godot/thirdparty/openssl/crypto/whrlpool/wp_block.c

781 lines
34 KiB
C

/**
* The Whirlpool hashing function.
*
* <P>
* <b>References</b>
*
* <P>
* The Whirlpool algorithm was developed by
* <a href="mailto:pbarreto@scopus.com.br">Paulo S. L. M. Barreto</a> and
* <a href="mailto:vincent.rijmen@cryptomathic.com">Vincent Rijmen</a>.
*
* See
* P.S.L.M. Barreto, V. Rijmen,
* ``The Whirlpool hashing function,''
* NESSIE submission, 2000 (tweaked version, 2001),
* <https://www.cosic.esat.kuleuven.ac.be/nessie/workshop/submissions/whirlpool.zip>
*
* Based on "@version 3.0 (2003.03.12)" by Paulo S.L.M. Barreto and
* Vincent Rijmen. Lookup "reference implementations" on
* <http://planeta.terra.com.br/informatica/paulobarreto/>
*
* =============================================================================
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include "wp_locl.h"
#include <string.h>
typedef unsigned char u8;
#if (defined(_WIN32) || defined(_WIN64)) && !defined(__MINGW32)
typedef unsigned __int64 u64;
#elif defined(__arch64__)
typedef unsigned long u64;
#else
typedef unsigned long long u64;
#endif
#define ROUNDS 10
#define STRICT_ALIGNMENT
#if defined(__i386) || defined(__i386__) || \
defined(__x86_64) || defined(__x86_64__) || \
defined(_M_IX86) || defined(_M_AMD64) || defined(_M_X64)
/*
* Well, formally there're couple of other architectures, which permit
* unaligned loads, specifically those not crossing cache lines, IA-64 and
* PowerPC...
*/
# undef STRICT_ALIGNMENT
#endif
#undef SMALL_REGISTER_BANK
#if defined(__i386) || defined(__i386__) || defined(_M_IX86)
# define SMALL_REGISTER_BANK
# if defined(WHIRLPOOL_ASM)
# ifndef OPENSSL_SMALL_FOOTPRINT
/*
* it appears that for elder non-MMX
* CPUs this is actually faster!
*/
# define OPENSSL_SMALL_FOOTPRINT
# endif
# define GO_FOR_MMX(ctx,inp,num) do { \
extern unsigned int OPENSSL_ia32cap_P[]; \
void whirlpool_block_mmx(void *,const void *,size_t); \
if (!(OPENSSL_ia32cap_P[0] & (1<<23))) break; \
whirlpool_block_mmx(ctx->H.c,inp,num); return; \
} while (0)
# endif
#endif
#undef ROTATE
#if defined(_MSC_VER)
# if defined(_WIN64) /* applies to both IA-64 and AMD64 */
# pragma intrinsic(_rotl64)
# define ROTATE(a,n) _rotl64((a),n)
# endif
#elif defined(__GNUC__) && __GNUC__>=2
# if defined(__x86_64) || defined(__x86_64__)
# if defined(L_ENDIAN)
# define ROTATE(a,n) ({ u64 ret; asm ("rolq %1,%0" \
: "=r"(ret) : "J"(n),"0"(a) : "cc"); ret; })
# elif defined(B_ENDIAN)
/*
* Most will argue that x86_64 is always little-endian. Well, yes, but
* then we have stratus.com who has modified gcc to "emulate"
* big-endian on x86. Is there evidence that they [or somebody else]
* won't do same for x86_64? Naturally no. And this line is waiting
* ready for that brave soul:-)
*/
# define ROTATE(a,n) ({ u64 ret; asm ("rorq %1,%0" \
: "=r"(ret) : "J"(n),"0"(a) : "cc"); ret; })
# endif
# elif defined(__ia64) || defined(__ia64__)
# if defined(L_ENDIAN)
# define ROTATE(a,n) ({ u64 ret; asm ("shrp %0=%1,%1,%2" \
: "=r"(ret) : "r"(a),"M"(64-(n))); ret; })
# elif defined(B_ENDIAN)
# define ROTATE(a,n) ({ u64 ret; asm ("shrp %0=%1,%1,%2" \
: "=r"(ret) : "r"(a),"M"(n)); ret; })
# endif
# endif
#endif
#if defined(OPENSSL_SMALL_FOOTPRINT)
# if !defined(ROTATE)
# if defined(L_ENDIAN) /* little-endians have to rotate left */
# define ROTATE(i,n) ((i)<<(n) ^ (i)>>(64-n))
# elif defined(B_ENDIAN) /* big-endians have to rotate right */
# define ROTATE(i,n) ((i)>>(n) ^ (i)<<(64-n))
# endif
# endif
# if defined(ROTATE) && !defined(STRICT_ALIGNMENT)
# define STRICT_ALIGNMENT /* ensure smallest table size */
# endif
#endif
/*
* Table size depends on STRICT_ALIGNMENT and whether or not endian-
* specific ROTATE macro is defined. If STRICT_ALIGNMENT is not
* defined, which is normally the case on x86[_64] CPUs, the table is
* 4KB large unconditionally. Otherwise if ROTATE is defined, the
* table is 2KB large, and otherwise - 16KB. 2KB table requires a
* whole bunch of additional rotations, but I'm willing to "trade,"
* because 16KB table certainly trashes L1 cache. I wish all CPUs
* could handle unaligned load as 4KB table doesn't trash the cache,
* nor does it require additional rotations.
*/
/*
* Note that every Cn macro expands as two loads: one byte load and
* one quadword load. One can argue that that many single-byte loads
* is too excessive, as one could load a quadword and "milk" it for
* eight 8-bit values instead. Well, yes, but in order to do so *and*
* avoid excessive loads you have to accomodate a handful of 64-bit
* values in the register bank and issue a bunch of shifts and mask.
* It's a tradeoff: loads vs. shift and mask in big register bank[!].
* On most CPUs eight single-byte loads are faster and I let other
* ones to depend on smart compiler to fold byte loads if beneficial.
* Hand-coded assembler would be another alternative:-)
*/
#ifdef STRICT_ALIGNMENT
# if defined(ROTATE)
# define N 1
# define LL(c0,c1,c2,c3,c4,c5,c6,c7) c0,c1,c2,c3,c4,c5,c6,c7
# define C0(K,i) (Cx.q[K.c[(i)*8+0]])
# define C1(K,i) ROTATE(Cx.q[K.c[(i)*8+1]],8)
# define C2(K,i) ROTATE(Cx.q[K.c[(i)*8+2]],16)
# define C3(K,i) ROTATE(Cx.q[K.c[(i)*8+3]],24)
# define C4(K,i) ROTATE(Cx.q[K.c[(i)*8+4]],32)
# define C5(K,i) ROTATE(Cx.q[K.c[(i)*8+5]],40)
# define C6(K,i) ROTATE(Cx.q[K.c[(i)*8+6]],48)
# define C7(K,i) ROTATE(Cx.q[K.c[(i)*8+7]],56)
# else
# define N 8
# define LL(c0,c1,c2,c3,c4,c5,c6,c7) c0,c1,c2,c3,c4,c5,c6,c7, \
c7,c0,c1,c2,c3,c4,c5,c6, \
c6,c7,c0,c1,c2,c3,c4,c5, \
c5,c6,c7,c0,c1,c2,c3,c4, \
c4,c5,c6,c7,c0,c1,c2,c3, \
c3,c4,c5,c6,c7,c0,c1,c2, \
c2,c3,c4,c5,c6,c7,c0,c1, \
c1,c2,c3,c4,c5,c6,c7,c0
# define C0(K,i) (Cx.q[0+8*K.c[(i)*8+0]])
# define C1(K,i) (Cx.q[1+8*K.c[(i)*8+1]])
# define C2(K,i) (Cx.q[2+8*K.c[(i)*8+2]])
# define C3(K,i) (Cx.q[3+8*K.c[(i)*8+3]])
# define C4(K,i) (Cx.q[4+8*K.c[(i)*8+4]])
# define C5(K,i) (Cx.q[5+8*K.c[(i)*8+5]])
# define C6(K,i) (Cx.q[6+8*K.c[(i)*8+6]])
# define C7(K,i) (Cx.q[7+8*K.c[(i)*8+7]])
# endif
#else
# define N 2
# define LL(c0,c1,c2,c3,c4,c5,c6,c7) c0,c1,c2,c3,c4,c5,c6,c7, \
c0,c1,c2,c3,c4,c5,c6,c7
# define C0(K,i) (((u64*)(Cx.c+0))[2*K.c[(i)*8+0]])
# define C1(K,i) (((u64*)(Cx.c+7))[2*K.c[(i)*8+1]])
# define C2(K,i) (((u64*)(Cx.c+6))[2*K.c[(i)*8+2]])
# define C3(K,i) (((u64*)(Cx.c+5))[2*K.c[(i)*8+3]])
# define C4(K,i) (((u64*)(Cx.c+4))[2*K.c[(i)*8+4]])
# define C5(K,i) (((u64*)(Cx.c+3))[2*K.c[(i)*8+5]])
# define C6(K,i) (((u64*)(Cx.c+2))[2*K.c[(i)*8+6]])
# define C7(K,i) (((u64*)(Cx.c+1))[2*K.c[(i)*8+7]])
#endif
static const
union {
u8 c[(256 * N + ROUNDS) * sizeof(u64)];
u64 q[(256 * N + ROUNDS)];
} Cx = {
{
/* Note endian-neutral representation:-) */
LL(0x18, 0x18, 0x60, 0x18, 0xc0, 0x78, 0x30, 0xd8),
LL(0x23, 0x23, 0x8c, 0x23, 0x05, 0xaf, 0x46, 0x26),
LL(0xc6, 0xc6, 0x3f, 0xc6, 0x7e, 0xf9, 0x91, 0xb8),
LL(0xe8, 0xe8, 0x87, 0xe8, 0x13, 0x6f, 0xcd, 0xfb),
LL(0x87, 0x87, 0x26, 0x87, 0x4c, 0xa1, 0x13, 0xcb),
LL(0xb8, 0xb8, 0xda, 0xb8, 0xa9, 0x62, 0x6d, 0x11),
LL(0x01, 0x01, 0x04, 0x01, 0x08, 0x05, 0x02, 0x09),
LL(0x4f, 0x4f, 0x21, 0x4f, 0x42, 0x6e, 0x9e, 0x0d),
LL(0x36, 0x36, 0xd8, 0x36, 0xad, 0xee, 0x6c, 0x9b),
LL(0xa6, 0xa6, 0xa2, 0xa6, 0x59, 0x04, 0x51, 0xff),
LL(0xd2, 0xd2, 0x6f, 0xd2, 0xde, 0xbd, 0xb9, 0x0c),
LL(0xf5, 0xf5, 0xf3, 0xf5, 0xfb, 0x06, 0xf7, 0x0e),
LL(0x79, 0x79, 0xf9, 0x79, 0xef, 0x80, 0xf2, 0x96),
LL(0x6f, 0x6f, 0xa1, 0x6f, 0x5f, 0xce, 0xde, 0x30),
LL(0x91, 0x91, 0x7e, 0x91, 0xfc, 0xef, 0x3f, 0x6d),
LL(0x52, 0x52, 0x55, 0x52, 0xaa, 0x07, 0xa4, 0xf8),
LL(0x60, 0x60, 0x9d, 0x60, 0x27, 0xfd, 0xc0, 0x47),
LL(0xbc, 0xbc, 0xca, 0xbc, 0x89, 0x76, 0x65, 0x35),
LL(0x9b, 0x9b, 0x56, 0x9b, 0xac, 0xcd, 0x2b, 0x37),
LL(0x8e, 0x8e, 0x02, 0x8e, 0x04, 0x8c, 0x01, 0x8a),
LL(0xa3, 0xa3, 0xb6, 0xa3, 0x71, 0x15, 0x5b, 0xd2),
LL(0x0c, 0x0c, 0x30, 0x0c, 0x60, 0x3c, 0x18, 0x6c),
LL(0x7b, 0x7b, 0xf1, 0x7b, 0xff, 0x8a, 0xf6, 0x84),
LL(0x35, 0x35, 0xd4, 0x35, 0xb5, 0xe1, 0x6a, 0x80),
LL(0x1d, 0x1d, 0x74, 0x1d, 0xe8, 0x69, 0x3a, 0xf5),
LL(0xe0, 0xe0, 0xa7, 0xe0, 0x53, 0x47, 0xdd, 0xb3),
LL(0xd7, 0xd7, 0x7b, 0xd7, 0xf6, 0xac, 0xb3, 0x21),
LL(0xc2, 0xc2, 0x2f, 0xc2, 0x5e, 0xed, 0x99, 0x9c),
LL(0x2e, 0x2e, 0xb8, 0x2e, 0x6d, 0x96, 0x5c, 0x43),
LL(0x4b, 0x4b, 0x31, 0x4b, 0x62, 0x7a, 0x96, 0x29),
LL(0xfe, 0xfe, 0xdf, 0xfe, 0xa3, 0x21, 0xe1, 0x5d),
LL(0x57, 0x57, 0x41, 0x57, 0x82, 0x16, 0xae, 0xd5),
LL(0x15, 0x15, 0x54, 0x15, 0xa8, 0x41, 0x2a, 0xbd),
LL(0x77, 0x77, 0xc1, 0x77, 0x9f, 0xb6, 0xee, 0xe8),
LL(0x37, 0x37, 0xdc, 0x37, 0xa5, 0xeb, 0x6e, 0x92),
LL(0xe5, 0xe5, 0xb3, 0xe5, 0x7b, 0x56, 0xd7, 0x9e),
LL(0x9f, 0x9f, 0x46, 0x9f, 0x8c, 0xd9, 0x23, 0x13),
LL(0xf0, 0xf0, 0xe7, 0xf0, 0xd3, 0x17, 0xfd, 0x23),
LL(0x4a, 0x4a, 0x35, 0x4a, 0x6a, 0x7f, 0x94, 0x20),
LL(0xda, 0xda, 0x4f, 0xda, 0x9e, 0x95, 0xa9, 0x44),
LL(0x58, 0x58, 0x7d, 0x58, 0xfa, 0x25, 0xb0, 0xa2),
LL(0xc9, 0xc9, 0x03, 0xc9, 0x06, 0xca, 0x8f, 0xcf),
LL(0x29, 0x29, 0xa4, 0x29, 0x55, 0x8d, 0x52, 0x7c),
LL(0x0a, 0x0a, 0x28, 0x0a, 0x50, 0x22, 0x14, 0x5a),
LL(0xb1, 0xb1, 0xfe, 0xb1, 0xe1, 0x4f, 0x7f, 0x50),
LL(0xa0, 0xa0, 0xba, 0xa0, 0x69, 0x1a, 0x5d, 0xc9),
LL(0x6b, 0x6b, 0xb1, 0x6b, 0x7f, 0xda, 0xd6, 0x14),
LL(0x85, 0x85, 0x2e, 0x85, 0x5c, 0xab, 0x17, 0xd9),
LL(0xbd, 0xbd, 0xce, 0xbd, 0x81, 0x73, 0x67, 0x3c),
LL(0x5d, 0x5d, 0x69, 0x5d, 0xd2, 0x34, 0xba, 0x8f),
LL(0x10, 0x10, 0x40, 0x10, 0x80, 0x50, 0x20, 0x90),
LL(0xf4, 0xf4, 0xf7, 0xf4, 0xf3, 0x03, 0xf5, 0x07),
LL(0xcb, 0xcb, 0x0b, 0xcb, 0x16, 0xc0, 0x8b, 0xdd),
LL(0x3e, 0x3e, 0xf8, 0x3e, 0xed, 0xc6, 0x7c, 0xd3),
LL(0x05, 0x05, 0x14, 0x05, 0x28, 0x11, 0x0a, 0x2d),
LL(0x67, 0x67, 0x81, 0x67, 0x1f, 0xe6, 0xce, 0x78),
LL(0xe4, 0xe4, 0xb7, 0xe4, 0x73, 0x53, 0xd5, 0x97),
LL(0x27, 0x27, 0x9c, 0x27, 0x25, 0xbb, 0x4e, 0x02),
LL(0x41, 0x41, 0x19, 0x41, 0x32, 0x58, 0x82, 0x73),
LL(0x8b, 0x8b, 0x16, 0x8b, 0x2c, 0x9d, 0x0b, 0xa7),
LL(0xa7, 0xa7, 0xa6, 0xa7, 0x51, 0x01, 0x53, 0xf6),
LL(0x7d, 0x7d, 0xe9, 0x7d, 0xcf, 0x94, 0xfa, 0xb2),
LL(0x95, 0x95, 0x6e, 0x95, 0xdc, 0xfb, 0x37, 0x49),
LL(0xd8, 0xd8, 0x47, 0xd8, 0x8e, 0x9f, 0xad, 0x56),
LL(0xfb, 0xfb, 0xcb, 0xfb, 0x8b, 0x30, 0xeb, 0x70),
LL(0xee, 0xee, 0x9f, 0xee, 0x23, 0x71, 0xc1, 0xcd),
LL(0x7c, 0x7c, 0xed, 0x7c, 0xc7, 0x91, 0xf8, 0xbb),
LL(0x66, 0x66, 0x85, 0x66, 0x17, 0xe3, 0xcc, 0x71),
LL(0xdd, 0xdd, 0x53, 0xdd, 0xa6, 0x8e, 0xa7, 0x7b),
LL(0x17, 0x17, 0x5c, 0x17, 0xb8, 0x4b, 0x2e, 0xaf),
LL(0x47, 0x47, 0x01, 0x47, 0x02, 0x46, 0x8e, 0x45),
LL(0x9e, 0x9e, 0x42, 0x9e, 0x84, 0xdc, 0x21, 0x1a),
LL(0xca, 0xca, 0x0f, 0xca, 0x1e, 0xc5, 0x89, 0xd4),
LL(0x2d, 0x2d, 0xb4, 0x2d, 0x75, 0x99, 0x5a, 0x58),
LL(0xbf, 0xbf, 0xc6, 0xbf, 0x91, 0x79, 0x63, 0x2e),
LL(0x07, 0x07, 0x1c, 0x07, 0x38, 0x1b, 0x0e, 0x3f),
LL(0xad, 0xad, 0x8e, 0xad, 0x01, 0x23, 0x47, 0xac),
LL(0x5a, 0x5a, 0x75, 0x5a, 0xea, 0x2f, 0xb4, 0xb0),
LL(0x83, 0x83, 0x36, 0x83, 0x6c, 0xb5, 0x1b, 0xef),
LL(0x33, 0x33, 0xcc, 0x33, 0x85, 0xff, 0x66, 0xb6),
LL(0x63, 0x63, 0x91, 0x63, 0x3f, 0xf2, 0xc6, 0x5c),
LL(0x02, 0x02, 0x08, 0x02, 0x10, 0x0a, 0x04, 0x12),
LL(0xaa, 0xaa, 0x92, 0xaa, 0x39, 0x38, 0x49, 0x93),
LL(0x71, 0x71, 0xd9, 0x71, 0xaf, 0xa8, 0xe2, 0xde),
LL(0xc8, 0xc8, 0x07, 0xc8, 0x0e, 0xcf, 0x8d, 0xc6),
LL(0x19, 0x19, 0x64, 0x19, 0xc8, 0x7d, 0x32, 0xd1),
LL(0x49, 0x49, 0x39, 0x49, 0x72, 0x70, 0x92, 0x3b),
LL(0xd9, 0xd9, 0x43, 0xd9, 0x86, 0x9a, 0xaf, 0x5f),
LL(0xf2, 0xf2, 0xef, 0xf2, 0xc3, 0x1d, 0xf9, 0x31),
LL(0xe3, 0xe3, 0xab, 0xe3, 0x4b, 0x48, 0xdb, 0xa8),
LL(0x5b, 0x5b, 0x71, 0x5b, 0xe2, 0x2a, 0xb6, 0xb9),
LL(0x88, 0x88, 0x1a, 0x88, 0x34, 0x92, 0x0d, 0xbc),
LL(0x9a, 0x9a, 0x52, 0x9a, 0xa4, 0xc8, 0x29, 0x3e),
LL(0x26, 0x26, 0x98, 0x26, 0x2d, 0xbe, 0x4c, 0x0b),
LL(0x32, 0x32, 0xc8, 0x32, 0x8d, 0xfa, 0x64, 0xbf),
LL(0xb0, 0xb0, 0xfa, 0xb0, 0xe9, 0x4a, 0x7d, 0x59),
LL(0xe9, 0xe9, 0x83, 0xe9, 0x1b, 0x6a, 0xcf, 0xf2),
LL(0x0f, 0x0f, 0x3c, 0x0f, 0x78, 0x33, 0x1e, 0x77),
LL(0xd5, 0xd5, 0x73, 0xd5, 0xe6, 0xa6, 0xb7, 0x33),
LL(0x80, 0x80, 0x3a, 0x80, 0x74, 0xba, 0x1d, 0xf4),
LL(0xbe, 0xbe, 0xc2, 0xbe, 0x99, 0x7c, 0x61, 0x27),
LL(0xcd, 0xcd, 0x13, 0xcd, 0x26, 0xde, 0x87, 0xeb),
LL(0x34, 0x34, 0xd0, 0x34, 0xbd, 0xe4, 0x68, 0x89),
LL(0x48, 0x48, 0x3d, 0x48, 0x7a, 0x75, 0x90, 0x32),
LL(0xff, 0xff, 0xdb, 0xff, 0xab, 0x24, 0xe3, 0x54),
LL(0x7a, 0x7a, 0xf5, 0x7a, 0xf7, 0x8f, 0xf4, 0x8d),
LL(0x90, 0x90, 0x7a, 0x90, 0xf4, 0xea, 0x3d, 0x64),
LL(0x5f, 0x5f, 0x61, 0x5f, 0xc2, 0x3e, 0xbe, 0x9d),
LL(0x20, 0x20, 0x80, 0x20, 0x1d, 0xa0, 0x40, 0x3d),
LL(0x68, 0x68, 0xbd, 0x68, 0x67, 0xd5, 0xd0, 0x0f),
LL(0x1a, 0x1a, 0x68, 0x1a, 0xd0, 0x72, 0x34, 0xca),
LL(0xae, 0xae, 0x82, 0xae, 0x19, 0x2c, 0x41, 0xb7),
LL(0xb4, 0xb4, 0xea, 0xb4, 0xc9, 0x5e, 0x75, 0x7d),
LL(0x54, 0x54, 0x4d, 0x54, 0x9a, 0x19, 0xa8, 0xce),
LL(0x93, 0x93, 0x76, 0x93, 0xec, 0xe5, 0x3b, 0x7f),
LL(0x22, 0x22, 0x88, 0x22, 0x0d, 0xaa, 0x44, 0x2f),
LL(0x64, 0x64, 0x8d, 0x64, 0x07, 0xe9, 0xc8, 0x63),
LL(0xf1, 0xf1, 0xe3, 0xf1, 0xdb, 0x12, 0xff, 0x2a),
LL(0x73, 0x73, 0xd1, 0x73, 0xbf, 0xa2, 0xe6, 0xcc),
LL(0x12, 0x12, 0x48, 0x12, 0x90, 0x5a, 0x24, 0x82),
LL(0x40, 0x40, 0x1d, 0x40, 0x3a, 0x5d, 0x80, 0x7a),
LL(0x08, 0x08, 0x20, 0x08, 0x40, 0x28, 0x10, 0x48),
LL(0xc3, 0xc3, 0x2b, 0xc3, 0x56, 0xe8, 0x9b, 0x95),
LL(0xec, 0xec, 0x97, 0xec, 0x33, 0x7b, 0xc5, 0xdf),
LL(0xdb, 0xdb, 0x4b, 0xdb, 0x96, 0x90, 0xab, 0x4d),
LL(0xa1, 0xa1, 0xbe, 0xa1, 0x61, 0x1f, 0x5f, 0xc0),
LL(0x8d, 0x8d, 0x0e, 0x8d, 0x1c, 0x83, 0x07, 0x91),
LL(0x3d, 0x3d, 0xf4, 0x3d, 0xf5, 0xc9, 0x7a, 0xc8),
LL(0x97, 0x97, 0x66, 0x97, 0xcc, 0xf1, 0x33, 0x5b),
LL(0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
LL(0xcf, 0xcf, 0x1b, 0xcf, 0x36, 0xd4, 0x83, 0xf9),
LL(0x2b, 0x2b, 0xac, 0x2b, 0x45, 0x87, 0x56, 0x6e),
LL(0x76, 0x76, 0xc5, 0x76, 0x97, 0xb3, 0xec, 0xe1),
LL(0x82, 0x82, 0x32, 0x82, 0x64, 0xb0, 0x19, 0xe6),
LL(0xd6, 0xd6, 0x7f, 0xd6, 0xfe, 0xa9, 0xb1, 0x28),
LL(0x1b, 0x1b, 0x6c, 0x1b, 0xd8, 0x77, 0x36, 0xc3),
LL(0xb5, 0xb5, 0xee, 0xb5, 0xc1, 0x5b, 0x77, 0x74),
LL(0xaf, 0xaf, 0x86, 0xaf, 0x11, 0x29, 0x43, 0xbe),
LL(0x6a, 0x6a, 0xb5, 0x6a, 0x77, 0xdf, 0xd4, 0x1d),
LL(0x50, 0x50, 0x5d, 0x50, 0xba, 0x0d, 0xa0, 0xea),
LL(0x45, 0x45, 0x09, 0x45, 0x12, 0x4c, 0x8a, 0x57),
LL(0xf3, 0xf3, 0xeb, 0xf3, 0xcb, 0x18, 0xfb, 0x38),
LL(0x30, 0x30, 0xc0, 0x30, 0x9d, 0xf0, 0x60, 0xad),
LL(0xef, 0xef, 0x9b, 0xef, 0x2b, 0x74, 0xc3, 0xc4),
LL(0x3f, 0x3f, 0xfc, 0x3f, 0xe5, 0xc3, 0x7e, 0xda),
LL(0x55, 0x55, 0x49, 0x55, 0x92, 0x1c, 0xaa, 0xc7),
LL(0xa2, 0xa2, 0xb2, 0xa2, 0x79, 0x10, 0x59, 0xdb),
LL(0xea, 0xea, 0x8f, 0xea, 0x03, 0x65, 0xc9, 0xe9),
LL(0x65, 0x65, 0x89, 0x65, 0x0f, 0xec, 0xca, 0x6a),
LL(0xba, 0xba, 0xd2, 0xba, 0xb9, 0x68, 0x69, 0x03),
LL(0x2f, 0x2f, 0xbc, 0x2f, 0x65, 0x93, 0x5e, 0x4a),
LL(0xc0, 0xc0, 0x27, 0xc0, 0x4e, 0xe7, 0x9d, 0x8e),
LL(0xde, 0xde, 0x5f, 0xde, 0xbe, 0x81, 0xa1, 0x60),
LL(0x1c, 0x1c, 0x70, 0x1c, 0xe0, 0x6c, 0x38, 0xfc),
LL(0xfd, 0xfd, 0xd3, 0xfd, 0xbb, 0x2e, 0xe7, 0x46),
LL(0x4d, 0x4d, 0x29, 0x4d, 0x52, 0x64, 0x9a, 0x1f),
LL(0x92, 0x92, 0x72, 0x92, 0xe4, 0xe0, 0x39, 0x76),
LL(0x75, 0x75, 0xc9, 0x75, 0x8f, 0xbc, 0xea, 0xfa),
LL(0x06, 0x06, 0x18, 0x06, 0x30, 0x1e, 0x0c, 0x36),
LL(0x8a, 0x8a, 0x12, 0x8a, 0x24, 0x98, 0x09, 0xae),
LL(0xb2, 0xb2, 0xf2, 0xb2, 0xf9, 0x40, 0x79, 0x4b),
LL(0xe6, 0xe6, 0xbf, 0xe6, 0x63, 0x59, 0xd1, 0x85),
LL(0x0e, 0x0e, 0x38, 0x0e, 0x70, 0x36, 0x1c, 0x7e),
LL(0x1f, 0x1f, 0x7c, 0x1f, 0xf8, 0x63, 0x3e, 0xe7),
LL(0x62, 0x62, 0x95, 0x62, 0x37, 0xf7, 0xc4, 0x55),
LL(0xd4, 0xd4, 0x77, 0xd4, 0xee, 0xa3, 0xb5, 0x3a),
LL(0xa8, 0xa8, 0x9a, 0xa8, 0x29, 0x32, 0x4d, 0x81),
LL(0x96, 0x96, 0x62, 0x96, 0xc4, 0xf4, 0x31, 0x52),
LL(0xf9, 0xf9, 0xc3, 0xf9, 0x9b, 0x3a, 0xef, 0x62),
LL(0xc5, 0xc5, 0x33, 0xc5, 0x66, 0xf6, 0x97, 0xa3),
LL(0x25, 0x25, 0x94, 0x25, 0x35, 0xb1, 0x4a, 0x10),
LL(0x59, 0x59, 0x79, 0x59, 0xf2, 0x20, 0xb2, 0xab),
LL(0x84, 0x84, 0x2a, 0x84, 0x54, 0xae, 0x15, 0xd0),
LL(0x72, 0x72, 0xd5, 0x72, 0xb7, 0xa7, 0xe4, 0xc5),
LL(0x39, 0x39, 0xe4, 0x39, 0xd5, 0xdd, 0x72, 0xec),
LL(0x4c, 0x4c, 0x2d, 0x4c, 0x5a, 0x61, 0x98, 0x16),
LL(0x5e, 0x5e, 0x65, 0x5e, 0xca, 0x3b, 0xbc, 0x94),
LL(0x78, 0x78, 0xfd, 0x78, 0xe7, 0x85, 0xf0, 0x9f),
LL(0x38, 0x38, 0xe0, 0x38, 0xdd, 0xd8, 0x70, 0xe5),
LL(0x8c, 0x8c, 0x0a, 0x8c, 0x14, 0x86, 0x05, 0x98),
LL(0xd1, 0xd1, 0x63, 0xd1, 0xc6, 0xb2, 0xbf, 0x17),
LL(0xa5, 0xa5, 0xae, 0xa5, 0x41, 0x0b, 0x57, 0xe4),
LL(0xe2, 0xe2, 0xaf, 0xe2, 0x43, 0x4d, 0xd9, 0xa1),
LL(0x61, 0x61, 0x99, 0x61, 0x2f, 0xf8, 0xc2, 0x4e),
LL(0xb3, 0xb3, 0xf6, 0xb3, 0xf1, 0x45, 0x7b, 0x42),
LL(0x21, 0x21, 0x84, 0x21, 0x15, 0xa5, 0x42, 0x34),
LL(0x9c, 0x9c, 0x4a, 0x9c, 0x94, 0xd6, 0x25, 0x08),
LL(0x1e, 0x1e, 0x78, 0x1e, 0xf0, 0x66, 0x3c, 0xee),
LL(0x43, 0x43, 0x11, 0x43, 0x22, 0x52, 0x86, 0x61),
LL(0xc7, 0xc7, 0x3b, 0xc7, 0x76, 0xfc, 0x93, 0xb1),
LL(0xfc, 0xfc, 0xd7, 0xfc, 0xb3, 0x2b, 0xe5, 0x4f),
LL(0x04, 0x04, 0x10, 0x04, 0x20, 0x14, 0x08, 0x24),
LL(0x51, 0x51, 0x59, 0x51, 0xb2, 0x08, 0xa2, 0xe3),
LL(0x99, 0x99, 0x5e, 0x99, 0xbc, 0xc7, 0x2f, 0x25),
LL(0x6d, 0x6d, 0xa9, 0x6d, 0x4f, 0xc4, 0xda, 0x22),
LL(0x0d, 0x0d, 0x34, 0x0d, 0x68, 0x39, 0x1a, 0x65),
LL(0xfa, 0xfa, 0xcf, 0xfa, 0x83, 0x35, 0xe9, 0x79),
LL(0xdf, 0xdf, 0x5b, 0xdf, 0xb6, 0x84, 0xa3, 0x69),
LL(0x7e, 0x7e, 0xe5, 0x7e, 0xd7, 0x9b, 0xfc, 0xa9),
LL(0x24, 0x24, 0x90, 0x24, 0x3d, 0xb4, 0x48, 0x19),
LL(0x3b, 0x3b, 0xec, 0x3b, 0xc5, 0xd7, 0x76, 0xfe),
LL(0xab, 0xab, 0x96, 0xab, 0x31, 0x3d, 0x4b, 0x9a),
LL(0xce, 0xce, 0x1f, 0xce, 0x3e, 0xd1, 0x81, 0xf0),
LL(0x11, 0x11, 0x44, 0x11, 0x88, 0x55, 0x22, 0x99),
LL(0x8f, 0x8f, 0x06, 0x8f, 0x0c, 0x89, 0x03, 0x83),
LL(0x4e, 0x4e, 0x25, 0x4e, 0x4a, 0x6b, 0x9c, 0x04),
LL(0xb7, 0xb7, 0xe6, 0xb7, 0xd1, 0x51, 0x73, 0x66),
LL(0xeb, 0xeb, 0x8b, 0xeb, 0x0b, 0x60, 0xcb, 0xe0),
LL(0x3c, 0x3c, 0xf0, 0x3c, 0xfd, 0xcc, 0x78, 0xc1),
LL(0x81, 0x81, 0x3e, 0x81, 0x7c, 0xbf, 0x1f, 0xfd),
LL(0x94, 0x94, 0x6a, 0x94, 0xd4, 0xfe, 0x35, 0x40),
LL(0xf7, 0xf7, 0xfb, 0xf7, 0xeb, 0x0c, 0xf3, 0x1c),
LL(0xb9, 0xb9, 0xde, 0xb9, 0xa1, 0x67, 0x6f, 0x18),
LL(0x13, 0x13, 0x4c, 0x13, 0x98, 0x5f, 0x26, 0x8b),
LL(0x2c, 0x2c, 0xb0, 0x2c, 0x7d, 0x9c, 0x58, 0x51),
LL(0xd3, 0xd3, 0x6b, 0xd3, 0xd6, 0xb8, 0xbb, 0x05),
LL(0xe7, 0xe7, 0xbb, 0xe7, 0x6b, 0x5c, 0xd3, 0x8c),
LL(0x6e, 0x6e, 0xa5, 0x6e, 0x57, 0xcb, 0xdc, 0x39),
LL(0xc4, 0xc4, 0x37, 0xc4, 0x6e, 0xf3, 0x95, 0xaa),
LL(0x03, 0x03, 0x0c, 0x03, 0x18, 0x0f, 0x06, 0x1b),
LL(0x56, 0x56, 0x45, 0x56, 0x8a, 0x13, 0xac, 0xdc),
LL(0x44, 0x44, 0x0d, 0x44, 0x1a, 0x49, 0x88, 0x5e),
LL(0x7f, 0x7f, 0xe1, 0x7f, 0xdf, 0x9e, 0xfe, 0xa0),
LL(0xa9, 0xa9, 0x9e, 0xa9, 0x21, 0x37, 0x4f, 0x88),
LL(0x2a, 0x2a, 0xa8, 0x2a, 0x4d, 0x82, 0x54, 0x67),
LL(0xbb, 0xbb, 0xd6, 0xbb, 0xb1, 0x6d, 0x6b, 0x0a),
LL(0xc1, 0xc1, 0x23, 0xc1, 0x46, 0xe2, 0x9f, 0x87),
LL(0x53, 0x53, 0x51, 0x53, 0xa2, 0x02, 0xa6, 0xf1),
LL(0xdc, 0xdc, 0x57, 0xdc, 0xae, 0x8b, 0xa5, 0x72),
LL(0x0b, 0x0b, 0x2c, 0x0b, 0x58, 0x27, 0x16, 0x53),
LL(0x9d, 0x9d, 0x4e, 0x9d, 0x9c, 0xd3, 0x27, 0x01),
LL(0x6c, 0x6c, 0xad, 0x6c, 0x47, 0xc1, 0xd8, 0x2b),
LL(0x31, 0x31, 0xc4, 0x31, 0x95, 0xf5, 0x62, 0xa4),
LL(0x74, 0x74, 0xcd, 0x74, 0x87, 0xb9, 0xe8, 0xf3),
LL(0xf6, 0xf6, 0xff, 0xf6, 0xe3, 0x09, 0xf1, 0x15),
LL(0x46, 0x46, 0x05, 0x46, 0x0a, 0x43, 0x8c, 0x4c),
LL(0xac, 0xac, 0x8a, 0xac, 0x09, 0x26, 0x45, 0xa5),
LL(0x89, 0x89, 0x1e, 0x89, 0x3c, 0x97, 0x0f, 0xb5),
LL(0x14, 0x14, 0x50, 0x14, 0xa0, 0x44, 0x28, 0xb4),
LL(0xe1, 0xe1, 0xa3, 0xe1, 0x5b, 0x42, 0xdf, 0xba),
LL(0x16, 0x16, 0x58, 0x16, 0xb0, 0x4e, 0x2c, 0xa6),
LL(0x3a, 0x3a, 0xe8, 0x3a, 0xcd, 0xd2, 0x74, 0xf7),
LL(0x69, 0x69, 0xb9, 0x69, 0x6f, 0xd0, 0xd2, 0x06),
LL(0x09, 0x09, 0x24, 0x09, 0x48, 0x2d, 0x12, 0x41),
LL(0x70, 0x70, 0xdd, 0x70, 0xa7, 0xad, 0xe0, 0xd7),
LL(0xb6, 0xb6, 0xe2, 0xb6, 0xd9, 0x54, 0x71, 0x6f),
LL(0xd0, 0xd0, 0x67, 0xd0, 0xce, 0xb7, 0xbd, 0x1e),
LL(0xed, 0xed, 0x93, 0xed, 0x3b, 0x7e, 0xc7, 0xd6),
LL(0xcc, 0xcc, 0x17, 0xcc, 0x2e, 0xdb, 0x85, 0xe2),
LL(0x42, 0x42, 0x15, 0x42, 0x2a, 0x57, 0x84, 0x68),
LL(0x98, 0x98, 0x5a, 0x98, 0xb4, 0xc2, 0x2d, 0x2c),
LL(0xa4, 0xa4, 0xaa, 0xa4, 0x49, 0x0e, 0x55, 0xed),
LL(0x28, 0x28, 0xa0, 0x28, 0x5d, 0x88, 0x50, 0x75),
LL(0x5c, 0x5c, 0x6d, 0x5c, 0xda, 0x31, 0xb8, 0x86),
LL(0xf8, 0xf8, 0xc7, 0xf8, 0x93, 0x3f, 0xed, 0x6b),
LL(0x86, 0x86, 0x22, 0x86, 0x44, 0xa4, 0x11, 0xc2),
#define RC (&(Cx.q[256*N]))
0x18, 0x23, 0xc6, 0xe8, 0x87, 0xb8, 0x01, 0x4f,
/* rc[ROUNDS] */
0x36, 0xa6, 0xd2, 0xf5, 0x79, 0x6f, 0x91, 0x52, 0x60, 0xbc, 0x9b,
0x8e, 0xa3, 0x0c, 0x7b, 0x35, 0x1d, 0xe0, 0xd7, 0xc2, 0x2e, 0x4b,
0xfe, 0x57, 0x15, 0x77, 0x37, 0xe5, 0x9f, 0xf0, 0x4a, 0xda, 0x58,
0xc9, 0x29, 0x0a, 0xb1, 0xa0, 0x6b, 0x85, 0xbd, 0x5d, 0x10, 0xf4,
0xcb, 0x3e, 0x05, 0x67, 0xe4, 0x27, 0x41, 0x8b, 0xa7, 0x7d, 0x95,
0xd8, 0xfb, 0xee, 0x7c, 0x66, 0xdd, 0x17, 0x47, 0x9e, 0xca, 0x2d,
0xbf, 0x07, 0xad, 0x5a, 0x83, 0x33
}
};
void whirlpool_block(WHIRLPOOL_CTX *ctx, const void *inp, size_t n)
{
int r;
const u8 *p = inp;
union {
u64 q[8];
u8 c[64];
} S, K, *H = (void *)ctx->H.q;
#ifdef GO_FOR_MMX
GO_FOR_MMX(ctx, inp, n);
#endif
do {
#ifdef OPENSSL_SMALL_FOOTPRINT
u64 L[8];
int i;
for (i = 0; i < 64; i++)
S.c[i] = (K.c[i] = H->c[i]) ^ p[i];
for (r = 0; r < ROUNDS; r++) {
for (i = 0; i < 8; i++) {
L[i] = i ? 0 : RC[r];
L[i] ^= C0(K, i) ^ C1(K, (i - 1) & 7) ^
C2(K, (i - 2) & 7) ^ C3(K, (i - 3) & 7) ^
C4(K, (i - 4) & 7) ^ C5(K, (i - 5) & 7) ^
C6(K, (i - 6) & 7) ^ C7(K, (i - 7) & 7);
}
memcpy(K.q, L, 64);
for (i = 0; i < 8; i++) {
L[i] ^= C0(S, i) ^ C1(S, (i - 1) & 7) ^
C2(S, (i - 2) & 7) ^ C3(S, (i - 3) & 7) ^
C4(S, (i - 4) & 7) ^ C5(S, (i - 5) & 7) ^
C6(S, (i - 6) & 7) ^ C7(S, (i - 7) & 7);
}
memcpy(S.q, L, 64);
}
for (i = 0; i < 64; i++)
H->c[i] ^= S.c[i] ^ p[i];
#else
u64 L0, L1, L2, L3, L4, L5, L6, L7;
# ifdef STRICT_ALIGNMENT
if ((size_t)p & 7) {
memcpy(S.c, p, 64);
S.q[0] ^= (K.q[0] = H->q[0]);
S.q[1] ^= (K.q[1] = H->q[1]);
S.q[2] ^= (K.q[2] = H->q[2]);
S.q[3] ^= (K.q[3] = H->q[3]);
S.q[4] ^= (K.q[4] = H->q[4]);
S.q[5] ^= (K.q[5] = H->q[5]);
S.q[6] ^= (K.q[6] = H->q[6]);
S.q[7] ^= (K.q[7] = H->q[7]);
} else
# endif
{
const u64 *pa = (const u64 *)p;
S.q[0] = (K.q[0] = H->q[0]) ^ pa[0];
S.q[1] = (K.q[1] = H->q[1]) ^ pa[1];
S.q[2] = (K.q[2] = H->q[2]) ^ pa[2];
S.q[3] = (K.q[3] = H->q[3]) ^ pa[3];
S.q[4] = (K.q[4] = H->q[4]) ^ pa[4];
S.q[5] = (K.q[5] = H->q[5]) ^ pa[5];
S.q[6] = (K.q[6] = H->q[6]) ^ pa[6];
S.q[7] = (K.q[7] = H->q[7]) ^ pa[7];
}
for (r = 0; r < ROUNDS; r++) {
# ifdef SMALL_REGISTER_BANK
L0 = C0(K, 0) ^ C1(K, 7) ^ C2(K, 6) ^ C3(K, 5) ^
C4(K, 4) ^ C5(K, 3) ^ C6(K, 2) ^ C7(K, 1) ^ RC[r];
L1 = C0(K, 1) ^ C1(K, 0) ^ C2(K, 7) ^ C3(K, 6) ^
C4(K, 5) ^ C5(K, 4) ^ C6(K, 3) ^ C7(K, 2);
L2 = C0(K, 2) ^ C1(K, 1) ^ C2(K, 0) ^ C3(K, 7) ^
C4(K, 6) ^ C5(K, 5) ^ C6(K, 4) ^ C7(K, 3);
L3 = C0(K, 3) ^ C1(K, 2) ^ C2(K, 1) ^ C3(K, 0) ^
C4(K, 7) ^ C5(K, 6) ^ C6(K, 5) ^ C7(K, 4);
L4 = C0(K, 4) ^ C1(K, 3) ^ C2(K, 2) ^ C3(K, 1) ^
C4(K, 0) ^ C5(K, 7) ^ C6(K, 6) ^ C7(K, 5);
L5 = C0(K, 5) ^ C1(K, 4) ^ C2(K, 3) ^ C3(K, 2) ^
C4(K, 1) ^ C5(K, 0) ^ C6(K, 7) ^ C7(K, 6);
L6 = C0(K, 6) ^ C1(K, 5) ^ C2(K, 4) ^ C3(K, 3) ^
C4(K, 2) ^ C5(K, 1) ^ C6(K, 0) ^ C7(K, 7);
L7 = C0(K, 7) ^ C1(K, 6) ^ C2(K, 5) ^ C3(K, 4) ^
C4(K, 3) ^ C5(K, 2) ^ C6(K, 1) ^ C7(K, 0);
K.q[0] = L0;
K.q[1] = L1;
K.q[2] = L2;
K.q[3] = L3;
K.q[4] = L4;
K.q[5] = L5;
K.q[6] = L6;
K.q[7] = L7;
L0 ^= C0(S, 0) ^ C1(S, 7) ^ C2(S, 6) ^ C3(S, 5) ^
C4(S, 4) ^ C5(S, 3) ^ C6(S, 2) ^ C7(S, 1);
L1 ^= C0(S, 1) ^ C1(S, 0) ^ C2(S, 7) ^ C3(S, 6) ^
C4(S, 5) ^ C5(S, 4) ^ C6(S, 3) ^ C7(S, 2);
L2 ^= C0(S, 2) ^ C1(S, 1) ^ C2(S, 0) ^ C3(S, 7) ^
C4(S, 6) ^ C5(S, 5) ^ C6(S, 4) ^ C7(S, 3);
L3 ^= C0(S, 3) ^ C1(S, 2) ^ C2(S, 1) ^ C3(S, 0) ^
C4(S, 7) ^ C5(S, 6) ^ C6(S, 5) ^ C7(S, 4);
L4 ^= C0(S, 4) ^ C1(S, 3) ^ C2(S, 2) ^ C3(S, 1) ^
C4(S, 0) ^ C5(S, 7) ^ C6(S, 6) ^ C7(S, 5);
L5 ^= C0(S, 5) ^ C1(S, 4) ^ C2(S, 3) ^ C3(S, 2) ^
C4(S, 1) ^ C5(S, 0) ^ C6(S, 7) ^ C7(S, 6);
L6 ^= C0(S, 6) ^ C1(S, 5) ^ C2(S, 4) ^ C3(S, 3) ^
C4(S, 2) ^ C5(S, 1) ^ C6(S, 0) ^ C7(S, 7);
L7 ^= C0(S, 7) ^ C1(S, 6) ^ C2(S, 5) ^ C3(S, 4) ^
C4(S, 3) ^ C5(S, 2) ^ C6(S, 1) ^ C7(S, 0);
S.q[0] = L0;
S.q[1] = L1;
S.q[2] = L2;
S.q[3] = L3;
S.q[4] = L4;
S.q[5] = L5;
S.q[6] = L6;
S.q[7] = L7;
# else
L0 = C0(K, 0);
L1 = C1(K, 0);
L2 = C2(K, 0);
L3 = C3(K, 0);
L4 = C4(K, 0);
L5 = C5(K, 0);
L6 = C6(K, 0);
L7 = C7(K, 0);
L0 ^= RC[r];
L1 ^= C0(K, 1);
L2 ^= C1(K, 1);
L3 ^= C2(K, 1);
L4 ^= C3(K, 1);
L5 ^= C4(K, 1);
L6 ^= C5(K, 1);
L7 ^= C6(K, 1);
L0 ^= C7(K, 1);
L2 ^= C0(K, 2);
L3 ^= C1(K, 2);
L4 ^= C2(K, 2);
L5 ^= C3(K, 2);
L6 ^= C4(K, 2);
L7 ^= C5(K, 2);
L0 ^= C6(K, 2);
L1 ^= C7(K, 2);
L3 ^= C0(K, 3);
L4 ^= C1(K, 3);
L5 ^= C2(K, 3);
L6 ^= C3(K, 3);
L7 ^= C4(K, 3);
L0 ^= C5(K, 3);
L1 ^= C6(K, 3);
L2 ^= C7(K, 3);
L4 ^= C0(K, 4);
L5 ^= C1(K, 4);
L6 ^= C2(K, 4);
L7 ^= C3(K, 4);
L0 ^= C4(K, 4);
L1 ^= C5(K, 4);
L2 ^= C6(K, 4);
L3 ^= C7(K, 4);
L5 ^= C0(K, 5);
L6 ^= C1(K, 5);
L7 ^= C2(K, 5);
L0 ^= C3(K, 5);
L1 ^= C4(K, 5);
L2 ^= C5(K, 5);
L3 ^= C6(K, 5);
L4 ^= C7(K, 5);
L6 ^= C0(K, 6);
L7 ^= C1(K, 6);
L0 ^= C2(K, 6);
L1 ^= C3(K, 6);
L2 ^= C4(K, 6);
L3 ^= C5(K, 6);
L4 ^= C6(K, 6);
L5 ^= C7(K, 6);
L7 ^= C0(K, 7);
L0 ^= C1(K, 7);
L1 ^= C2(K, 7);
L2 ^= C3(K, 7);
L3 ^= C4(K, 7);
L4 ^= C5(K, 7);
L5 ^= C6(K, 7);
L6 ^= C7(K, 7);
K.q[0] = L0;
K.q[1] = L1;
K.q[2] = L2;
K.q[3] = L3;
K.q[4] = L4;
K.q[5] = L5;
K.q[6] = L6;
K.q[7] = L7;
L0 ^= C0(S, 0);
L1 ^= C1(S, 0);
L2 ^= C2(S, 0);
L3 ^= C3(S, 0);
L4 ^= C4(S, 0);
L5 ^= C5(S, 0);
L6 ^= C6(S, 0);
L7 ^= C7(S, 0);
L1 ^= C0(S, 1);
L2 ^= C1(S, 1);
L3 ^= C2(S, 1);
L4 ^= C3(S, 1);
L5 ^= C4(S, 1);
L6 ^= C5(S, 1);
L7 ^= C6(S, 1);
L0 ^= C7(S, 1);
L2 ^= C0(S, 2);
L3 ^= C1(S, 2);
L4 ^= C2(S, 2);
L5 ^= C3(S, 2);
L6 ^= C4(S, 2);
L7 ^= C5(S, 2);
L0 ^= C6(S, 2);
L1 ^= C7(S, 2);
L3 ^= C0(S, 3);
L4 ^= C1(S, 3);
L5 ^= C2(S, 3);
L6 ^= C3(S, 3);
L7 ^= C4(S, 3);
L0 ^= C5(S, 3);
L1 ^= C6(S, 3);
L2 ^= C7(S, 3);
L4 ^= C0(S, 4);
L5 ^= C1(S, 4);
L6 ^= C2(S, 4);
L7 ^= C3(S, 4);
L0 ^= C4(S, 4);
L1 ^= C5(S, 4);
L2 ^= C6(S, 4);
L3 ^= C7(S, 4);
L5 ^= C0(S, 5);
L6 ^= C1(S, 5);
L7 ^= C2(S, 5);
L0 ^= C3(S, 5);
L1 ^= C4(S, 5);
L2 ^= C5(S, 5);
L3 ^= C6(S, 5);
L4 ^= C7(S, 5);
L6 ^= C0(S, 6);
L7 ^= C1(S, 6);
L0 ^= C2(S, 6);
L1 ^= C3(S, 6);
L2 ^= C4(S, 6);
L3 ^= C5(S, 6);
L4 ^= C6(S, 6);
L5 ^= C7(S, 6);
L7 ^= C0(S, 7);
L0 ^= C1(S, 7);
L1 ^= C2(S, 7);
L2 ^= C3(S, 7);
L3 ^= C4(S, 7);
L4 ^= C5(S, 7);
L5 ^= C6(S, 7);
L6 ^= C7(S, 7);
S.q[0] = L0;
S.q[1] = L1;
S.q[2] = L2;
S.q[3] = L3;
S.q[4] = L4;
S.q[5] = L5;
S.q[6] = L6;
S.q[7] = L7;
# endif
}
# ifdef STRICT_ALIGNMENT
if ((size_t)p & 7) {
int i;
for (i = 0; i < 64; i++)
H->c[i] ^= S.c[i] ^ p[i];
} else
# endif
{
const u64 *pa = (const u64 *)p;
H->q[0] ^= S.q[0] ^ pa[0];
H->q[1] ^= S.q[1] ^ pa[1];
H->q[2] ^= S.q[2] ^ pa[2];
H->q[3] ^= S.q[3] ^ pa[3];
H->q[4] ^= S.q[4] ^ pa[4];
H->q[5] ^= S.q[5] ^ pa[5];
H->q[6] ^= S.q[6] ^ pa[6];
H->q[7] ^= S.q[7] ^ pa[7];
}
#endif
p += 64;
} while (--n);
}