godot/modules/navigation/navigation_mesh_generator.cpp
Rémi Verschelde 1426cd3b3a
One Copyright Update to rule them all
As many open source projects have started doing it, we're removing the
current year from the copyright notice, so that we don't need to bump
it every year.

It seems like only the first year of publication is technically
relevant for copyright notices, and even that seems to be something
that many companies stopped listing altogether (in a version controlled
codebase, the commits are a much better source of date of publication
than a hardcoded copyright statement).

We also now list Godot Engine contributors first as we're collectively
the current maintainers of the project, and we clarify that the
"exclusive" copyright of the co-founders covers the timespan before
opensourcing (their further contributions are included as part of Godot
Engine contributors).

Also fixed "cf." Frenchism - it's meant as "refer to / see".

Backported from #70885.
2023-01-10 15:26:54 +01:00

803 lines
29 KiB
C++

/**************************************************************************/
/* navigation_mesh_generator.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#include "core/math/convex_hull.h"
#ifndef _3D_DISABLED
#include "navigation_mesh_generator.h"
//#include "core/math/quick_hull.h"
//#include "core/math/convex_hull.h"
#include "core/os/thread.h"
#include "scene/3d/mesh_instance.h"
#include "scene/3d/multimesh_instance.h"
#include "scene/3d/physics_body.h"
#include "scene/resources/box_shape.h"
#include "scene/resources/capsule_shape.h"
#include "scene/resources/concave_polygon_shape.h"
#include "scene/resources/convex_polygon_shape.h"
#include "scene/resources/cylinder_shape.h"
#include "scene/resources/height_map_shape.h"
#include "scene/resources/plane_shape.h"
#include "scene/resources/primitive_meshes.h"
#include "scene/resources/shape.h"
#include "scene/resources/sphere_shape.h"
#include "modules/modules_enabled.gen.h" // For csg, gridmap.
#ifdef TOOLS_ENABLED
#include "editor/editor_node.h"
#include "editor/editor_settings.h"
#endif
#ifdef MODULE_CSG_ENABLED
#include "modules/csg/csg_shape.h"
#endif
#ifdef MODULE_GRIDMAP_ENABLED
#include "modules/gridmap/grid_map.h"
#endif
NavigationMeshGenerator *NavigationMeshGenerator::singleton = NULL;
void NavigationMeshGenerator::_add_vertex(const Vector3 &p_vec3, Vector<float> &p_vertices) {
p_vertices.push_back(p_vec3.x);
p_vertices.push_back(p_vec3.y);
p_vertices.push_back(p_vec3.z);
}
void NavigationMeshGenerator::_add_mesh(const Ref<Mesh> &p_mesh, const Transform &p_xform, Vector<float> &p_vertices, Vector<int> &p_indices) {
int current_vertex_count;
for (int i = 0; i < p_mesh->get_surface_count(); i++) {
current_vertex_count = p_vertices.size() / 3;
if (p_mesh->surface_get_primitive_type(i) != Mesh::PRIMITIVE_TRIANGLES) {
continue;
}
int index_count = 0;
if (p_mesh->surface_get_format(i) & Mesh::ARRAY_FORMAT_INDEX) {
index_count = p_mesh->surface_get_array_index_len(i);
} else {
index_count = p_mesh->surface_get_array_len(i);
}
ERR_CONTINUE((index_count == 0 || (index_count % 3) != 0));
int face_count = index_count / 3;
Array a = p_mesh->surface_get_arrays(i);
PoolVector<Vector3> mesh_vertices = a[Mesh::ARRAY_VERTEX];
PoolVector<Vector3>::Read vr = mesh_vertices.read();
if (p_mesh->surface_get_format(i) & Mesh::ARRAY_FORMAT_INDEX) {
PoolVector<int> mesh_indices = a[Mesh::ARRAY_INDEX];
PoolVector<int>::Read ir = mesh_indices.read();
for (int j = 0; j < mesh_vertices.size(); j++) {
_add_vertex(p_xform.xform(vr[j]), p_vertices);
}
for (int j = 0; j < face_count; j++) {
// CCW
p_indices.push_back(current_vertex_count + (ir[j * 3 + 0]));
p_indices.push_back(current_vertex_count + (ir[j * 3 + 2]));
p_indices.push_back(current_vertex_count + (ir[j * 3 + 1]));
}
} else {
face_count = mesh_vertices.size() / 3;
for (int j = 0; j < face_count; j++) {
_add_vertex(p_xform.xform(vr[j * 3 + 0]), p_vertices);
_add_vertex(p_xform.xform(vr[j * 3 + 2]), p_vertices);
_add_vertex(p_xform.xform(vr[j * 3 + 1]), p_vertices);
p_indices.push_back(current_vertex_count + (j * 3 + 0));
p_indices.push_back(current_vertex_count + (j * 3 + 1));
p_indices.push_back(current_vertex_count + (j * 3 + 2));
}
}
}
}
void NavigationMeshGenerator::_add_mesh_array(const Array &p_array, const Transform &p_xform, Vector<float> &p_vertices, Vector<int> &p_indices) {
PoolVector<Vector3> mesh_vertices = p_array[Mesh::ARRAY_VERTEX];
PoolVector<Vector3>::Read vr = mesh_vertices.read();
PoolVector<int> mesh_indices = p_array[Mesh::ARRAY_INDEX];
PoolVector<int>::Read ir = mesh_indices.read();
const int face_count = mesh_indices.size() / 3;
const int current_vertex_count = p_vertices.size() / 3;
for (int j = 0; j < mesh_vertices.size(); j++) {
_add_vertex(p_xform.xform(vr[j]), p_vertices);
}
for (int j = 0; j < face_count; j++) {
// CCW
p_indices.push_back(current_vertex_count + (ir[j * 3 + 0]));
p_indices.push_back(current_vertex_count + (ir[j * 3 + 2]));
p_indices.push_back(current_vertex_count + (ir[j * 3 + 1]));
}
}
void NavigationMeshGenerator::_add_faces(const PoolVector3Array &p_faces, const Transform &p_xform, Vector<float> &p_vertices, Vector<int> &p_indices) {
int face_count = p_faces.size() / 3;
int current_vertex_count = p_vertices.size() / 3;
for (int j = 0; j < face_count; j++) {
_add_vertex(p_xform.xform(p_faces[j * 3 + 0]), p_vertices);
_add_vertex(p_xform.xform(p_faces[j * 3 + 1]), p_vertices);
_add_vertex(p_xform.xform(p_faces[j * 3 + 2]), p_vertices);
p_indices.push_back(current_vertex_count + (j * 3 + 0));
p_indices.push_back(current_vertex_count + (j * 3 + 2));
p_indices.push_back(current_vertex_count + (j * 3 + 1));
}
}
void NavigationMeshGenerator::_parse_geometry(const Transform &p_navmesh_xform, Node *p_node, Vector<float> &p_vertices, Vector<int> &p_indices, int p_generate_from, uint32_t p_collision_mask, bool p_recurse_children) {
if (Object::cast_to<MeshInstance>(p_node) && p_generate_from != NavigationMesh::PARSED_GEOMETRY_STATIC_COLLIDERS) {
MeshInstance *mesh_instance = Object::cast_to<MeshInstance>(p_node);
Ref<Mesh> mesh = mesh_instance->get_mesh();
if (mesh.is_valid()) {
_add_mesh(mesh, p_navmesh_xform * mesh_instance->get_global_transform(), p_vertices, p_indices);
}
}
if (Object::cast_to<MultiMeshInstance>(p_node) && p_generate_from != NavigationMesh::PARSED_GEOMETRY_STATIC_COLLIDERS) {
MultiMeshInstance *multimesh_instance = Object::cast_to<MultiMeshInstance>(p_node);
Ref<MultiMesh> multimesh = multimesh_instance->get_multimesh();
if (multimesh.is_valid()) {
Ref<Mesh> mesh = multimesh->get_mesh();
if (mesh.is_valid()) {
int n = multimesh->get_visible_instance_count();
if (n == -1) {
n = multimesh->get_instance_count();
}
for (int i = 0; i < n; i++) {
_add_mesh(mesh, p_navmesh_xform * multimesh_instance->get_global_transform() * multimesh->get_instance_transform(i), p_vertices, p_indices);
}
}
}
}
#ifdef MODULE_CSG_ENABLED
if (Object::cast_to<CSGShape>(p_node) && p_generate_from != NavigationMesh::PARSED_GEOMETRY_STATIC_COLLIDERS) {
CSGShape *csg_shape = Object::cast_to<CSGShape>(p_node);
Array meshes = csg_shape->get_meshes();
if (!meshes.empty()) {
Ref<Mesh> mesh = meshes[1];
if (mesh.is_valid()) {
_add_mesh(mesh, p_navmesh_xform * csg_shape->get_global_transform(), p_vertices, p_indices);
}
}
}
#endif
if (Object::cast_to<StaticBody>(p_node) && p_generate_from != NavigationMesh::PARSED_GEOMETRY_MESH_INSTANCES) {
StaticBody *static_body = Object::cast_to<StaticBody>(p_node);
if (static_body->get_collision_layer() & p_collision_mask) {
List<uint32_t> shape_owners;
static_body->get_shape_owners(&shape_owners);
for (List<uint32_t>::Element *E = shape_owners.front(); E; E = E->next()) {
uint32_t shape_owner = E->get();
const int shape_count = static_body->shape_owner_get_shape_count(shape_owner);
for (int i = 0; i < shape_count; i++) {
if (static_body->is_shape_owner_disabled(i)) {
continue;
}
Ref<Shape> s = static_body->shape_owner_get_shape(shape_owner, i);
if (s.is_null()) {
continue;
}
const Transform transform = p_navmesh_xform * static_body->get_global_transform() * static_body->shape_owner_get_transform(shape_owner);
BoxShape *box = Object::cast_to<BoxShape>(*s);
if (box) {
Array arr;
arr.resize(VS::ARRAY_MAX);
CubeMesh::create_mesh_array(arr, box->get_extents() * 2.0);
_add_mesh_array(arr, transform, p_vertices, p_indices);
}
CapsuleShape *capsule = Object::cast_to<CapsuleShape>(*s);
if (capsule) {
Array arr;
arr.resize(VS::ARRAY_MAX);
CapsuleMesh::create_mesh_array(arr, capsule->get_radius(), capsule->get_height() / 2.0);
_add_mesh_array(arr, transform, p_vertices, p_indices);
}
CylinderShape *cylinder = Object::cast_to<CylinderShape>(*s);
if (cylinder) {
Array arr;
arr.resize(VS::ARRAY_MAX);
CylinderMesh::create_mesh_array(arr, cylinder->get_radius(), cylinder->get_radius(), cylinder->get_height());
_add_mesh_array(arr, transform, p_vertices, p_indices);
}
SphereShape *sphere = Object::cast_to<SphereShape>(*s);
if (sphere) {
Array arr;
arr.resize(VS::ARRAY_MAX);
SphereMesh::create_mesh_array(arr, sphere->get_radius(), sphere->get_radius() * 2.0);
_add_mesh_array(arr, transform, p_vertices, p_indices);
}
ConcavePolygonShape *concave_polygon = Object::cast_to<ConcavePolygonShape>(*s);
if (concave_polygon) {
_add_faces(concave_polygon->get_faces(), transform, p_vertices, p_indices);
}
ConvexPolygonShape *convex_polygon = Object::cast_to<ConvexPolygonShape>(*s);
if (convex_polygon) {
Vector<Vector3> varr = Variant(convex_polygon->get_points());
Geometry::MeshData md;
Error err = ConvexHullComputer::convex_hull(varr, md);
if (err == OK) {
PoolVector3Array faces;
for (int j = 0; j < md.faces.size(); ++j) {
Geometry::MeshData::Face face = md.faces[j];
for (int k = 2; k < face.indices.size(); ++k) {
faces.push_back(md.vertices[face.indices[0]]);
faces.push_back(md.vertices[face.indices[k - 1]]);
faces.push_back(md.vertices[face.indices[k]]);
}
}
_add_faces(faces, transform, p_vertices, p_indices);
}
}
HeightMapShape *heightmap_shape = Object::cast_to<HeightMapShape>(*s);
if (heightmap_shape) {
int heightmap_depth = heightmap_shape->get_map_depth();
int heightmap_width = heightmap_shape->get_map_width();
if (heightmap_depth >= 2 && heightmap_width >= 2) {
const PoolRealArray &map_data = heightmap_shape->get_map_data();
Vector2 heightmap_gridsize(heightmap_width - 1, heightmap_depth - 1);
Vector2 start = heightmap_gridsize * -0.5;
PoolVector3Array vertex_array;
vertex_array.resize((heightmap_depth - 1) * (heightmap_width - 1) * 6);
int map_data_current_index = 0;
for (int d = 0; d < heightmap_depth - 1; d++) {
for (int w = 0; w < heightmap_width - 1; w++) {
if (map_data_current_index + 1 + heightmap_depth < map_data.size()) {
float top_left_height = map_data[map_data_current_index];
float top_right_height = map_data[map_data_current_index + 1];
float bottom_left_height = map_data[map_data_current_index + heightmap_depth];
float bottom_right_height = map_data[map_data_current_index + 1 + heightmap_depth];
Vector3 top_left = Vector3(start.x + w, top_left_height, start.y + d);
Vector3 top_right = Vector3(start.x + w + 1.0, top_right_height, start.y + d);
Vector3 bottom_left = Vector3(start.x + w, bottom_left_height, start.y + d + 1.0);
Vector3 bottom_right = Vector3(start.x + w + 1.0, bottom_right_height, start.y + d + 1.0);
vertex_array.push_back(top_right);
vertex_array.push_back(bottom_left);
vertex_array.push_back(top_left);
vertex_array.push_back(top_right);
vertex_array.push_back(bottom_right);
vertex_array.push_back(bottom_left);
}
map_data_current_index += 1;
}
}
if (vertex_array.size() > 0) {
_add_faces(vertex_array, transform, p_vertices, p_indices);
}
}
}
}
}
}
}
#ifdef MODULE_GRIDMAP_ENABLED
GridMap *gridmap = Object::cast_to<GridMap>(p_node);
if (gridmap) {
if (p_generate_from != NavigationMesh::PARSED_GEOMETRY_STATIC_COLLIDERS) {
Array meshes = gridmap->get_meshes();
Transform xform = gridmap->get_global_transform();
for (int i = 0; i < meshes.size(); i += 2) {
Ref<Mesh> mesh = meshes[i + 1];
if (mesh.is_valid()) {
Transform mesh_xform = meshes[i];
_add_mesh(mesh, p_navmesh_xform * xform * mesh_xform, p_vertices, p_indices);
}
}
}
if (p_generate_from != NavigationMesh::PARSED_GEOMETRY_MESH_INSTANCES && (gridmap->get_collision_layer() & p_collision_mask)) {
Array shapes = gridmap->get_collision_shapes();
for (int i = 0; i < shapes.size(); i += 2) {
RID shape = shapes[i + 1];
PhysicsServer::ShapeType type = PhysicsServer::get_singleton()->shape_get_type(shape);
Variant data = PhysicsServer::get_singleton()->shape_get_data(shape);
switch (type) {
case PhysicsServer::SHAPE_SPHERE: {
real_t radius = data;
Array arr;
arr.resize(VS::ARRAY_MAX);
SphereMesh::create_mesh_array(arr, radius, radius * 2.0);
_add_mesh_array(arr, shapes[i], p_vertices, p_indices);
} break;
case PhysicsServer::SHAPE_BOX: {
Vector3 extents = data;
Array arr;
arr.resize(VS::ARRAY_MAX);
CubeMesh::create_mesh_array(arr, extents * 2.0);
_add_mesh_array(arr, shapes[i], p_vertices, p_indices);
} break;
case PhysicsServer::SHAPE_CAPSULE: {
Dictionary dict = data;
real_t radius = dict["radius"];
real_t height = dict["height"];
Array arr;
arr.resize(VS::ARRAY_MAX);
CapsuleMesh::create_mesh_array(arr, radius, height * 0.5);
_add_mesh_array(arr, shapes[i], p_vertices, p_indices);
} break;
case PhysicsServer::SHAPE_CYLINDER: {
Dictionary dict = data;
real_t radius = dict["radius"];
real_t height = dict["height"];
Array arr;
arr.resize(VS::ARRAY_MAX);
CylinderMesh::create_mesh_array(arr, radius, radius, height);
_add_mesh_array(arr, shapes[i], p_vertices, p_indices);
} break;
case PhysicsServer::SHAPE_CONVEX_POLYGON: {
PoolVector3Array vertices = data;
Geometry::MeshData md;
Error err = ConvexHullComputer::convex_hull(vertices, md);
if (err == OK) {
PoolVector3Array faces;
for (int j = 0; j < md.faces.size(); ++j) {
Geometry::MeshData::Face face = md.faces[j];
for (int k = 2; k < face.indices.size(); ++k) {
faces.push_back(md.vertices[face.indices[0]]);
faces.push_back(md.vertices[face.indices[k - 1]]);
faces.push_back(md.vertices[face.indices[k]]);
}
}
_add_faces(faces, shapes[i], p_vertices, p_indices);
}
} break;
case PhysicsServer::SHAPE_CONCAVE_POLYGON: {
PoolVector3Array faces = data;
_add_faces(faces, shapes[i], p_vertices, p_indices);
} break;
case PhysicsServer::SHAPE_HEIGHTMAP: {
Dictionary dict = data;
///< dict( int:"width", int:"depth",float:"cell_size", float_array:"heights"
int heightmap_depth = dict["depth"];
int heightmap_width = dict["width"];
if (heightmap_depth >= 2 && heightmap_width >= 2) {
const PoolRealArray &map_data = dict["heights"];
Vector2 heightmap_gridsize(heightmap_width - 1, heightmap_depth - 1);
Vector2 start = heightmap_gridsize * -0.5;
PoolVector3Array vertex_array;
vertex_array.resize((heightmap_depth - 1) * (heightmap_width - 1) * 6);
int map_data_current_index = 0;
for (int d = 0; d < heightmap_depth - 1; d++) {
for (int w = 0; w < heightmap_width - 1; w++) {
if (map_data_current_index + 1 + heightmap_depth < map_data.size()) {
float top_left_height = map_data[map_data_current_index];
float top_right_height = map_data[map_data_current_index + 1];
float bottom_left_height = map_data[map_data_current_index + heightmap_depth];
float bottom_right_height = map_data[map_data_current_index + 1 + heightmap_depth];
Vector3 top_left = Vector3(start.x + w, top_left_height, start.y + d);
Vector3 top_right = Vector3(start.x + w + 1.0, top_right_height, start.y + d);
Vector3 bottom_left = Vector3(start.x + w, bottom_left_height, start.y + d + 1.0);
Vector3 bottom_right = Vector3(start.x + w + 1.0, bottom_right_height, start.y + d + 1.0);
vertex_array.push_back(top_right);
vertex_array.push_back(bottom_left);
vertex_array.push_back(top_left);
vertex_array.push_back(top_right);
vertex_array.push_back(bottom_right);
vertex_array.push_back(bottom_left);
}
map_data_current_index += 1;
}
}
if (vertex_array.size() > 0) {
_add_faces(vertex_array, shapes[i], p_vertices, p_indices);
}
}
} break;
default: {
WARN_PRINT("Unsupported collision shape type.");
} break;
}
}
}
}
#endif
if (p_recurse_children) {
for (int i = 0; i < p_node->get_child_count(); i++) {
_parse_geometry(p_navmesh_xform, p_node->get_child(i), p_vertices, p_indices, p_generate_from, p_collision_mask, p_recurse_children);
}
}
}
void NavigationMeshGenerator::_convert_detail_mesh_to_native_navigation_mesh(const rcPolyMeshDetail *p_detail_mesh, Ref<NavigationMesh> p_nav_mesh) {
PoolVector<Vector3> nav_vertices;
for (int i = 0; i < p_detail_mesh->nverts; i++) {
const float *v = &p_detail_mesh->verts[i * 3];
nav_vertices.append(Vector3(v[0], v[1], v[2]));
}
p_nav_mesh->set_vertices(nav_vertices);
for (int i = 0; i < p_detail_mesh->nmeshes; i++) {
const unsigned int *m = &p_detail_mesh->meshes[i * 4];
const unsigned int bverts = m[0];
const unsigned int btris = m[2];
const unsigned int ntris = m[3];
const unsigned char *tris = &p_detail_mesh->tris[btris * 4];
for (unsigned int j = 0; j < ntris; j++) {
Vector<int> nav_indices;
nav_indices.resize(3);
// Polygon order in recast is opposite than godot's
nav_indices.write[0] = ((int)(bverts + tris[j * 4 + 0]));
nav_indices.write[1] = ((int)(bverts + tris[j * 4 + 2]));
nav_indices.write[2] = ((int)(bverts + tris[j * 4 + 1]));
p_nav_mesh->add_polygon(nav_indices);
}
}
}
void NavigationMeshGenerator::_build_recast_navigation_mesh(
Ref<NavigationMesh> p_nav_mesh,
#ifdef TOOLS_ENABLED
EditorProgress *ep,
#endif
rcHeightfield *hf,
rcCompactHeightfield *chf,
rcContourSet *cset,
rcPolyMesh *poly_mesh,
rcPolyMeshDetail *detail_mesh,
Vector<float> &vertices,
Vector<int> &indices) {
rcContext ctx;
#ifdef TOOLS_ENABLED
if (ep)
ep->step(TTR("Setting up Configuration..."), 1);
#endif
const float *verts = vertices.ptr();
const int nverts = vertices.size() / 3;
const int *tris = indices.ptr();
const int ntris = indices.size() / 3;
float bmin[3], bmax[3];
rcCalcBounds(verts, nverts, bmin, bmax);
rcConfig cfg;
memset(&cfg, 0, sizeof(cfg));
cfg.cs = p_nav_mesh->get_cell_size();
cfg.ch = p_nav_mesh->get_cell_height();
cfg.walkableSlopeAngle = p_nav_mesh->get_agent_max_slope();
cfg.walkableHeight = (int)Math::ceil(p_nav_mesh->get_agent_height() / cfg.ch);
cfg.walkableClimb = (int)Math::floor(p_nav_mesh->get_agent_max_climb() / cfg.ch);
cfg.walkableRadius = (int)Math::ceil(p_nav_mesh->get_agent_radius() / cfg.cs);
cfg.maxEdgeLen = (int)(p_nav_mesh->get_edge_max_length() / p_nav_mesh->get_cell_size());
cfg.maxSimplificationError = p_nav_mesh->get_edge_max_error();
cfg.minRegionArea = (int)(p_nav_mesh->get_region_min_size() * p_nav_mesh->get_region_min_size());
cfg.mergeRegionArea = (int)(p_nav_mesh->get_region_merge_size() * p_nav_mesh->get_region_merge_size());
cfg.maxVertsPerPoly = (int)p_nav_mesh->get_verts_per_poly();
cfg.detailSampleDist = MAX(p_nav_mesh->get_cell_size() * p_nav_mesh->get_detail_sample_distance(), 0.1f);
cfg.detailSampleMaxError = p_nav_mesh->get_cell_height() * p_nav_mesh->get_detail_sample_max_error();
cfg.bmin[0] = bmin[0];
cfg.bmin[1] = bmin[1];
cfg.bmin[2] = bmin[2];
cfg.bmax[0] = bmax[0];
cfg.bmax[1] = bmax[1];
cfg.bmax[2] = bmax[2];
AABB baking_aabb = p_nav_mesh->get_filter_baking_aabb();
bool aabb_has_no_volume = baking_aabb.has_no_area();
if (!aabb_has_no_volume) {
Vector3 baking_aabb_offset = p_nav_mesh->get_filter_baking_aabb_offset();
cfg.bmin[0] = baking_aabb.position[0] + baking_aabb_offset.x;
cfg.bmin[1] = baking_aabb.position[1] + baking_aabb_offset.y;
cfg.bmin[2] = baking_aabb.position[2] + baking_aabb_offset.z;
cfg.bmax[0] = cfg.bmin[0] + baking_aabb.size[0];
cfg.bmax[1] = cfg.bmin[1] + baking_aabb.size[1];
cfg.bmax[2] = cfg.bmin[2] + baking_aabb.size[2];
}
#ifdef TOOLS_ENABLED
if (ep)
ep->step(TTR("Calculating grid size..."), 2);
#endif
rcCalcGridSize(cfg.bmin, cfg.bmax, cfg.cs, &cfg.width, &cfg.height);
// ~30000000 seems to be around sweetspot where Editor baking breaks
if ((cfg.width * cfg.height) > 30000000) {
WARN_PRINT("NavigationMesh baking process will likely fail."
"\nSource geometry is suspiciously big for the current Cell Size and Cell Height in the NavMesh Resource bake settings."
"\nIf baking does not fail, the resulting NavigationMesh will create serious pathfinding performance issues."
"\nIt is advised to increase Cell Size and/or Cell Height in the NavMesh Resource bake settings or reduce the size / scale of the source geometry.");
}
#ifdef TOOLS_ENABLED
if (ep)
ep->step(TTR("Creating heightfield..."), 3);
#endif
hf = rcAllocHeightfield();
ERR_FAIL_COND(!hf);
ERR_FAIL_COND(!rcCreateHeightfield(&ctx, *hf, cfg.width, cfg.height, cfg.bmin, cfg.bmax, cfg.cs, cfg.ch));
#ifdef TOOLS_ENABLED
if (ep)
ep->step(TTR("Marking walkable triangles..."), 4);
#endif
{
Vector<unsigned char> tri_areas;
tri_areas.resize(ntris);
ERR_FAIL_COND(tri_areas.size() == 0);
memset(tri_areas.ptrw(), 0, ntris * sizeof(unsigned char));
rcMarkWalkableTriangles(&ctx, cfg.walkableSlopeAngle, verts, nverts, tris, ntris, tri_areas.ptrw());
ERR_FAIL_COND(!rcRasterizeTriangles(&ctx, verts, nverts, tris, tri_areas.ptr(), ntris, *hf, cfg.walkableClimb));
}
if (p_nav_mesh->get_filter_low_hanging_obstacles()) {
rcFilterLowHangingWalkableObstacles(&ctx, cfg.walkableClimb, *hf);
}
if (p_nav_mesh->get_filter_ledge_spans()) {
rcFilterLedgeSpans(&ctx, cfg.walkableHeight, cfg.walkableClimb, *hf);
}
if (p_nav_mesh->get_filter_walkable_low_height_spans()) {
rcFilterWalkableLowHeightSpans(&ctx, cfg.walkableHeight, *hf);
}
#ifdef TOOLS_ENABLED
if (ep)
ep->step(TTR("Constructing compact heightfield..."), 5);
#endif
chf = rcAllocCompactHeightfield();
ERR_FAIL_COND(!chf);
ERR_FAIL_COND(!rcBuildCompactHeightfield(&ctx, cfg.walkableHeight, cfg.walkableClimb, *hf, *chf));
rcFreeHeightField(hf);
hf = 0;
#ifdef TOOLS_ENABLED
if (ep)
ep->step(TTR("Eroding walkable area..."), 6);
#endif
ERR_FAIL_COND(!rcErodeWalkableArea(&ctx, cfg.walkableRadius, *chf));
#ifdef TOOLS_ENABLED
if (ep)
ep->step(TTR("Partitioning..."), 7);
#endif
if (p_nav_mesh->get_sample_partition_type() == NavigationMesh::SAMPLE_PARTITION_WATERSHED) {
ERR_FAIL_COND(!rcBuildDistanceField(&ctx, *chf));
ERR_FAIL_COND(!rcBuildRegions(&ctx, *chf, 0, cfg.minRegionArea, cfg.mergeRegionArea));
} else if (p_nav_mesh->get_sample_partition_type() == NavigationMesh::SAMPLE_PARTITION_MONOTONE) {
ERR_FAIL_COND(!rcBuildRegionsMonotone(&ctx, *chf, 0, cfg.minRegionArea, cfg.mergeRegionArea));
} else {
ERR_FAIL_COND(!rcBuildLayerRegions(&ctx, *chf, 0, cfg.minRegionArea));
}
#ifdef TOOLS_ENABLED
if (ep)
ep->step(TTR("Creating contours..."), 8);
#endif
cset = rcAllocContourSet();
ERR_FAIL_COND(!cset);
ERR_FAIL_COND(!rcBuildContours(&ctx, *chf, cfg.maxSimplificationError, cfg.maxEdgeLen, *cset));
#ifdef TOOLS_ENABLED
if (ep)
ep->step(TTR("Creating polymesh..."), 9);
#endif
poly_mesh = rcAllocPolyMesh();
ERR_FAIL_COND(!poly_mesh);
ERR_FAIL_COND(!rcBuildPolyMesh(&ctx, *cset, cfg.maxVertsPerPoly, *poly_mesh));
detail_mesh = rcAllocPolyMeshDetail();
ERR_FAIL_COND(!detail_mesh);
ERR_FAIL_COND(!rcBuildPolyMeshDetail(&ctx, *poly_mesh, *chf, cfg.detailSampleDist, cfg.detailSampleMaxError, *detail_mesh));
rcFreeCompactHeightfield(chf);
chf = 0;
rcFreeContourSet(cset);
cset = 0;
#ifdef TOOLS_ENABLED
if (ep)
ep->step(TTR("Converting to native navigation mesh..."), 10);
#endif
_convert_detail_mesh_to_native_navigation_mesh(detail_mesh, p_nav_mesh);
rcFreePolyMesh(poly_mesh);
poly_mesh = 0;
rcFreePolyMeshDetail(detail_mesh);
detail_mesh = 0;
}
NavigationMeshGenerator *NavigationMeshGenerator::get_singleton() {
return singleton;
}
NavigationMeshGenerator::NavigationMeshGenerator() {
singleton = this;
}
NavigationMeshGenerator::~NavigationMeshGenerator() {
}
void NavigationMeshGenerator::bake(Ref<NavigationMesh> p_nav_mesh, Node *p_node) {
ERR_FAIL_COND_MSG(!p_nav_mesh.is_valid(), "Invalid Navigation Mesh");
#ifdef TOOLS_ENABLED
EditorProgress *ep(nullptr);
// FIXME
#endif
#if 0
// After discussion on devchat disabled EditorProgress for now as it is not thread-safe and uses hacks and Main::iteration() for steps.
// EditorProgress randomly crashes the Engine when the bake function is used with a thread e.g. inside Editor with a tool script and procedural navigation
// This was not a problem in older versions as previously Godot was unable to (re)bake NavigationMesh at runtime.
// If EditorProgress is fixed and made thread-safe this should be enabled again.
if (Engine::get_singleton()->is_editor_hint()) {
ep = memnew(EditorProgress("bake", TTR("Navigation Mesh Generator Setup:"), 11));
}
if (ep)
ep->step(TTR("Parsing Geometry..."), 0);
#endif
Vector<float> vertices;
Vector<int> indices;
List<Node *> parse_nodes;
if (p_nav_mesh->get_source_geometry_mode() == NavigationMesh::SOURCE_GEOMETRY_NAVMESH_CHILDREN) {
parse_nodes.push_back(p_node);
} else {
p_node->get_tree()->get_nodes_in_group(p_nav_mesh->get_source_group_name(), &parse_nodes);
}
Transform navmesh_xform = Object::cast_to<Spatial>(p_node)->get_global_transform().affine_inverse();
for (const List<Node *>::Element *E = parse_nodes.front(); E; E = E->next()) {
NavigationMesh::ParsedGeometryType geometry_type = p_nav_mesh->get_parsed_geometry_type();
uint32_t collision_mask = p_nav_mesh->get_collision_mask();
bool recurse_children = p_nav_mesh->get_source_geometry_mode() != NavigationMesh::SOURCE_GEOMETRY_GROUPS_EXPLICIT;
_parse_geometry(navmesh_xform, E->get(), vertices, indices, geometry_type, collision_mask, recurse_children);
}
if (vertices.size() > 0 && indices.size() > 0) {
rcHeightfield *hf = nullptr;
rcCompactHeightfield *chf = nullptr;
rcContourSet *cset = nullptr;
rcPolyMesh *poly_mesh = nullptr;
rcPolyMeshDetail *detail_mesh = nullptr;
_build_recast_navigation_mesh(
p_nav_mesh,
#ifdef TOOLS_ENABLED
ep,
#endif
hf,
chf,
cset,
poly_mesh,
detail_mesh,
vertices,
indices);
rcFreeHeightField(hf);
hf = 0;
rcFreeCompactHeightfield(chf);
chf = 0;
rcFreeContourSet(cset);
cset = 0;
rcFreePolyMesh(poly_mesh);
poly_mesh = 0;
rcFreePolyMeshDetail(detail_mesh);
detail_mesh = 0;
}
#ifdef TOOLS_ENABLED
if (ep)
ep->step(TTR("Done!"), 11);
if (ep)
memdelete(ep);
#endif
p_nav_mesh->property_list_changed_notify();
}
void NavigationMeshGenerator::clear(Ref<NavigationMesh> p_nav_mesh) {
if (p_nav_mesh.is_valid()) {
p_nav_mesh->clear_polygons();
p_nav_mesh->set_vertices(PoolVector<Vector3>());
}
}
void NavigationMeshGenerator::_bind_methods() {
ClassDB::bind_method(D_METHOD("bake", "nav_mesh", "root_node"), &NavigationMeshGenerator::bake);
ClassDB::bind_method(D_METHOD("clear", "nav_mesh"), &NavigationMeshGenerator::clear);
}
#endif