
|
|
// A value of -1 in pt.m_partId indicates the pt.m_index is a shape index.
|
|
int shape_index_a = 0;
|
|
if (bodyA->get_shape_count() > 1 && pt.m_partId0 == -1) {
|
|
shape_index_a = pt.m_index0;
|
|
}
|
|
int shape_index_b = 0;
|
|
if (bodyB->get_shape_count() > 1 && pt.m_partId1 == -1) {
|
|
shape_index_b = pt.m_index1;
|
|
}
|
|
|
|
if (bodyA->can_add_collision()) {
|
|
B_TO_G(pt.getPositionWorldOnB(), collisionWorldPosition);
|
|
/// pt.m_localPointB Doesn't report the exact point in local space
|
|
B_TO_G(pt.getPositionWorldOnB() - contactManifold->getBody1()->getWorldTransform().getOrigin(), collisionLocalPosition);
|
|
bodyA->add_collision_object(bodyB, collisionWorldPosition, collisionLocalPosition, normalOnB, appliedImpulse, shape_index_b, shape_index_a);
|
|
}
|
|
if (bodyB->can_add_collision()) {
|
|
B_TO_G(pt.getPositionWorldOnA(), collisionWorldPosition);
|
|
/// pt.m_localPointA Doesn't report the exact point in local space
|
|
B_TO_G(pt.getPositionWorldOnA() - contactManifold->getBody0()->getWorldTransform().getOrigin(), collisionLocalPosition);
|
|
bodyB->add_collision_object(bodyA, collisionWorldPosition, collisionLocalPosition, normalOnB * -1, appliedImpulse * -1, shape_index_a, shape_index_b);
|
|
}
|
|
|
|
#ifdef DEBUG_ENABLED
|
|
if (is_debugging_contacts()) {
|
|
add_debug_contact(collisionWorldPosition);
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void SpaceBullet::update_gravity() {
|
|
btVector3 btGravity;
|
|
G_TO_B(gravityDirection * gravityMagnitude, btGravity);
|
|
//dynamicsWorld->setGravity(btGravity);
|
|
dynamicsWorld->setGravity(btVector3(0, 0, 0));
|
|
if (soft_body_world_info) {
|
|
soft_body_world_info->m_gravity = btGravity;
|
|
}
|
|
}
|
|
|
|
/// IMPORTANT: Please don't turn it ON this is not managed correctly!!
|
|
/// I'm leaving this here just for future tests.
|
|
/// Debug motion and normal vector drawing
|
|
#define debug_test_motion 0
|
|
|
|
#define RECOVERING_MOVEMENT_SCALE 0.4
|
|
#define RECOVERING_MOVEMENT_CYCLES 4
|
|
|
|
#if debug_test_motion
|
|
|
|
#include "scene/3d/immediate_geometry.h"
|
|
|
|
static ImmediateGeometry *motionVec(NULL);
|
|
static ImmediateGeometry *normalLine(NULL);
|
|
static Ref<SpatialMaterial> red_mat;
|
|
static Ref<SpatialMaterial> blue_mat;
|
|
#endif
|
|
|
|
bool SpaceBullet::test_body_motion(RigidBodyBullet *p_body, const Transform &p_from, const Vector3 &p_motion, bool p_infinite_inertia, PhysicsServer::MotionResult *r_result, bool p_exclude_raycast_shapes, const Set<RID> &p_exclude) {
|
|
#if debug_test_motion
|
|
/// Yes I know this is not good, but I've used it as fast debugging hack.
|
|
/// I'm leaving it here just for speedup the other eventual debugs
|
|
if (!normalLine) {
|
|
motionVec = memnew(ImmediateGeometry);
|
|
normalLine = memnew(ImmediateGeometry);
|
|
SceneTree::get_singleton()->get_current_scene()->add_child(motionVec);
|
|
SceneTree::get_singleton()->get_current_scene()->add_child(normalLine);
|
|
|
|
motionVec->set_as_toplevel(true);
|
|
normalLine->set_as_toplevel(true);
|
|
|
|
red_mat = Ref<SpatialMaterial>(memnew(SpatialMaterial));
|
|
red_mat->set_flag(SpatialMaterial::FLAG_UNSHADED, true);
|
|
red_mat->set_line_width(20.0);
|
|
red_mat->set_feature(SpatialMaterial::FEATURE_TRANSPARENT, true);
|
|
red_mat->set_flag(SpatialMaterial::FLAG_ALBEDO_FROM_VERTEX_COLOR, true);
|
|
red_mat->set_flag(SpatialMaterial::FLAG_SRGB_VERTEX_COLOR, true);
|
|
red_mat->set_albedo(Color(1, 0, 0, 1));
|
|
motionVec->set_material_override(red_mat);
|
|
|
|
blue_mat = Ref<SpatialMaterial>(memnew(SpatialMaterial));
|
|
blue_mat->set_flag(SpatialMaterial::FLAG_UNSHADED, true);
|
|
blue_mat->set_line_width(20.0);
|
|
blue_mat->set_feature(SpatialMaterial::FEATURE_TRANSPARENT, true);
|
|
blue_mat->set_flag(SpatialMaterial::FLAG_ALBEDO_FROM_VERTEX_COLOR, true);
|
|
blue_mat->set_flag(SpatialMaterial::FLAG_SRGB_VERTEX_COLOR, true);
|
|
blue_mat->set_albedo(Color(0, 0, 1, 1));
|
|
normalLine->set_material_override(blue_mat);
|
|
}
|
|
#endif
|
|
|
|
btTransform body_transform;
|
|
G_TO_B(p_from, body_transform);
|
|
UNSCALE_BT_BASIS(body_transform);
|
|
|
|
if (!p_body->get_kinematic_utilities()) {
|
|
p_body->init_kinematic_utilities();
|
|
}
|
|
|
|
btVector3 initial_recover_motion(0, 0, 0);
|
|
{ /// Phase one - multi shapes depenetration using margin
|
|
for (int t(RECOVERING_MOVEMENT_CYCLES); 0 < t; --t) {
|
|
if (!recover_from_penetration(p_body, body_transform, RECOVERING_MOVEMENT_SCALE, p_infinite_inertia, initial_recover_motion, nullptr, p_exclude)) {
|
|
break;
|
|
}
|
|
}
|
|
// Add recover movement in order to make it safe
|
|
body_transform.getOrigin() += initial_recover_motion;
|
|
}
|
|
|
|
btVector3 motion;
|
|
G_TO_B(p_motion, motion);
|
|
real_t total_length = motion.length();
|
|
real_t unsafe_fraction = 1.0;
|
|
real_t safe_fraction = 1.0;
|
|
{
|
|
// Phase two - sweep test, from a secure position without margin
|
|
|
|
const int shape_count(p_body->get_shape_count());
|
|
|
|
#if debug_test_motion
|
|
Vector3 sup_line;
|
|
B_TO_G(body_safe_position.getOrigin(), sup_line);
|
|
motionVec->clear();
|
|
motionVec->begin(Mesh::PRIMITIVE_LINES, NULL);
|
|
motionVec->add_vertex(sup_line);
|
|
motionVec->add_vertex(sup_line + p_motion * 10);
|
|
motionVec->end();
|
|
#endif
|
|
|
|
for (int shIndex = 0; shIndex < shape_count; ++shIndex) {
|
|
if (p_body->is_shape_disabled(shIndex)) {
|
|
continue;
|
|
}
|
|
|
|
if (!p_body->get_bt_shape(shIndex)->isConvex()) {
|
|
// Skip no convex shape
|
|
continue;
|
|
}
|
|
|
|
if (p_exclude_raycast_shapes && p_body->get_bt_shape(shIndex)->getShapeType() == CUSTOM_CONVEX_SHAPE_TYPE) {
|
|
// Skip rayshape in order to implement custom separation process
|
|
continue;
|
|
}
|
|
|
|
btConvexShape *convex_shape_test(static_cast<btConvexShape *>(p_body->get_bt_shape(shIndex)));
|
|
|
|
btTransform shape_world_from = body_transform * p_body->get_kinematic_utilities()->shapes[shIndex].transform;
|
|
|
|
btTransform shape_world_to(shape_world_from);
|
|
shape_world_to.getOrigin() += motion;
|
|
|
|
if ((shape_world_to.getOrigin() - shape_world_from.getOrigin()).fuzzyZero()) {
|
|
motion = btVector3(0, 0, 0);
|
|
break;
|
|
}
|
|
|
|
GodotKinClosestConvexResultCallback btResult(shape_world_from.getOrigin(), shape_world_to.getOrigin(), p_body, p_infinite_inertia, &p_exclude);
|
|
btResult.m_collisionFilterGroup = p_body->get_collision_layer();
|
|
btResult.m_collisionFilterMask = p_body->get_collision_mask();
|
|
|
|
dynamicsWorld->convexSweepTest(convex_shape_test, shape_world_from, shape_world_to, btResult, dynamicsWorld->getDispatchInfo().m_allowedCcdPenetration);
|
|
|
|
if (btResult.hasHit()) {
|
|
if (total_length > CMP_EPSILON) {
|
|
real_t hit_fraction = btResult.m_closestHitFraction * motion.length() / total_length;
|
|
if (hit_fraction < unsafe_fraction) {
|
|
unsafe_fraction = hit_fraction;
|
|
real_t margin = p_body->get_kinematic_utilities()->safe_margin;
|
|
safe_fraction = MAX(hit_fraction - (1 - ((total_length - margin) / total_length)), 0);
|
|
}
|
|
}
|
|
|
|
/// Since for each sweep test I fix the motion of new shapes in base the recover result,
|
|
/// if another shape will hit something it means that has a deepest penetration respect the previous shape
|
|
motion *= btResult.m_closestHitFraction;
|
|
}
|
|
}
|
|
|
|
body_transform.getOrigin() += motion;
|
|
}
|
|
|
|
bool has_penetration = false;
|
|
|
|
{ /// Phase three - contact test with margin
|
|
|
|
btVector3 __rec(0, 0, 0);
|
|
RecoverResult r_recover_result;
|
|
|
|
has_penetration = recover_from_penetration(p_body, body_transform, 1, p_infinite_inertia, __rec, &r_recover_result, p_exclude);
|
|
|
|
// Parse results
|
|
if (r_result) {
|
|
B_TO_G(motion + initial_recover_motion + __rec, r_result->motion);
|
|
|
|
if (has_penetration) {
|
|
const btRigidBody *btRigid = static_cast<const btRigidBody *>(r_recover_result.other_collision_object);
|
|
CollisionObjectBullet *collisionObject = static_cast<CollisionObjectBullet *>(btRigid->getUserPointer());
|
|
|
|
B_TO_G(motion, r_result->remainder); // is the remaining movements
|
|
r_result->remainder = p_motion - r_result->remainder;
|
|
|
|
B_TO_G(r_recover_result.pointWorld, r_result->collision_point);
|
|
B_TO_G(r_recover_result.normal, r_result->collision_normal);
|
|
B_TO_G(btRigid->getVelocityInLocalPoint(r_recover_result.pointWorld - btRigid->getWorldTransform().getOrigin()), r_result->collider_velocity); // It calculates velocity at point and assign it using special function Bullet_to_Godot
|
|
r_result->collider = collisionObject->get_self();
|
|
r_result->collider_id = collisionObject->get_instance_id();
|
|
r_result->collider_shape = r_recover_result.other_compound_shape_index;
|
|
r_result->collision_local_shape = r_recover_result.local_shape_most_recovered;
|
|
r_result->collision_depth = Math::abs(r_recover_result.penetration_distance);
|
|
r_result->collision_safe_fraction = safe_fraction;
|
|
r_result->collision_unsafe_fraction = unsafe_fraction;
|
|
|
|
#if debug_test_motion
|
|
Vector3 sup_line2;
|
|
B_TO_G(motion, sup_line2);
|
|
normalLine->clear();
|
|
normalLine->begin(Mesh::PRIMITIVE_LINES, NULL);
|
|
normalLine->add_vertex(r_result->collision_point);
|
|
normalLine->add_vertex(r_result->collision_point + r_result->collision_normal * 10);
|
|
normalLine->end();
|
|
#endif
|
|
} else {
|
|
r_result->remainder = Vector3();
|
|
}
|
|
}
|
|
}
|
|
|
|
return has_penetration;
|
|
}
|
|
|
|
int SpaceBullet::test_ray_separation(RigidBodyBullet *p_body, const Transform &p_transform, bool p_infinite_inertia, Vector3 &r_recover_motion, PhysicsServer::SeparationResult *r_results, int p_result_max, float p_margin) {
|
|
btTransform body_transform;
|
|
G_TO_B(p_transform, body_transform);
|
|
UNSCALE_BT_BASIS(body_transform);
|
|
|
|
if (!p_body->get_kinematic_utilities()) {
|
|
p_body->init_kinematic_utilities();
|
|
}
|
|
|
|
btVector3 recover_motion(0, 0, 0);
|
|
|
|
int rays_found = 0;
|
|
int rays_found_this_round = 0;
|
|
|
|
for (int t(RECOVERING_MOVEMENT_CYCLES); 0 < t; --t) {
|
|
PhysicsServer::SeparationResult *next_results = &r_results[rays_found];
|
|
rays_found_this_round = recover_from_penetration_ray(p_body, body_transform, RECOVERING_MOVEMENT_SCALE, p_infinite_inertia, p_result_max - rays_found, recover_motion, next_results);
|
|
|
|
rays_found += rays_found_this_round;
|
|
if (rays_found_this_round == 0) {
|
|
body_transform.getOrigin() += recover_motion;
|
|
break;
|
|
}
|
|
}
|
|
|
|
B_TO_G(recover_motion, r_recover_motion);
|
|
return rays_found;
|
|
}
|
|
|
|
struct RecoverPenetrationBroadPhaseCallback : public btBroadphaseAabbCallback {
|
|
private:
|
|
btDbvtVolume bounds;
|
|
|
|
const btCollisionObject *self_collision_object;
|
|
uint32_t collision_layer;
|
|
uint32_t collision_mask;
|
|
|
|
struct CompoundLeafCallback : btDbvt::ICollide {
|
|
private:
|
|
RecoverPenetrationBroadPhaseCallback *parent_callback;
|
|
btCollisionObject *collision_object;
|
|
|
|
public:
|
|
CompoundLeafCallback(RecoverPenetrationBroadPhaseCallback *p_parent_callback, btCollisionObject *p_collision_object) :
|
|
parent_callback(p_parent_callback),
|
|
collision_object(p_collision_object) {
|
|
}
|
|
|
|
void Process(const btDbvtNode *leaf) {
|
|
BroadphaseResult result;
|
|
result.collision_object = collision_object;
|
|
result.compound_child_index = leaf->dataAsInt;
|
|
parent_callback->results.push_back(result);
|
|
}
|
|
};
|
|
|
|
public:
|
|
struct BroadphaseResult {
|
|
btCollisionObject *collision_object;
|
|
int compound_child_index;
|
|
};
|
|
|
|
Vector<BroadphaseResult> results;
|
|
|
|
public:
|
|
RecoverPenetrationBroadPhaseCallback(const btCollisionObject *p_self_collision_object, uint32_t p_collision_layer, uint32_t p_collision_mask, btVector3 p_aabb_min, btVector3 p_aabb_max) :
|
|
self_collision_object(p_self_collision_object),
|
|
collision_layer(p_collision_layer),
|
|
collision_mask(p_collision_mask) {
|
|
bounds = btDbvtVolume::FromMM(p_aabb_min, p_aabb_max);
|
|
}
|
|
|
|
virtual ~RecoverPenetrationBroadPhaseCallback() {}
|
|
|
|
virtual bool process(const btBroadphaseProxy *proxy) {
|
|
btCollisionObject *co = static_cast<btCollisionObject *>(proxy->m_clientObject);
|
|
if (co->getInternalType() <= btCollisionObject::CO_RIGID_BODY) {
|
|
if (self_collision_object != proxy->m_clientObject && GodotFilterCallback::test_collision_filters(collision_layer, collision_mask, proxy->m_collisionFilterGroup, proxy->m_collisionFilterMask)) {
|
|
if (co->getCollisionShape()->isCompound()) {
|
|
const btCompoundShape *cs = static_cast<btCompoundShape *>(co->getCollisionShape());
|
|
|
|
if (cs->getNumChildShapes() > 1) {
|
|
const btDbvt *tree = cs->getDynamicAabbTree();
|
|
ERR_FAIL_COND_V(tree == nullptr, true);
|
|
|
|
// Transform bounds into compound shape local space
|
|
const btTransform other_in_compound_space = co->getWorldTransform().inverse();
|
|
const btMatrix3x3 abs_b = other_in_compound_space.getBasis().absolute();
|
|
const btVector3 local_center = other_in_compound_space(bounds.Center());
|
|
const btVector3 local_extent = bounds.Extents().dot3(abs_b[0], abs_b[1], abs_b[2]);
|
|
const btVector3 local_aabb_min = local_center - local_extent;
|
|
const btVector3 local_aabb_max = local_center + local_extent;
|
|
const btDbvtVolume local_bounds = btDbvtVolume::FromMM(local_aabb_min, local_aabb_max);
|
|
|
|
// Test collision against compound child shapes using its AABB tree
|
|
CompoundLeafCallback compound_leaf_callback(this, co);
|
|
tree->collideTV(tree->m_root, local_bounds, compound_leaf_callback);
|
|
} else {
|
|
// If there's only a single child shape then there's no need to search any more, we know which child overlaps
|
|
BroadphaseResult result;
|
|
result.collision_object = co;
|
|
result.compound_child_index = 0;
|
|
results.push_back(result);
|
|
}
|
|
} else {
|
|
BroadphaseResult result;
|
|
result.collision_object = co;
|
|
result.compound_child_index = -1;
|
|
results.push_back(result);
|
|
}
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
};
|
|
|
|
bool SpaceBullet::recover_from_penetration(RigidBodyBullet *p_body, const btTransform &p_body_position, btScalar p_recover_movement_scale, bool p_infinite_inertia, btVector3 &r_delta_recover_movement, RecoverResult *r_recover_result, const Set<RID> &p_exclude) {
|
|
// Calculate the cumulative AABB of all shapes of the kinematic body
|
|
btVector3 aabb_min, aabb_max;
|
|
bool shapes_found = false;
|
|
|
|
for (int kinIndex = p_body->get_kinematic_utilities()->shapes.size() - 1; 0 <= kinIndex; --kinIndex) {
|
|
const RigidBodyBullet::KinematicShape &kin_shape(p_body->get_kinematic_utilities()->shapes[kinIndex]);
|
|
if (!kin_shape.is_active()) {
|
|
continue;
|
|
}
|
|
|
|
if (kin_shape.shape->getShapeType() == CUSTOM_CONVEX_SHAPE_TYPE) {
|
|
// Skip rayshape in order to implement custom separation process
|
|
continue;
|
|
}
|
|
|
|
btTransform shape_transform = p_body_position * kin_shape.transform;
|
|
shape_transform.getOrigin() += r_delta_recover_movement;
|
|
|
|
btVector3 shape_aabb_min, shape_aabb_max;
|
|
kin_shape.shape->getAabb(shape_transform, shape_aabb_min, shape_aabb_max);
|
|
|
|
if (!shapes_found) {
|
|
aabb_min = shape_aabb_min;
|
|
aabb_max = shape_aabb_max;
|
|
shapes_found = true;
|
|
} else {
|
|
aabb_min.setX((aabb_min.x() < shape_aabb_min.x()) ? aabb_min.x() : shape_aabb_min.x());
|
|
aabb_min.setY((aabb_min.y() < shape_aabb_min.y()) ? aabb_min.y() : shape_aabb_min.y());
|
|
aabb_min.setZ((aabb_min.z() < shape_aabb_min.z()) ? aabb_min.z() : shape_aabb_min.z());
|
|
|
|
aabb_max.setX((aabb_max.x() > shape_aabb_max.x()) ? aabb_max.x() : shape_aabb_max.x());
|
|
aabb_max.setY((aabb_max.y() > shape_aabb_max.y()) ? aabb_max.y() : shape_aabb_max.y());
|
|
aabb_max.setZ((aabb_max.z() > shape_aabb_max.z()) ? aabb_max.z() : shape_aabb_max.z());
|
|
}
|
|
}
|
|
|
|
// If there are no shapes then there is no penetration either
|
|
if (!shapes_found) {
|
|
return false;
|
|
}
|
|
|
|
// Perform broadphase test
|
|
RecoverPenetrationBroadPhaseCallback recover_broad_result(p_body->get_bt_collision_object(), p_body->get_collision_layer(), p_body->get_collision_mask(), aabb_min, aabb_max);
|
|
dynamicsWorld->getBroadphase()->aabbTest(aabb_min, aabb_max, recover_broad_result);
|
|
|
|
bool penetration = false;
|
|
|
|
// Perform narrowphase per shape
|
|
for (int kinIndex = p_body->get_kinematic_utilities()->shapes.size() - 1; 0 <= kinIndex; --kinIndex) {
|
|
const RigidBodyBullet::KinematicShape &kin_shape(p_body->get_kinematic_utilities()->shapes[kinIndex]);
|
|
if (!kin_shape.is_active()) {
|
|
continue;
|
|
}
|
|
|
|
if (kin_shape.shape->getShapeType() == CUSTOM_CONVEX_SHAPE_TYPE) {
|
|
// Skip rayshape in order to implement custom separation process
|
|
continue;
|
|
}
|
|
|
|
if (kin_shape.shape->getShapeType() == EMPTY_SHAPE_PROXYTYPE) {
|
|
continue;
|
|
}
|
|
|
|
btTransform shape_transform = p_body_position * kin_shape.transform;
|
|
shape_transform.getOrigin() += r_delta_recover_movement;
|
|
|
|
for (int i = recover_broad_result.results.size() - 1; 0 <= i; --i) {
|
|
btCollisionObject *otherObject = recover_broad_result.results[i].collision_object;
|
|
|
|
CollisionObjectBullet *gObj = static_cast<CollisionObjectBullet *>(otherObject->getUserPointer());
|
|
if (p_exclude.has(gObj->get_self())) {
|
|
continue;
|
|
}
|
|
|
|
if (p_infinite_inertia && !otherObject->isStaticOrKinematicObject()) {
|
|
otherObject->activate(); // Force activation of hitten rigid, soft body
|
|
continue;
|
|
} else if (!p_body->get_bt_collision_object()->checkCollideWith(otherObject) || !otherObject->checkCollideWith(p_body->get_bt_collision_object())) {
|
|
continue;
|
|
}
|
|
|
|
if (otherObject->getCollisionShape()->isCompound()) {
|
|
const btCompoundShape *cs = static_cast<const btCompoundShape *>(otherObject->getCollisionShape());
|
|
if (cs->getNumChildShapes() == 0) {
|
|
continue; // No shapes to depenetrate from.
|
|
}
|
|
int shape_idx = recover_broad_result.results[i].compound_child_index;
|
|
ERR_FAIL_COND_V(shape_idx < 0 || shape_idx >= cs->getNumChildShapes(), false);
|
|
|
|
if (cs->getChildShape(shape_idx)->isConvex()) {
|
|
if (RFP_convex_convex_test(kin_shape.shape, static_cast<const btConvexShape *>(cs->getChildShape(shape_idx)), otherObject, kinIndex, shape_idx, shape_transform, otherObject->getWorldTransform() * cs->getChildTransform(shape_idx), p_recover_movement_scale, r_delta_recover_movement, r_recover_result)) {
|
|
penetration = true;
|
|
}
|
|
} else {
|
|
if (RFP_convex_world_test(kin_shape.shape, cs->getChildShape(shape_idx), p_body->get_bt_collision_object(), otherObject, kinIndex, shape_idx, shape_transform, otherObject->getWorldTransform() * cs->getChildTransform(shape_idx), p_recover_movement_scale, r_delta_recover_movement, r_recover_result)) {
|
|
penetration = true;
|
|
}
|
|
}
|
|
} else if (otherObject->getCollisionShape()->isConvex()) { /// Execute GJK test against object shape
|
|
if (RFP_convex_convex_test(kin_shape.shape, static_cast<const btConvexShape *>(otherObject->getCollisionShape()), otherObject, kinIndex, 0, shape_transform, otherObject->getWorldTransform(), p_recover_movement_scale, r_delta_recover_movement, r_recover_result)) {
|
|
penetration = true;
|
|
}
|
|
} else {
|
|
if (RFP_convex_world_test(kin_shape.shape, otherObject->getCollisionShape(), p_body->get_bt_collision_object(), otherObject, kinIndex, 0, shape_transform, otherObject->getWorldTransform(), p_recover_movement_scale, r_delta_recover_movement, r_recover_result)) {
|
|
penetration = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return penetration;
|
|
}
|
|
|
|
bool SpaceBullet::RFP_convex_convex_test(const btConvexShape *p_shapeA, const btConvexShape *p_shapeB, btCollisionObject *p_objectB, int p_shapeId_A, int p_shapeId_B, const btTransform &p_transformA, const btTransform &p_transformB, btScalar p_recover_movement_scale, btVector3 &r_delta_recover_movement, RecoverResult *r_recover_result) {
|
|
// Initialize GJK input
|
|
btGjkPairDetector::ClosestPointInput gjk_input;
|
|
gjk_input.m_transformA = p_transformA;
|
|
// Avoid repeat penetrations
|
|
gjk_input.m_transformA.getOrigin() += r_delta_recover_movement;
|
|
gjk_input.m_transformB = p_transformB;
|
|
|
|
// Perform GJK test
|
|
btPointCollector result;
|
|
btGjkPairDetector gjk_pair_detector(p_shapeA, p_shapeB, gjk_simplex_solver, gjk_epa_pen_solver);
|
|
gjk_pair_detector.getClosestPoints(gjk_input, result, nullptr);
|
|
if (0 > result.m_distance) {
|
|
// Has penetration
|
|
r_delta_recover_movement += result.m_normalOnBInWorld * (result.m_distance * -1 * p_recover_movement_scale);
|
|
|
|
if (r_recover_result) {
|
|
if (result.m_distance < r_recover_result->penetration_distance) {
|
|
r_recover_result->hasPenetration = true;
|
|
r_recover_result->local_shape_most_recovered = p_shapeId_A;
|
|
r_recover_result->other_collision_object = p_objectB;
|
|
r_recover_result->other_compound_shape_index = p_shapeId_B;
|
|
r_recover_result->penetration_distance = result.m_distance;
|
|
r_recover_result->pointWorld = result.m_pointInWorld;
|
|
r_recover_result->normal = result.m_normalOnBInWorld;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool SpaceBullet::RFP_convex_world_test(const btConvexShape *p_shapeA, const btCollisionShape *p_shapeB, btCollisionObject *p_objectA, btCollisionObject *p_objectB, int p_shapeId_A, int p_shapeId_B, const btTransform &p_transformA, const btTransform &p_transformB, btScalar p_recover_movement_scale, btVector3 &r_delta_recover_movement, RecoverResult *r_recover_result) {
|
|
/// Contact test
|
|
|
|
btTransform tA(p_transformA);
|
|
// Avoid repeat penetrations
|
|
tA.getOrigin() += r_delta_recover_movement;
|
|
|
|
btCollisionObjectWrapper obA(nullptr, p_shapeA, p_objectA, tA, -1, p_shapeId_A);
|
|
btCollisionObjectWrapper obB(nullptr, p_shapeB, p_objectB, p_transformB, -1, p_shapeId_B);
|
|
|
|
btCollisionAlgorithm *algorithm = dispatcher->findAlgorithm(&obA, &obB, nullptr, BT_CONTACT_POINT_ALGORITHMS);
|
|
if (algorithm) {
|
|
GodotDeepPenetrationContactResultCallback contactPointResult(&obA, &obB);
|
|
//discrete collision detection query
|
|
algorithm->processCollision(&obA, &obB, dynamicsWorld->getDispatchInfo(), &contactPointResult);
|
|
|
|
algorithm->~btCollisionAlgorithm();
|
|
dispatcher->freeCollisionAlgorithm(algorithm);
|
|
|
|
if (contactPointResult.hasHit()) {
|
|
r_delta_recover_movement += contactPointResult.m_pointNormalWorld * (contactPointResult.m_penetration_distance * -1 * p_recover_movement_scale);
|
|
if (r_recover_result) {
|
|
if (contactPointResult.m_penetration_distance < r_recover_result->penetration_distance) {
|
|
r_recover_result->hasPenetration = true;
|
|
r_recover_result->local_shape_most_recovered = p_shapeId_A;
|
|
r_recover_result->other_collision_object = p_objectB;
|
|
r_recover_result->other_compound_shape_index = p_shapeId_B;
|
|
r_recover_result->penetration_distance = contactPointResult.m_penetration_distance;
|
|
r_recover_result->pointWorld = contactPointResult.m_pointWorld;
|
|
r_recover_result->normal = contactPointResult.m_pointNormalWorld;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
int SpaceBullet::add_separation_result(PhysicsServer::SeparationResult *r_result, const SpaceBullet::RecoverResult &p_recover_result, int p_shape_id, const btCollisionObject *p_other_object) const {
|
|
// optimize results (ignore non-colliding)
|
|
if (p_recover_result.penetration_distance < 0.0) {
|
|
const btRigidBody *btRigid = static_cast<const btRigidBody *>(p_other_object);
|
|
CollisionObjectBullet *collisionObject = static_cast<CollisionObjectBullet *>(p_other_object->getUserPointer());
|
|
|
|
r_result->collision_depth = p_recover_result.penetration_distance;
|
|
B_TO_G(p_recover_result.pointWorld, r_result->collision_point);
|
|
B_TO_G(p_recover_result.normal, r_result->collision_normal);
|
|
B_TO_G(btRigid->getVelocityInLocalPoint(p_recover_result.pointWorld - btRigid->getWorldTransform().getOrigin()), r_result->collider_velocity);
|
|
r_result->collision_local_shape = p_shape_id;
|
|
r_result->collider_id = collisionObject->get_instance_id();
|
|
r_result->collider = collisionObject->get_self();
|
|
r_result->collider_shape = p_recover_result.other_compound_shape_index;
|
|
|
|
return 1;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
int SpaceBullet::recover_from_penetration_ray(RigidBodyBullet *p_body, const btTransform &p_body_position, btScalar p_recover_movement_scale, bool p_infinite_inertia, int p_result_max, btVector3 &r_delta_recover_movement, PhysicsServer::SeparationResult *r_results) {
|
|
// Calculate the cumulative AABB of all shapes of the kinematic body
|
|
btVector3 aabb_min, aabb_max;
|
|
bool shapes_found = false;
|
|
|
|
for (int kinIndex = p_body->get_kinematic_utilities()->shapes.size() - 1; 0 <= kinIndex; --kinIndex) {
|
|
const RigidBodyBullet::KinematicShape &kin_shape(p_body->get_kinematic_utilities()->shapes[kinIndex]);
|
|
if (!kin_shape.is_active()) {
|
|
continue;
|
|
}
|
|
|
|
if (kin_shape.shape->getShapeType() != CUSTOM_CONVEX_SHAPE_TYPE) {
|
|
continue;
|
|
}
|
|
|
|
btTransform shape_transform = p_body_position * kin_shape.transform;
|
|
shape_transform.getOrigin() += r_delta_recover_movement;
|
|
|
|
btVector3 shape_aabb_min, shape_aabb_max;
|
|
kin_shape.shape->getAabb(shape_transform, shape_aabb_min, shape_aabb_max);
|
|
|
|
if (!shapes_found) {
|
|
aabb_min = shape_aabb_min;
|
|
aabb_max = shape_aabb_max;
|
|
shapes_found = true;
|
|
} else {
|
|
aabb_min.setX((aabb_min.x() < shape_aabb_min.x()) ? aabb_min.x() : shape_aabb_min.x());
|
|
aabb_min.setY((aabb_min.y() < shape_aabb_min.y()) ? aabb_min.y() : shape_aabb_min.y());
|
|
aabb_min.setZ((aabb_min.z() < shape_aabb_min.z()) ? aabb_min.z() : shape_aabb_min.z());
|
|
|
|
aabb_max.setX((aabb_max.x() > shape_aabb_max.x()) ? aabb_max.x() : shape_aabb_max.x());
|
|
aabb_max.setY((aabb_max.y() > shape_aabb_max.y()) ? aabb_max.y() : shape_aabb_max.y());
|
|
aabb_max.setZ((aabb_max.z() > shape_aabb_max.z()) ? aabb_max.z() : shape_aabb_max.z());
|
|
}
|
|
}
|
|
|
|
// If there are no shapes then there is no penetration either
|
|
if (!shapes_found) {
|
|
return 0;
|
|
}
|
|
|
|
// Perform broadphase test
|
|
RecoverPenetrationBroadPhaseCallback recover_broad_result(p_body->get_bt_collision_object(), p_body->get_collision_layer(), p_body->get_collision_mask(), aabb_min, aabb_max);
|
|
dynamicsWorld->getBroadphase()->aabbTest(aabb_min, aabb_max, recover_broad_result);
|
|
|
|
int ray_count = 0;
|
|
|
|
// Perform narrowphase per shape
|
|
for (int kinIndex = p_body->get_kinematic_utilities()->shapes.size() - 1; 0 <= kinIndex; --kinIndex) {
|
|
if (ray_count >= p_result_max) {
|
|
break;
|
|
}
|
|
|
|
const RigidBodyBullet::KinematicShape &kin_shape(p_body->get_kinematic_utilities()->shapes[kinIndex]);
|
|
if (!kin_shape.is_active()) {
|
|
continue;
|
|
}
|
|
|
|
if (kin_shape.shape->getShapeType() != CUSTOM_CONVEX_SHAPE_TYPE) {
|
|
continue;
|
|
}
|
|
|
|
btTransform shape_transform = p_body_position * kin_shape.transform;
|
|
shape_transform.getOrigin() += r_delta_recover_movement;
|
|
|
|
for (int i = recover_broad_result.results.size() - 1; 0 <= i; --i) {
|
|
btCollisionObject *otherObject = recover_broad_result.results[i].collision_object;
|
|
if (p_infinite_inertia && !otherObject->isStaticOrKinematicObject()) {
|
|
otherObject->activate(); // Force activation of hitten rigid, soft body
|
|
continue;
|
|
} else if (!p_body->get_bt_collision_object()->checkCollideWith(otherObject) || !otherObject->checkCollideWith(p_body->get_bt_collision_object())) {
|
|
continue;
|
|
}
|
|
|
|
if (otherObject->getCollisionShape()->isCompound()) {
|
|
const btCompoundShape *cs = static_cast<const btCompoundShape *>(otherObject->getCollisionShape());
|
|
int shape_idx = recover_broad_result.results[i].compound_child_index;
|
|
ERR_FAIL_COND_V(shape_idx < 0 || shape_idx >= cs->getNumChildShapes(), false);
|
|
|
|
RecoverResult recover_result;
|
|
if (RFP_convex_world_test(kin_shape.shape, cs->getChildShape(shape_idx), p_body->get_bt_collision_object(), otherObject, kinIndex, shape_idx, shape_transform, otherObject->getWorldTransform() * cs->getChildTransform(shape_idx), p_recover_movement_scale, r_delta_recover_movement, &recover_result)) {
|
|
ray_count = add_separation_result(&r_results[ray_count], recover_result, kinIndex, otherObject);
|
|
}
|
|
} else {
|
|
RecoverResult recover_result;
|
|
if (RFP_convex_world_test(kin_shape.shape, otherObject->getCollisionShape(), p_body->get_bt_collision_object(), otherObject, kinIndex, 0, shape_transform, otherObject->getWorldTransform(), p_recover_movement_scale, r_delta_recover_movement, &recover_result)) {
|
|
ray_count = add_separation_result(&r_results[ray_count], recover_result, kinIndex, otherObject);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return ray_count;
|
|
}
|