168 lines
5.1 KiB
C++
168 lines
5.1 KiB
C++
/*
|
|
Bullet Continuous Collision Detection and Physics Library
|
|
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
|
|
|
|
This software is provided 'as-is', without any express or implied warranty.
|
|
In no event will the authors be held liable for any damages arising from the use of this software.
|
|
Permission is granted to anyone to use this software for any purpose,
|
|
including commercial applications, and to alter it and redistribute it freely,
|
|
subject to the following restrictions:
|
|
|
|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
|
3. This notice may not be removed or altered from any source distribution.
|
|
*/
|
|
|
|
|
|
#include "btSubSimplexConvexCast.h"
|
|
#include "BulletCollision/CollisionShapes/btConvexShape.h"
|
|
|
|
#include "BulletCollision/CollisionShapes/btMinkowskiSumShape.h"
|
|
#include "BulletCollision/NarrowPhaseCollision/btSimplexSolverInterface.h"
|
|
#include "btPointCollector.h"
|
|
#include "LinearMath/btTransformUtil.h"
|
|
|
|
btSubsimplexConvexCast::btSubsimplexConvexCast (const btConvexShape* convexA,const btConvexShape* convexB,btSimplexSolverInterface* simplexSolver)
|
|
:m_simplexSolver(simplexSolver),
|
|
m_convexA(convexA),m_convexB(convexB)
|
|
{
|
|
}
|
|
|
|
///Typically the conservative advancement reaches solution in a few iterations, clip it to 32 for degenerate cases.
|
|
///See discussion about this here http://continuousphysics.com/Bullet/phpBB2/viewtopic.php?t=565
|
|
#ifdef BT_USE_DOUBLE_PRECISION
|
|
#define MAX_ITERATIONS 64
|
|
#else
|
|
#define MAX_ITERATIONS 32
|
|
#endif
|
|
bool btSubsimplexConvexCast::calcTimeOfImpact(
|
|
const btTransform& fromA,
|
|
const btTransform& toA,
|
|
const btTransform& fromB,
|
|
const btTransform& toB,
|
|
CastResult& result)
|
|
{
|
|
|
|
m_simplexSolver->reset();
|
|
|
|
btVector3 linVelA,linVelB;
|
|
linVelA = toA.getOrigin()-fromA.getOrigin();
|
|
linVelB = toB.getOrigin()-fromB.getOrigin();
|
|
|
|
btScalar lambda = btScalar(0.);
|
|
|
|
btTransform interpolatedTransA = fromA;
|
|
btTransform interpolatedTransB = fromB;
|
|
|
|
///take relative motion
|
|
btVector3 r = (linVelA-linVelB);
|
|
btVector3 v;
|
|
|
|
btVector3 supVertexA = fromA(m_convexA->localGetSupportingVertex(-r*fromA.getBasis()));
|
|
btVector3 supVertexB = fromB(m_convexB->localGetSupportingVertex(r*fromB.getBasis()));
|
|
v = supVertexA-supVertexB;
|
|
int maxIter = MAX_ITERATIONS;
|
|
|
|
btVector3 n;
|
|
n.setValue(btScalar(0.),btScalar(0.),btScalar(0.));
|
|
|
|
btVector3 c;
|
|
|
|
|
|
|
|
|
|
btScalar dist2 = v.length2();
|
|
|
|
#ifdef BT_USE_DOUBLE_PRECISION
|
|
btScalar epsilon = SIMD_EPSILON * 10;
|
|
#else
|
|
//todo: epsilon kept for backward compatibility of unit tests.
|
|
//will need to digg deeper to make the algorithm more robust
|
|
//since, a large epsilon can cause an early termination with false
|
|
//positive results (ray intersections that shouldn't be there)
|
|
btScalar epsilon = btScalar(0.0001);
|
|
#endif //BT_USE_DOUBLE_PRECISION
|
|
|
|
|
|
btVector3 w,p;
|
|
btScalar VdotR;
|
|
|
|
while ( (dist2 > epsilon) && maxIter--)
|
|
{
|
|
supVertexA = interpolatedTransA(m_convexA->localGetSupportingVertex(-v*interpolatedTransA.getBasis()));
|
|
supVertexB = interpolatedTransB(m_convexB->localGetSupportingVertex(v*interpolatedTransB.getBasis()));
|
|
w = supVertexA-supVertexB;
|
|
|
|
btScalar VdotW = v.dot(w);
|
|
|
|
if (lambda > btScalar(1.0))
|
|
{
|
|
return false;
|
|
}
|
|
|
|
if ( VdotW > btScalar(0.))
|
|
{
|
|
VdotR = v.dot(r);
|
|
|
|
if (VdotR >= -(SIMD_EPSILON*SIMD_EPSILON))
|
|
return false;
|
|
else
|
|
{
|
|
lambda = lambda - VdotW / VdotR;
|
|
//interpolate to next lambda
|
|
// x = s + lambda * r;
|
|
interpolatedTransA.getOrigin().setInterpolate3(fromA.getOrigin(),toA.getOrigin(),lambda);
|
|
interpolatedTransB.getOrigin().setInterpolate3(fromB.getOrigin(),toB.getOrigin(),lambda);
|
|
//m_simplexSolver->reset();
|
|
//check next line
|
|
w = supVertexA-supVertexB;
|
|
|
|
n = v;
|
|
|
|
}
|
|
}
|
|
///Just like regular GJK only add the vertex if it isn't already (close) to current vertex, it would lead to divisions by zero and NaN etc.
|
|
if (!m_simplexSolver->inSimplex(w))
|
|
m_simplexSolver->addVertex( w, supVertexA , supVertexB);
|
|
|
|
if (m_simplexSolver->closest(v))
|
|
{
|
|
dist2 = v.length2();
|
|
|
|
//todo: check this normal for validity
|
|
//n=v;
|
|
//printf("V=%f , %f, %f\n",v[0],v[1],v[2]);
|
|
//printf("DIST2=%f\n",dist2);
|
|
//printf("numverts = %i\n",m_simplexSolver->numVertices());
|
|
} else
|
|
{
|
|
dist2 = btScalar(0.);
|
|
}
|
|
}
|
|
|
|
//int numiter = MAX_ITERATIONS - maxIter;
|
|
// printf("number of iterations: %d", numiter);
|
|
|
|
//don't report a time of impact when moving 'away' from the hitnormal
|
|
|
|
|
|
result.m_fraction = lambda;
|
|
if (n.length2() >= (SIMD_EPSILON*SIMD_EPSILON))
|
|
result.m_normal = n.normalized();
|
|
else
|
|
result.m_normal = btVector3(btScalar(0.0), btScalar(0.0), btScalar(0.0));
|
|
|
|
//don't report time of impact for motion away from the contact normal (or causes minor penetration)
|
|
if (result.m_normal.dot(r)>=-result.m_allowedPenetration)
|
|
return false;
|
|
|
|
btVector3 hitA,hitB;
|
|
m_simplexSolver->compute_points(hitA,hitB);
|
|
result.m_hitPoint=hitB;
|
|
return true;
|
|
}
|
|
|
|
|
|
|
|
|