godot/platform/iphone/rasterizer_iphone.cpp
2017-04-08 00:45:24 +02:00

2586 lines
75 KiB
C++

/*************************************************************************/
/* rasterizer_iphone.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* http://www.godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2017 Godot Engine contributors (cf. AUTHORS.md) */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#ifdef IPHONE_ENABLED
#include "rasterizer_iphone.h"
#include "globals.h"
#include "os/os.h"
#include <stdio.h>
_FORCE_INLINE_ static void _gl_load_transform(const Transform &tr) {
GLfloat matrix[16] = { /* build a 16x16 matrix */
tr.basis.elements[0][0],
tr.basis.elements[1][0],
tr.basis.elements[2][0],
0,
tr.basis.elements[0][1],
tr.basis.elements[1][1],
tr.basis.elements[2][1],
0,
tr.basis.elements[0][2],
tr.basis.elements[1][2],
tr.basis.elements[2][2],
0,
tr.origin.x,
tr.origin.y,
tr.origin.z,
1
};
glLoadMatrixf(matrix);
};
_FORCE_INLINE_ static void _gl_mult_transform(const Transform &tr) {
GLfloat matrix[16] = { /* build a 16x16 matrix */
tr.basis.elements[0][0],
tr.basis.elements[1][0],
tr.basis.elements[2][0],
0,
tr.basis.elements[0][1],
tr.basis.elements[1][1],
tr.basis.elements[2][1],
0,
tr.basis.elements[0][2],
tr.basis.elements[1][2],
tr.basis.elements[2][2],
0,
tr.origin.x,
tr.origin.y,
tr.origin.z,
1
};
glMultMatrixf(matrix);
};
static const GLenum prim_type[] = { GL_POINTS, GL_LINES, GL_TRIANGLES, GL_TRIANGLE_FAN };
static void _draw_primitive(int p_points, const float *p_vertices, const float *p_normals, const float *p_colors, const float *p_uvs, const Plane *p_tangents = NULL, int p_instanced = 1) {
ERR_FAIL_COND(!p_vertices);
ERR_FAIL_COND(p_points < 1 || p_points > 4);
GLenum type = prim_type[p_points - 1];
if (!p_colors) {
glColor4f(1, 1, 1, 1);
};
glEnableClientState(GL_VERTEX_ARRAY);
glVertexPointer(3, GL_FLOAT, 0, (GLvoid *)p_vertices);
if (p_normals) {
glEnableClientState(GL_NORMAL_ARRAY);
glNormalPointer(GL_FLOAT, 0, (GLvoid *)p_normals);
};
if (p_colors) {
glEnableClientState(GL_COLOR_ARRAY);
glColorPointer(4, GL_FLOAT, 0, p_colors);
};
if (p_uvs) {
glClientActiveTexture(GL_TEXTURE0);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glTexCoordPointer(2, GL_FLOAT, 0, p_uvs);
};
glDrawArrays(type, 0, p_points);
glDisableClientState(GL_VERTEX_ARRAY);
glDisableClientState(GL_NORMAL_ARRAY);
glDisableClientState(GL_COLOR_ARRAY);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
};
/* TEXTURE API */
static Image _get_gl_image_and_format(const Image &p_image, Image::Format p_format, uint32_t p_flags, GLenum &r_gl_format, int &r_gl_components, bool &r_has_alpha_cache) {
r_has_alpha_cache = false;
Image image = p_image;
switch (p_format) {
case Image::FORMAT_GRAYSCALE: {
r_gl_components = 1;
r_gl_format = GL_LUMINANCE;
} break;
case Image::FORMAT_INTENSITY: {
image.convert(Image::FORMAT_RGBA);
r_gl_components = 4;
r_gl_format = GL_RGBA;
r_has_alpha_cache = true;
} break;
case Image::FORMAT_GRAYSCALE_ALPHA: {
image.convert(Image::FORMAT_RGBA);
r_gl_components = 4;
r_gl_format = GL_RGBA;
r_has_alpha_cache = true;
} break;
case Image::FORMAT_INDEXED: {
image.convert(Image::FORMAT_RGB);
r_gl_components = 3;
r_gl_format = GL_RGB;
} break;
case Image::FORMAT_INDEXED_ALPHA: {
image.convert(Image::FORMAT_RGBA);
r_gl_components = 4;
r_gl_format = GL_RGB;
r_has_alpha_cache = true;
} break;
case Image::FORMAT_RGB: {
r_gl_components = 3;
r_gl_format = GL_RGB;
} break;
case Image::FORMAT_RGBA: {
r_gl_components = 4;
r_gl_format = GL_RGBA;
r_has_alpha_cache = true;
} break;
default: {
ERR_FAIL_V(Image());
}
}
return image;
}
RID RasterizerIPhone::texture_create() {
Texture *texture = memnew(Texture);
ERR_FAIL_COND_V(!texture, RID());
glGenTextures(1, &texture->tex_id);
texture->active = false;
return texture_owner.make_rid(texture);
}
void RasterizerIPhone::texture_allocate(RID p_texture, int p_width, int p_height, Image::Format p_format, uint32_t p_flags) {
bool has_alpha_cache;
int components;
GLenum format;
Texture *texture = texture_owner.get(p_texture);
ERR_FAIL_COND(!texture);
texture->width = p_width;
texture->height = p_height;
texture->format = p_format;
texture->flags = p_flags;
//texture->target = (p_flags & VS::TEXTURE_FLAG_CUBEMAP) ? GL_TEXTURE_CUBE_MAP : GL_TEXTURE_2D;
texture->target = GL_TEXTURE_2D;
_get_gl_image_and_format(Image(), texture->format, texture->flags, format, components, has_alpha_cache);
texture->gl_components_cache = components;
texture->gl_format_cache = format;
texture->format_has_alpha = has_alpha_cache;
texture->has_alpha = false; //by default it doesn't have alpha unless something with alpha is blitteds
glBindTexture(texture->target, texture->tex_id);
if (texture->flags & VS::TEXTURE_FLAG_MIPMAPS) {
glTexParameteri(GL_TEXTURE_2D, GL_GENERATE_MIPMAP, GL_TRUE);
}
if (texture->target == GL_TEXTURE_2D) {
glTexImage2D(texture->target, 0, format, texture->width, texture->height, 0, format, GL_UNSIGNED_BYTE, NULL);
}
/*
else {
//cubemappor
for (int i=0;i<6;i++)
glTexImage2D(_cube_side_enum[i], 0, format, texture->width, texture->height, 0, format, GL_UNSIGNED_BYTE,NULL);
}
*/
glTexParameteri(texture->target, GL_TEXTURE_MIN_FILTER, GL_LINEAR); // Linear Filtering
if (texture->flags & VS::TEXTURE_FLAG_FILTER) {
glTexParameteri(texture->target, GL_TEXTURE_MAG_FILTER, GL_LINEAR); // Linear Filtering
if (texture->flags & VS::TEXTURE_FLAG_MIPMAPS) {
//glTexParameteri(texture->target,GL_TEXTURE_MIN_FILTER,GL_LINEAR_MIPMAP_LINEAR);
};
}
if (texture->flags & VS::TEXTURE_FLAG_REPEAT /* && texture->target != GL_TEXTURE_CUBE_MAP*/) {
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
} else {
//glTexParameterf( texture->target, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE );
glTexParameterf(texture->target, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameterf(texture->target, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
}
texture->active = true;
}
void RasterizerIPhone::texture_blit_rect(RID p_texture, int p_x, int p_y, const Image &p_image, VS::CubeMapSide p_cube_side) {
Texture *texture = texture_owner.get(p_texture);
ERR_FAIL_COND(!texture);
ERR_FAIL_COND(!texture->active);
ERR_FAIL_COND(texture->format != p_image.get_format());
int components;
GLenum format;
bool alpha;
Image img = _get_gl_image_and_format(p_image, p_image.get_format(), texture->flags, format, components, alpha);
if (img.detect_alpha())
texture->has_alpha = true;
GLenum blit_target = GL_TEXTURE_2D; //(texture->target == GL_TEXTURE_CUBE_MAP)?_cube_side_enum[p_cube_side]:GL_TEXTURE_2D;
DVector<uint8_t>::Read read = img.get_data().read();
glBindTexture(texture->target, texture->tex_id);
glTexSubImage2D(blit_target, 0, p_x, p_y, img.get_width(), img.get_height(), format, GL_UNSIGNED_BYTE, read.ptr());
//glGenerateMipmap( texture->target );
}
Image RasterizerIPhone::texture_get_rect(RID p_texture, int p_x, int p_y, int p_width, int p_height, VS::CubeMapSide p_cube_side) const {
return Image();
}
void RasterizerIPhone::texture_set_flags(RID p_texture, uint32_t p_flags) {
Texture *texture = texture_owner.get(p_texture);
ERR_FAIL_COND(!texture);
glBindTexture(texture->target, texture->tex_id);
uint32_t cube = texture->flags & VS::TEXTURE_FLAG_CUBEMAP;
texture->flags = p_flags | cube; // can't remove a cube from being a cube
if (texture->flags & VS::TEXTURE_FLAG_REPEAT /*&& texture->target != GL_TEXTURE_CUBE_MAP*/) {
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
} else {
//glTexParameterf( texture->target, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE );
glTexParameterf(texture->target, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameterf(texture->target, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
}
if (texture->flags & VS::TEXTURE_FLAG_FILTER) {
glTexParameteri(texture->target, GL_TEXTURE_MAG_FILTER, GL_LINEAR); // Linear Filtering
if (texture->flags & VS::TEXTURE_FLAG_MIPMAPS)
glTexParameteri(texture->target, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
} else {
glTexParameteri(texture->target, GL_TEXTURE_MAG_FILTER, GL_NEAREST); // nearest
}
}
uint32_t RasterizerIPhone::texture_get_flags(RID p_texture) const {
Texture *texture = texture_owner.get(p_texture);
ERR_FAIL_COND_V(!texture, 0);
return texture->flags;
}
Image::Format RasterizerIPhone::texture_get_format(RID p_texture) const {
Texture *texture = texture_owner.get(p_texture);
ERR_FAIL_COND_V(!texture, Image::FORMAT_GRAYSCALE);
return texture->format;
}
uint32_t RasterizerIPhone::texture_get_width(RID p_texture) const {
Texture *texture = texture_owner.get(p_texture);
ERR_FAIL_COND_V(!texture, 0);
return texture->width;
}
uint32_t RasterizerIPhone::texture_get_height(RID p_texture) const {
Texture *texture = texture_owner.get(p_texture);
ERR_FAIL_COND_V(!texture, 0);
return texture->height;
}
bool RasterizerIPhone::texture_has_alpha(RID p_texture) const {
Texture *texture = texture_owner.get(p_texture);
ERR_FAIL_COND_V(!texture, 0);
return texture->has_alpha;
}
/* SHADER API */
RID RasterizerIPhone::shader_create() {
return RID();
}
void RasterizerIPhone::shader_node_add(RID p_shader, VS::ShaderNodeType p_type, int p_id) {
}
void RasterizerIPhone::shader_node_remove(RID p_shader, int p_id) {
}
void RasterizerIPhone::shader_node_change_type(RID p_shader, int p_id, VS::ShaderNodeType p_type) {
}
void RasterizerIPhone::shader_node_set_param(RID p_shader, int p_id, const Variant &p_value) {
}
void RasterizerIPhone::shader_get_node_list(RID p_shader, List<int> *p_node_list) const {
}
VS::ShaderNodeType RasterizerIPhone::shader_node_get_type(RID p_shader, int p_id) const {
return VS::NODE_ADD;
}
Variant RasterizerIPhone::shader_node_get_param(RID p_shader, int p_id) const {
return Variant();
}
void RasterizerIPhone::shader_connect(RID p_shader, int p_src_id, int p_src_slot, int p_dst_id, int p_dst_slot) {
}
bool RasterizerIPhone::shader_is_connected(RID p_shader, int p_src_id, int p_src_slot, int p_dst_id, int p_dst_slot) const {
return false;
}
void RasterizerIPhone::shader_disconnect(RID p_shader, int p_src_id, int p_src_slot, int p_dst_id, int p_dst_slot) {
}
void RasterizerIPhone::shader_get_connections(RID p_shader, List<VS::ShaderConnection> *p_connections) const {
}
void RasterizerIPhone::shader_clear(RID p_shader) {
}
/* COMMON MATERIAL API */
void RasterizerIPhone::material_set_param(RID p_material, const StringName &p_param, const Variant &p_value) {
}
Variant RasterizerIPhone::material_get_param(RID p_material, const StringName &p_param) const {
return Variant();
}
void RasterizerIPhone::material_get_param_list(RID p_material, List<String> *p_param_list) const {
}
void RasterizerIPhone::material_set_flag(RID p_material, VS::MaterialFlag p_flag, bool p_enabled) {
}
bool RasterizerIPhone::material_get_flag(RID p_material, VS::MaterialFlag p_flag) const {
return false;
}
void RasterizerIPhone::material_set_blend_mode(RID p_material, VS::MaterialBlendMode p_mode) {
}
VS::MaterialBlendMode RasterizerIPhone::material_get_blend_mode(RID p_material) const {
return VS::MATERIAL_BLEND_MODE_ADD;
}
void RasterizerIPhone::material_set_line_width(RID p_material, float p_line_width) {
}
float RasterizerIPhone::material_get_line_width(RID p_material) const {
return 0;
}
/* FIXED MATERIAL */
RID RasterizerIPhone::material_create() {
return material_owner.make_rid(memnew(Material));
}
void RasterizerIPhone::fixed_material_set_parameter(RID p_material, VS::FixedMaterialParam p_parameter, const Variant &p_value) {
Material *m = material_owner.get(p_material);
ERR_FAIL_COND(!m);
ERR_FAIL_INDEX(p_parameter, VisualServer::FIXED_MATERIAL_PARAM_MAX);
m->parameters[p_parameter] = p_value;
}
Variant RasterizerIPhone::fixed_material_get_parameter(RID p_material, VS::FixedMaterialParam p_parameter) const {
Material *m = material_owner.get(p_material);
ERR_FAIL_COND_V(!m, Variant());
ERR_FAIL_INDEX_V(p_parameter, VisualServer::FIXED_MATERIAL_PARAM_MAX, Variant());
return m->parameters[p_parameter];
}
void RasterizerIPhone::fixed_material_set_texture(RID p_material, VS::FixedMaterialParam p_parameter, RID p_texture) {
Material *m = material_owner.get(p_material);
ERR_FAIL_COND(!m);
ERR_FAIL_INDEX(p_parameter, VisualServer::FIXED_MATERIAL_PARAM_MAX);
m->textures[p_parameter] = p_texture;
}
RID RasterizerIPhone::fixed_material_get_texture(RID p_material, VS::FixedMaterialParam p_parameter) const {
Material *m = material_owner.get(p_material);
ERR_FAIL_COND_V(!m, RID());
ERR_FAIL_INDEX_V(p_parameter, VisualServer::FIXED_MATERIAL_PARAM_MAX, Variant());
return m->textures[p_parameter];
}
void RasterizerIPhone::fixed_material_set_detail_blend_mode(RID p_material, VS::MaterialBlendMode p_mode) {
Material *m = material_owner.get(p_material);
ERR_FAIL_COND(!m);
m->detail_blend_mode = p_mode;
}
VS::MaterialBlendMode RasterizerIPhone::fixed_material_get_detail_blend_mode(RID p_material) const {
Material *m = material_owner.get(p_material);
ERR_FAIL_COND_V(!m, VS::MATERIAL_BLEND_MODE_MIX);
return m->detail_blend_mode;
}
void RasterizerIPhone::fixed_material_set_texcoord_mode(RID p_material, VS::FixedMaterialParam p_parameter, VS::FixedMaterialTexCoordMode p_mode) {
Material *m = material_owner.get(p_material);
ERR_FAIL_COND(!m);
ERR_FAIL_INDEX(p_parameter, VisualServer::FIXED_MATERIAL_PARAM_MAX);
m->texcoord_mode[p_parameter] = p_mode;
}
VS::FixedMaterialTexCoordMode RasterizerIPhone::fixed_material_get_texcoord_mode(RID p_material, VS::FixedMaterialParam p_parameter) const {
Material *m = material_owner.get(p_material);
ERR_FAIL_COND_V(!m, VS::FIXED_MATERIAL_TEXCOORD_TEXGEN);
ERR_FAIL_INDEX_V(p_parameter, VisualServer::FIXED_MATERIAL_PARAM_MAX, VS::FIXED_MATERIAL_TEXCOORD_UV);
return m->texcoord_mode[p_parameter]; // for now
}
void RasterizerIPhone::fixed_material_set_texgen_mode(RID p_material, VS::FixedMaterialTexGenMode p_mode) {
Material *m = material_owner.get(p_material);
ERR_FAIL_COND(!m);
m->texgen_mode = p_mode;
};
VS::FixedMaterialTexGenMode RasterizerIPhone::fixed_material_get_texgen_mode(RID p_material) const {
Material *m = material_owner.get(p_material);
ERR_FAIL_COND_V(!m, VS::FIXED_MATERIAL_TEXGEN_SPHERE);
return m->texgen_mode;
};
void RasterizerIPhone::fixed_material_set_uv_transform(RID p_material, const Transform &p_transform) {
Material *m = material_owner.get(p_material);
ERR_FAIL_COND(!m);
m->uv_transform = p_transform;
}
Transform RasterizerIPhone::fixed_material_get_uv_transform(RID p_material) const {
Material *m = material_owner.get(p_material);
ERR_FAIL_COND_V(!m, Transform());
return m->uv_transform;
}
/* SHADER MATERIAL */
RID RasterizerIPhone::shader_material_create() const {
return RID();
}
void RasterizerIPhone::shader_material_set_vertex_shader(RID p_material, RID p_shader, bool p_owned) {
}
RID RasterizerIPhone::shader_material_get_vertex_shader(RID p_material) const {
return RID();
}
void RasterizerIPhone::shader_material_set_fragment_shader(RID p_material, RID p_shader, bool p_owned) {
}
RID RasterizerIPhone::shader_material_get_fragment_shader(RID p_material) const {
return RID();
}
/* MESH API */
RID RasterizerIPhone::mesh_create() {
return mesh_owner.make_rid(memnew(Mesh));
}
void RasterizerIPhone::mesh_add_surface(RID p_mesh, VS::PrimitiveType p_primitive, uint32_t p_format, int p_array_len, int p_index_array_len) {
Mesh *mesh = mesh_owner.get(p_mesh);
ERR_FAIL_COND(!mesh);
ERR_FAIL_COND((p_format & VS::ARRAY_FORMAT_VERTEX) == 0); // mandatory
ERR_FAIL_COND(p_array_len <= 0);
ERR_FAIL_COND(p_index_array_len == 0);
ERR_FAIL_INDEX(p_primitive, VS::PRIMITIVE_MAX);
Surface *surface = memnew(Surface);
ERR_FAIL_COND(!surface);
int total_elem_size = 0;
bool use_VBO = true; //glGenBuffersARB!=NULL; // TODO detect if it's in there
if (p_format & VS::ARRAY_FORMAT_WEIGHTS) {
use_VBO = false;
}
for (int i = 0; i < VS::ARRAY_MAX; i++) {
Surface::ArrayData &ad = surface->array[i];
ad.size = 0;
ad.configured = false;
ad.ofs = 0;
int elem_size = 0;
int elem_count = 0;
if (!(p_format & (1 << i))) // no array
continue;
switch (i) {
case VS::ARRAY_VERTEX:
case VS::ARRAY_NORMAL: {
elem_size = 3 * sizeof(GLfloat); // vertex
elem_count = 3;
} break;
case VS::ARRAY_TANGENT: {
elem_size = 4 * sizeof(GLfloat); // vertex
elem_count = 4;
} break;
case VS::ARRAY_COLOR: {
elem_size = 4; /* RGBA */
elem_count = 4;
} break;
case VS::ARRAY_TEX_UV: {
elem_size = 2 * sizeof(GLfloat);
elem_count = 2;
} break;
case VS::ARRAY_WEIGHTS:
case VS::ARRAY_BONES: {
elem_size = VS::ARRAY_WEIGHTS_SIZE * sizeof(GLfloat);
elem_count = VS::ARRAY_WEIGHTS_SIZE;
} break;
case VS::ARRAY_INDEX: {
if (p_index_array_len <= 0) {
ERR_PRINT("p_index_array_len==NO_INDEX_ARRAY");
break;
}
/* determine wether using 8 or 16 bits indices */
if (p_index_array_len > (1 << 8)) {
elem_size = 2;
} else {
elem_size = 1;
}
if (use_VBO) {
glGenBuffers(1, &surface->index_id);
ERR_FAIL_COND(surface->index_id == 0);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, surface->index_id);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, p_index_array_len * elem_size, NULL, GL_STATIC_DRAW);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); //unbind
} else {
surface->index_array_local = (uint8_t *)memalloc(p_index_array_len * elem_size);
};
surface->index_array_len = p_index_array_len; // only way it can exist
ad.ofs = 0;
ad.size = elem_size;
ad.configured = false;
ad.components = 1;
continue;
} break;
default: {
ERR_FAIL();
}
}
ad.ofs = total_elem_size;
ad.size = elem_size;
ad.components = elem_count;
total_elem_size += elem_size;
ad.configured = false;
}
surface->stride = total_elem_size;
surface->array_len = p_array_len;
surface->format = p_format;
surface->primitive = p_primitive;
/* bind the bigass buffers */
if (use_VBO) {
glGenBuffers(1, &surface->vertex_id);
ERR_FAIL_COND(surface->vertex_id == 0);
glBindBuffer(GL_ARRAY_BUFFER, surface->vertex_id);
glBufferData(GL_ARRAY_BUFFER, surface->array_len * surface->stride, NULL, GL_STATIC_DRAW);
glBindBuffer(GL_ARRAY_BUFFER, 0); //unbind
} else {
surface->array_local = (uint8_t *)memalloc(surface->array_len * surface->stride);
};
mesh->surfaces.push_back(surface);
}
Error RasterizerIPhone::mesh_surface_set_array(RID p_mesh, int p_surface, VS::ArrayType p_type, const Variant &p_array) {
ERR_FAIL_INDEX_V(p_type, VS::ARRAY_MAX, ERR_INVALID_PARAMETER);
Mesh *mesh = mesh_owner.get(p_mesh);
ERR_FAIL_COND_V(!mesh, ERR_INVALID_PARAMETER);
ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), ERR_INVALID_PARAMETER);
Surface *surface = mesh->surfaces[p_surface];
ERR_FAIL_COND_V(!surface, ERR_INVALID_PARAMETER);
ERR_FAIL_COND_V(surface->array[p_type].size == 0, ERR_INVALID_PARAMETER);
Surface::ArrayData &a = surface->array[p_type];
switch (p_type) {
case VS::ARRAY_INDEX: {
ERR_FAIL_COND_V(surface->index_array_len <= 0, ERR_INVALID_DATA);
ERR_FAIL_COND_V(p_array.get_type() != Variant::INT_ARRAY, ERR_INVALID_PARAMETER);
DVector<int> indices = p_array;
ERR_FAIL_COND_V(indices.size() == 0, ERR_INVALID_PARAMETER);
ERR_FAIL_COND_V(indices.size() != surface->index_array_len, ERR_INVALID_PARAMETER);
/* determine wether using 16 or 32 bits indices */
if (surface->index_array_local == 0) {
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, surface->index_id);
};
DVector<int>::Read read = indices.read();
const int *src = read.ptr();
for (int i = 0; i < surface->index_array_len; i++) {
if (surface->index_array_local) {
if (a.size <= (1 << 8)) {
uint8_t v = src[i];
copymem(&surface->array_local[i * a.size], &v, a.size);
} else {
uint16_t v = src[i];
copymem(&surface->array_local[i * a.size], &v, a.size);
}
} else {
if (a.size <= (1 << 8)) {
uint8_t v = src[i];
glBufferSubData(GL_ELEMENT_ARRAY_BUFFER, i * a.size, a.size, &v);
} else {
uint16_t v = src[i];
glBufferSubData(GL_ELEMENT_ARRAY_BUFFER, i * a.size, a.size, &v);
}
};
}
if (surface->index_array_local == 0) {
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
};
a.configured = true;
return OK;
} break;
case VS::ARRAY_VERTEX:
case VS::ARRAY_NORMAL: {
ERR_FAIL_COND_V(p_array.get_type() != Variant::VECTOR3_ARRAY, ERR_INVALID_PARAMETER);
DVector<Vector3> array = p_array;
ERR_FAIL_COND_V(array.size() != surface->array_len, ERR_INVALID_PARAMETER);
if (surface->array_local == 0) {
glBindBuffer(GL_ARRAY_BUFFER, surface->vertex_id);
};
DVector<Vector3>::Read read = array.read();
const Vector3 *src = read.ptr();
// setting vertices means regenerating the AABB
if (p_type == VS::ARRAY_VERTEX)
surface->aabb = AABB();
for (int i = 0; i < surface->array_len; i++) {
GLfloat vector[3] = { src[i].x, src[i].y, src[i].z };
if (surface->array_local == 0) {
glBufferSubData(GL_ARRAY_BUFFER, a.ofs + i * surface->stride, a.size, vector);
} else {
copymem(&surface->array_local[a.ofs + i * surface->stride], vector, a.size);
}
if (p_type == VS::ARRAY_VERTEX) {
if (i == 0) {
surface->aabb = AABB(src[i], Vector3());
} else {
surface->aabb.expand_to(src[i]);
}
}
}
if (surface->array_local == 0) {
glBindBuffer(GL_ARRAY_BUFFER, 0);
};
} break;
case VS::ARRAY_TANGENT: {
ERR_FAIL_COND_V(p_array.get_type() != Variant::REAL_ARRAY, ERR_INVALID_PARAMETER);
DVector<real_t> array = p_array;
ERR_FAIL_COND_V(array.size() != surface->array_len * 4, ERR_INVALID_PARAMETER);
if (surface->array_local == 0) {
glBindBuffer(GL_ARRAY_BUFFER, surface->vertex_id);
};
DVector<real_t>::Read read = array.read();
const real_t *src = read.ptr();
for (int i = 0; i < surface->array_len; i++) {
GLfloat xyzw[4] = {
src[i * 4 + 0],
src[i * 4 + 1],
src[i * 4 + 2],
src[i * 4 + 3]
};
if (surface->array_local == 0) {
glBufferSubData(GL_ARRAY_BUFFER, a.ofs + i * surface->stride, a.size, xyzw);
} else {
copymem(&surface->array_local[a.ofs + i * surface->stride], xyzw, a.size);
};
}
if (surface->array_local == 0) {
glBindBuffer(GL_ARRAY_BUFFER, 0);
};
} break;
case VS::ARRAY_COLOR: {
ERR_FAIL_COND_V(p_array.get_type() != Variant::COLOR_ARRAY, ERR_INVALID_PARAMETER);
DVector<Color> array = p_array;
ERR_FAIL_COND_V(array.size() != surface->array_len, ERR_INVALID_PARAMETER);
if (surface->array_local == 0)
glBindBuffer(GL_ARRAY_BUFFER, surface->vertex_id);
DVector<Color>::Read read = array.read();
const Color *src = read.ptr();
surface->has_alpha_cache = false;
for (int i = 0; i < surface->array_len; i++) {
if (src[i].a < 0.98) // tolerate alpha a bit, for crappy exporters
surface->has_alpha_cache = true;
uint8_t colors[4] = { src[i].r * 255.0, src[i].g * 255.0, src[i].b * 255.0, src[i].a * 255.0 };
// I'm not sure if this is correct, endianness-wise, i should re-check the GL spec
if (surface->array_local == 0)
glBufferSubData(GL_ARRAY_BUFFER, a.ofs + i * surface->stride, a.size, colors);
else
copymem(&surface->array_local[a.ofs + i * surface->stride], colors, a.size);
}
if (surface->array_local == 0)
glBindBuffer(GL_ARRAY_BUFFER, 0);
} break;
case VS::ARRAY_TEX_UV: {
ERR_FAIL_COND_V(p_array.get_type() != Variant::VECTOR3_ARRAY, ERR_INVALID_PARAMETER);
DVector<Vector3> array = p_array;
ERR_FAIL_COND_V(array.size() != surface->array_len, ERR_INVALID_PARAMETER);
if (surface->array_local == 0)
glBindBuffer(GL_ARRAY_BUFFER, surface->vertex_id);
DVector<Vector3>::Read read = array.read();
const Vector3 *src = read.ptr();
for (int i = 0; i < surface->array_len; i++) {
GLfloat uv[2] = { src[i].x, src[i].y };
if (surface->array_local == 0)
glBufferSubData(GL_ARRAY_BUFFER, a.ofs + i * surface->stride, a.size, uv);
else
copymem(&surface->array_local[a.ofs + i * surface->stride], uv, a.size);
}
if (surface->array_local == 0)
glBindBuffer(GL_ARRAY_BUFFER, 0);
} break;
case VS::ARRAY_BONES:
case VS::ARRAY_WEIGHTS: {
ERR_FAIL_COND_V(p_array.get_type() != Variant::REAL_ARRAY, ERR_INVALID_PARAMETER);
DVector<real_t> array = p_array;
ERR_FAIL_COND_V(array.size() != surface->array_len * VS::ARRAY_WEIGHTS_SIZE, ERR_INVALID_PARAMETER);
if (surface->array_local == 0)
glBindBuffer(GL_ARRAY_BUFFER, surface->vertex_id);
DVector<real_t>::Read read = array.read();
const real_t *src = read.ptr();
for (int i = 0; i < surface->array_len; i++) {
GLfloat data[VS::ARRAY_WEIGHTS_SIZE];
for (int j = 0; j < VS::ARRAY_WEIGHTS_SIZE; j++)
data[j] = src[i * VS::ARRAY_WEIGHTS_SIZE + j];
if (surface->array_local == 0)
glBufferSubData(GL_ARRAY_BUFFER, a.ofs + i * surface->stride, a.size, data);
else
copymem(&surface->array_local[a.ofs + i * surface->stride], data, a.size);
}
if (surface->array_local == 0)
glBindBuffer(GL_ARRAY_BUFFER, 0);
} break;
default: { ERR_FAIL_V(ERR_INVALID_PARAMETER); }
}
a.configured = true;
return OK;
}
Variant RasterizerIPhone::mesh_surface_get_array(RID p_mesh, int p_surface, VS::ArrayType p_type) const {
return Variant();
}
void RasterizerIPhone::mesh_surface_set_material(RID p_mesh, int p_surface, RID p_material, bool p_owned) {
Mesh *mesh = mesh_owner.get(p_mesh);
ERR_FAIL_COND(!mesh);
ERR_FAIL_INDEX(p_surface, mesh->surfaces.size());
Surface *surface = mesh->surfaces[p_surface];
ERR_FAIL_COND(!surface);
if (surface->material_owned && surface->material.is_valid())
free(surface->material);
surface->material_owned = p_owned;
surface->material = p_material;
}
RID RasterizerIPhone::mesh_surface_get_material(RID p_mesh, int p_surface) const {
Mesh *mesh = mesh_owner.get(p_mesh);
ERR_FAIL_COND_V(!mesh, RID());
ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), RID());
Surface *surface = mesh->surfaces[p_surface];
ERR_FAIL_COND_V(!surface, RID());
return surface->material;
}
int RasterizerIPhone::mesh_surface_get_array_len(RID p_mesh, int p_surface) const {
Mesh *mesh = mesh_owner.get(p_mesh);
ERR_FAIL_COND_V(!mesh, -1);
ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), -1);
Surface *surface = mesh->surfaces[p_surface];
ERR_FAIL_COND_V(!surface, -1);
return surface->array_len;
}
int RasterizerIPhone::mesh_surface_get_array_index_len(RID p_mesh, int p_surface) const {
Mesh *mesh = mesh_owner.get(p_mesh);
ERR_FAIL_COND_V(!mesh, -1);
ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), -1);
Surface *surface = mesh->surfaces[p_surface];
ERR_FAIL_COND_V(!surface, -1);
return surface->index_array_len;
}
uint32_t RasterizerIPhone::mesh_surface_get_format(RID p_mesh, int p_surface) const {
Mesh *mesh = mesh_owner.get(p_mesh);
ERR_FAIL_COND_V(!mesh, 0);
ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), 0);
Surface *surface = mesh->surfaces[p_surface];
ERR_FAIL_COND_V(!surface, 0);
return surface->format;
}
VS::PrimitiveType RasterizerIPhone::mesh_surface_get_primitive_type(RID p_mesh, int p_surface) const {
Mesh *mesh = mesh_owner.get(p_mesh);
ERR_FAIL_COND_V(!mesh, VS::PRIMITIVE_POINTS);
ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), VS::PRIMITIVE_POINTS);
Surface *surface = mesh->surfaces[p_surface];
ERR_FAIL_COND_V(!surface, VS::PRIMITIVE_POINTS);
return surface->primitive;
}
void RasterizerIPhone::mesh_erase_surface(RID p_mesh, int p_index) {
Mesh *mesh = mesh_owner.get(p_mesh);
ERR_FAIL_COND(!mesh);
ERR_FAIL_INDEX(p_index, mesh->surfaces.size());
Surface *surface = mesh->surfaces[p_index];
ERR_FAIL_COND(!surface);
memdelete(mesh->surfaces[p_index]);
mesh->surfaces.remove(p_index);
}
int RasterizerIPhone::mesh_get_surface_count(RID p_mesh) const {
Mesh *mesh = mesh_owner.get(p_mesh);
ERR_FAIL_COND_V(!mesh, -1);
return mesh->surfaces.size();
}
AABB RasterizerIPhone::mesh_get_aabb(RID p_mesh) const {
Mesh *mesh = mesh_owner.get(p_mesh);
ERR_FAIL_COND_V(!mesh, AABB());
AABB aabb;
for (int i = 0; i < mesh->surfaces.size(); i++) {
if (i == 0)
aabb = mesh->surfaces[i]->aabb;
else
aabb.merge_with(mesh->surfaces[i]->aabb);
}
return aabb;
}
/* MULTIMESH API */
RID RasterizerIPhone::multimesh_create() {
return RID();
}
void RasterizerIPhone::multimesh_set_instance_count(RID p_multimesh, int p_count) {
}
int RasterizerIPhone::multimesh_get_instance_count(RID p_multimesh) const {
return 0;
}
void RasterizerIPhone::multimesh_set_mesh(RID p_multimesh, RID p_mesh) {
}
void RasterizerIPhone::multimesh_set_aabb(RID p_multimesh, const AABB &p_aabb) {
}
void RasterizerIPhone::multimesh_instance_set_transform(RID p_multimesh, int p_index, const Transform &p_transform) {
}
void RasterizerIPhone::multimesh_instance_set_color(RID p_multimesh, int p_index, const Color &p_color) {
}
RID RasterizerIPhone::multimesh_get_mesh(RID p_multimesh) const {
return RID();
}
AABB RasterizerIPhone::multimesh_get_aabb(RID p_multimesh) const {
return AABB();
}
Transform RasterizerIPhone::multimesh_instance_get_transform(RID p_multimesh, int p_index) const {
return Transform();
}
Color RasterizerIPhone::multimesh_instance_get_color(RID p_multimesh, int p_index) const {
return Color();
}
/* POLY API */
RID RasterizerIPhone::poly_create() {
return RID();
}
void RasterizerIPhone::poly_set_material(RID p_poly, RID p_material, bool p_owned) {
}
void RasterizerIPhone::poly_add_primitive(RID p_poly, const Vector<Vector3> &p_points, const Vector<Vector3> &p_normals, const Vector<Color> &p_colors, const Vector<Vector3> &p_uvs) {
}
void RasterizerIPhone::poly_clear(RID p_poly) {
}
AABB RasterizerIPhone::poly_get_aabb(RID p_poly) const {
return AABB();
}
/* PARTICLES API */
RID RasterizerIPhone::particles_create() {
return RID();
}
void RasterizerIPhone::particles_set_amount(RID p_particles, int p_amount) {
}
int RasterizerIPhone::particles_get_amount(RID p_particles) const {
return 0;
}
void RasterizerIPhone::particles_set_emitting(RID p_particles, bool p_emitting) {
}
bool RasterizerIPhone::particles_is_emitting(RID p_particles) const {
return false;
}
void RasterizerIPhone::particles_set_visibility_aabb(RID p_particles, const AABB &p_visibility) {
}
AABB RasterizerIPhone::particles_get_visibility_aabb(RID p_particles) const {
return AABB();
}
void RasterizerIPhone::particles_set_emission_half_extents(RID p_particles, const Vector3 &p_half_extents) {
}
Vector3 RasterizerIPhone::particles_get_emission_half_extents(RID p_particles) const {
return Vector3();
}
void RasterizerIPhone::particles_set_gravity_normal(RID p_particles, const Vector3 &p_normal) {
}
Vector3 RasterizerIPhone::particles_get_gravity_normal(RID p_particles) const {
return Vector3();
}
void RasterizerIPhone::particles_set_variable(RID p_particles, VS::ParticleVariable p_variable, float p_value) {
}
float RasterizerIPhone::particles_get_variable(RID p_particles, VS::ParticleVariable p_variable) const {
return 0;
}
void RasterizerIPhone::particles_set_randomness(RID p_particles, VS::ParticleVariable p_variable, float p_randomness) {
}
float RasterizerIPhone::particles_get_randomness(RID p_particles, VS::ParticleVariable p_variable) const {
return 0;
}
void RasterizerIPhone::particles_set_color_phase_pos(RID p_particles, int p_phase, float p_pos) {
}
float RasterizerIPhone::particles_get_color_phase_pos(RID p_particles, int p_phase) const {
return 0;
}
void RasterizerIPhone::particles_set_color_phases(RID p_particles, int p_phases) {
}
int RasterizerIPhone::particles_get_color_phases(RID p_particles) const {
return 0;
}
void RasterizerIPhone::particles_set_color_phase_color(RID p_particles, int p_phase, const Color &p_color) {
}
Color RasterizerIPhone::particles_get_color_phase_color(RID p_particles, int p_phase) const {
return Color();
}
void RasterizerIPhone::particles_set_attractors(RID p_particles, int p_attractors) {
}
int RasterizerIPhone::particles_get_attractors(RID p_particles) const {
return 0;
}
void RasterizerIPhone::particles_set_attractor_pos(RID p_particles, int p_attractor, const Vector3 &p_pos) {
}
Vector3 RasterizerIPhone::particles_get_attractor_pos(RID p_particles, int p_attractor) const {
return Vector3();
}
void RasterizerIPhone::particles_set_attractor_strength(RID p_particles, int p_attractor, float p_force) {
}
float RasterizerIPhone::particles_get_attractor_strength(RID p_particles, int p_attractor) const {
return 0;
}
void RasterizerIPhone::particles_set_material(RID p_particles, RID p_material, bool p_owned) {
}
RID RasterizerIPhone::particles_get_material(RID p_particles) const {
return RID();
}
AABB RasterizerIPhone::particles_get_aabb(RID p_particles) const {
return AABB();
}
/* BEAM API */
RID RasterizerIPhone::beam_create() {
return RID();
}
void RasterizerIPhone::beam_set_point_count(RID p_beam, int p_count) {
}
int RasterizerIPhone::beam_get_point_count(RID p_beam) const {
return 0;
}
void RasterizerIPhone::beam_clear(RID p_beam) {
}
void RasterizerIPhone::beam_set_point(RID p_beam, int p_point, Vector3 &p_pos) {
}
Vector3 RasterizerIPhone::beam_get_point(RID p_beam, int p_point) const {
return Vector3();
}
void RasterizerIPhone::beam_set_primitive(RID p_beam, VS::BeamPrimitive p_primitive) {
}
VS::BeamPrimitive RasterizerIPhone::beam_get_primitive(RID p_beam) const {
return VS::BEAM_CUBIC;
}
void RasterizerIPhone::beam_set_material(RID p_beam, RID p_material) {
}
RID RasterizerIPhone::beam_get_material(RID p_beam) const {
return RID();
}
AABB RasterizerIPhone::beam_get_aabb(RID p_particles) const {
return AABB();
}
/* SKELETON API */
RID RasterizerIPhone::skeleton_create() {
Skeleton *skeleton = memnew(Skeleton);
ERR_FAIL_COND_V(!skeleton, RID());
return skeleton_owner.make_rid(skeleton);
}
void RasterizerIPhone::skeleton_resize(RID p_skeleton, int p_bones) {
Skeleton *skeleton = skeleton_owner.get(p_skeleton);
ERR_FAIL_COND(!skeleton);
if (p_bones == skeleton->bones.size()) {
return;
};
ERR_FAIL_COND(p_bones < 0 || p_bones > 256);
skeleton->bones.resize(p_bones);
}
int RasterizerIPhone::skeleton_get_bone_count(RID p_skeleton) const {
Skeleton *skeleton = skeleton_owner.get(p_skeleton);
ERR_FAIL_COND_V(!skeleton, -1);
return skeleton->bones.size();
}
void RasterizerIPhone::skeleton_bone_set_transform(RID p_skeleton, int p_bone, const Transform &p_transform) {
Skeleton *skeleton = skeleton_owner.get(p_skeleton);
ERR_FAIL_COND(!skeleton);
ERR_FAIL_INDEX(p_bone, skeleton->bones.size());
skeleton->bones[p_bone] = p_transform;
}
Transform RasterizerIPhone::skeleton_bone_get_transform(RID p_skeleton, int p_bone) {
Skeleton *skeleton = skeleton_owner.get(p_skeleton);
ERR_FAIL_COND_V(!skeleton, Transform());
ERR_FAIL_INDEX_V(p_bone, skeleton->bones.size(), Transform());
// something
return skeleton->bones[p_bone];
}
/* LIGHT API */
RID RasterizerIPhone::light_create(VS::LightType p_type) {
Light *light = memnew(Light);
light->type = p_type;
return light_owner.make_rid(light);
}
VS::LightType RasterizerIPhone::light_get_type(RID p_light) const {
Light *light = light_owner.get(p_light);
ERR_FAIL_COND_V(!light, VS::LIGHT_OMNI);
return light->type;
}
void RasterizerIPhone::light_set_color(RID p_light, VS::LightColor p_type, const Color &p_color) {
Light *light = light_owner.get(p_light);
ERR_FAIL_COND(!light);
ERR_FAIL_INDEX(p_type, 3);
light->colors[p_type] = p_color;
}
Color RasterizerIPhone::light_get_color(RID p_light, VS::LightColor p_type) const {
Light *light = light_owner.get(p_light);
ERR_FAIL_COND_V(!light, Color());
ERR_FAIL_INDEX_V(p_type, 3, Color());
return light->colors[p_type];
}
void RasterizerIPhone::light_set_shadow(RID p_light, bool p_enabled) {
Light *light = light_owner.get(p_light);
ERR_FAIL_COND(!light);
light->shadow_enabled = p_enabled;
}
bool RasterizerIPhone::light_has_shadow(RID p_light) const {
Light *light = light_owner.get(p_light);
ERR_FAIL_COND_V(!light, false);
return light->shadow_enabled;
}
void RasterizerIPhone::light_set_volumetric(RID p_light, bool p_enabled) {
Light *light = light_owner.get(p_light);
ERR_FAIL_COND(!light);
light->volumetric_enabled = p_enabled;
}
bool RasterizerIPhone::light_is_volumetric(RID p_light) const {
Light *light = light_owner.get(p_light);
ERR_FAIL_COND_V(!light, false);
return light->volumetric_enabled;
}
void RasterizerIPhone::light_set_projector(RID p_light, RID p_texture) {
Light *light = light_owner.get(p_light);
ERR_FAIL_COND(!light);
light->projector = p_texture;
}
RID RasterizerIPhone::light_get_projector(RID p_light) const {
Light *light = light_owner.get(p_light);
ERR_FAIL_COND_V(!light, RID());
return light->projector;
}
void RasterizerIPhone::light_set_var(RID p_light, VS::LightParam p_var, float p_value) {
Light *light = light_owner.get(p_light);
ERR_FAIL_COND(!light);
ERR_FAIL_INDEX(p_var, VS::LIGHT_PARAM_MAX);
light->vars[p_var] = p_value;
}
float RasterizerIPhone::light_get_var(RID p_light, VS::LightParam p_var) const {
Light *light = light_owner.get(p_light);
ERR_FAIL_COND_V(!light, 0);
ERR_FAIL_INDEX_V(p_var, VS::LIGHT_PARAM_MAX, 0);
return light->vars[p_var];
}
AABB RasterizerIPhone::light_get_aabb(RID p_light) const {
Light *light = light_owner.get(p_light);
ERR_FAIL_COND_V(!light, AABB());
switch (light->type) {
case VS::LIGHT_SPOT: {
float len = light->vars[VS::LIGHT_PARAM_RADIUS];
float size = Math::tan(Math::deg2rad(light->vars[VS::LIGHT_PARAM_SPOT_ANGLE])) * len;
return AABB(Vector3(-size, -size, -len), Vector3(size * 2, size * 2, len));
} break;
case VS::LIGHT_OMNI: {
float r = light->vars[VS::LIGHT_PARAM_RADIUS];
return AABB(-Vector3(r, r, r), Vector3(r, r, r) * 2);
} break;
case VS::LIGHT_DIRECTIONAL: {
return AABB();
} break;
default: {}
}
ERR_FAIL_V(AABB());
}
RID RasterizerIPhone::light_instance_create(RID p_light) {
Light *light = light_owner.get(p_light);
ERR_FAIL_COND_V(!light, RID());
LightInstance *light_instance = memnew(LightInstance);
light_instance->light = p_light;
light_instance->base = light;
light_instance->last_pass = 0;
return light_instance_owner.make_rid(light_instance);
}
void RasterizerIPhone::light_instance_set_transform(RID p_light_instance, const Transform &p_transform) {
LightInstance *lighti = light_instance_owner.get(p_light_instance);
ERR_FAIL_COND(!lighti);
lighti->transform = p_transform;
}
void RasterizerIPhone::light_instance_set_active_hint(RID p_light_instance) {
LightInstance *lighti = light_instance_owner.get(p_light_instance);
ERR_FAIL_COND(!lighti);
lighti->last_pass = frame;
}
bool RasterizerIPhone::light_instance_has_shadow(RID p_light_instance) const {
return false;
}
bool RasterizerIPhone::light_instance_assign_shadow(RID p_light_instance) {
return false;
}
Rasterizer::ShadowType RasterizerIPhone::light_instance_get_shadow_type(RID p_light_instance) const {
return Rasterizer::SHADOW_CUBE;
}
int RasterizerIPhone::light_instance_get_shadow_passes(RID p_light_instance) const {
return 0;
}
void RasterizerIPhone::light_instance_set_pssm_split_info(RID p_light_instance, int p_split, float p_near, float p_far, const CameraMatrix &p_camera, const Transform &p_transform) {
}
/* PARTICLES INSTANCE */
RID RasterizerIPhone::particles_instance_create(RID p_particles) {
return RID();
}
void RasterizerIPhone::particles_instance_set_transform(RID p_particles_instance, const Transform &p_transform) {
}
/* RENDER API */
/* all calls (inside begin/end shadow) are always warranted to be in the following order: */
static GLfloat rtri; // Angle For The Triangle ( NEW )
static GLfloat rquad; // Angle For The Quad ( NEW )
void RasterizerIPhone::begin_frame() {
window_size = Size2(OS::get_singleton()->get_video_mode().width, OS::get_singleton()->get_video_mode().height);
double time = (OS::get_singleton()->get_ticks_usec() / 1000); // get msec
time /= 1000.0; // make secs
time_delta = time - last_time;
last_time = time;
frame++;
glClearColor(0, 0, 1, 1);
glClear(GL_COLOR_BUFFER_BIT);
/* nehe ?*/
#if 0
glViewport(0,0,window_size.width,window_size.height); // Reset The Current Viewport
glMatrixMode(GL_PROJECTION); // Select The Projection Matrix
glLoadIdentity(); // Reset The Projection Matrix
// Calculate The Aspect Ratio Of The Window
gluPerspective(45.0f,(GLfloat)window_size.width/(GLfloat)window_size.height,0.1f,100.0f);
glMatrixMode(GL_MODELVIEW); // Select The Modelview Matrix
glLoadIdentity(); // Reset The Modelview Matrix
glShadeModel(GL_SMOOTH); // Enable Smooth Shading
glClearColor(0.0f, 0.0f, 0.0f, 0.5f); // Black Background
glClearDepth(1.0f); // Depth Buffer Setup
glEnable(GL_DEPTH_TEST); // Enables Depth Testing
glDepthFunc(GL_LEQUAL); // The Type Of Depth Testing To Do
glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST); // Really Nice Perspective Calculations
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Clear Screen And Depth Buffer
glLoadIdentity(); // Reset The Current Modelview Matrix
glTranslatef(-1.5f,0.0f,-6.0f); // Move Left 1.5 Units And Into The Screen 6.0
glRotatef(rtri,0.0f,1.0f,0.0f); // Rotate The Triangle On The Y axis ( NEW )
glBegin(GL_TRIANGLES); // Start Drawing A Triangle
glColor3f(1.0f,0.0f,0.0f); // Red
glVertex3f( 0.0f, 1.0f, 0.0f); // Top Of Triangle (Front)
glColor3f(0.0f,1.0f,0.0f); // Green
glVertex3f(-1.0f,-1.0f, 1.0f); // Left Of Triangle (Front)
glColor3f(0.0f,0.0f,1.0f); // Blue
glVertex3f( 1.0f,-1.0f, 1.0f); // Right Of Triangle (Front)
glColor3f(1.0f,0.0f,0.0f); // Red
glVertex3f( 0.0f, 1.0f, 0.0f); // Top Of Triangle (Right)
glColor3f(0.0f,0.0f,1.0f); // Blue
glVertex3f( 1.0f,-1.0f, 1.0f); // Left Of Triangle (Right)
glColor3f(0.0f,1.0f,0.0f); // Green
glVertex3f( 1.0f,-1.0f, -1.0f); // Right Of Triangle (Right)
glColor3f(1.0f,0.0f,0.0f); // Red
glVertex3f( 0.0f, 1.0f, 0.0f); // Top Of Triangle (Back)
glColor3f(0.0f,1.0f,0.0f); // Green
glVertex3f( 1.0f,-1.0f, -1.0f); // Left Of Triangle (Back)
glColor3f(0.0f,0.0f,1.0f); // Blue
glVertex3f(-1.0f,-1.0f, -1.0f); // Right Of Triangle (Back)
glColor3f(1.0f,0.0f,0.0f); // Red
glVertex3f( 0.0f, 1.0f, 0.0f); // Top Of Triangle (Left)
glColor3f(0.0f,0.0f,1.0f); // Blue
glVertex3f(-1.0f,-1.0f,-1.0f); // Left Of Triangle (Left)
glColor3f(0.0f,1.0f,0.0f); // Green
glVertex3f(-1.0f,-1.0f, 1.0f); // Right Of Triangle (Left)
glEnd(); // Done Drawing The Pyramid
glLoadIdentity(); // Reset The Current Modelview Matrix
glTranslatef(1.5f,0.0f,-7.0f); // Move Right 1.5 Units And Into The Screen 7.0
glRotatef(rquad,1.0f,1.0f,1.0f); // Rotate The Quad On The X axis ( NEW )
glBegin(GL_QUADS); // Draw A Quad
glColor3f(0.0f,1.0f,0.0f); // Set The Color To Green
glVertex3f( 1.0f, 1.0f,-1.0f); // Top Right Of The Quad (Top)
glVertex3f(-1.0f, 1.0f,-1.0f); // Top Left Of The Quad (Top)
glVertex3f(-1.0f, 1.0f, 1.0f); // Bottom Left Of The Quad (Top)
glVertex3f( 1.0f, 1.0f, 1.0f); // Bottom Right Of The Quad (Top)
glColor3f(1.0f,0.5f,0.0f); // Set The Color To Orange
glVertex3f( 1.0f,-1.0f, 1.0f); // Top Right Of The Quad (Bottom)
glVertex3f(-1.0f,-1.0f, 1.0f); // Top Left Of The Quad (Bottom)
glVertex3f(-1.0f,-1.0f,-1.0f); // Bottom Left Of The Quad (Bottom)
glVertex3f( 1.0f,-1.0f,-1.0f); // Bottom Right Of The Quad (Bottom)
glColor3f(1.0f,0.0f,0.0f); // Set The Color To Red
glVertex3f( 1.0f, 1.0f, 1.0f); // Top Right Of The Quad (Front)
glVertex3f(-1.0f, 1.0f, 1.0f); // Top Left Of The Quad (Front)
glVertex3f(-1.0f,-1.0f, 1.0f); // Bottom Left Of The Quad (Front)
glVertex3f( 1.0f,-1.0f, 1.0f); // Bottom Right Of The Quad (Front)
glColor3f(1.0f,1.0f,0.0f); // Set The Color To Yellow
glVertex3f( 1.0f,-1.0f,-1.0f); // Top Right Of The Quad (Back)
glVertex3f(-1.0f,-1.0f,-1.0f); // Top Left Of The Quad (Back)
glVertex3f(-1.0f, 1.0f,-1.0f); // Bottom Left Of The Quad (Back)
glVertex3f( 1.0f, 1.0f,-1.0f); // Bottom Right Of The Quad (Back)
glColor3f(0.0f,0.0f,1.0f); // Set The Color To Blue
glVertex3f(-1.0f, 1.0f, 1.0f); // Top Right Of The Quad (Left)
glVertex3f(-1.0f, 1.0f,-1.0f); // Top Left Of The Quad (Left)
glVertex3f(-1.0f,-1.0f,-1.0f); // Bottom Left Of The Quad (Left)
glVertex3f(-1.0f,-1.0f, 1.0f); // Bottom Right Of The Quad (Left)
glColor3f(1.0f,0.0f,1.0f); // Set The Color To Violet
glVertex3f( 1.0f, 1.0f,-1.0f); // Top Right Of The Quad (Right)
glVertex3f( 1.0f, 1.0f, 1.0f); // Top Left Of The Quad (Right)
glVertex3f( 1.0f,-1.0f, 1.0f); // Bottom Left Of The Quad (Right)
glVertex3f( 1.0f,-1.0f,-1.0f); // Bottom Right Of The Quad (Right)
glEnd(); // Done Drawing The Quad
rtri+=0.2f; // Increase The Rotation Variable For The Triangle ( NEW )
rquad-=0.15f; // Decrease The Rotation Variable For The Quad ( NEW )
#endif
}
void RasterizerIPhone::set_viewport(const VS::ViewportRect &p_viewport) {
viewport = p_viewport;
canvas_transform = Transform();
canvas_transform.translate(-(viewport.width / 2.0f), -(viewport.height / 2.0f), 0.0f);
canvas_transform.scale(Vector3(2.0f / viewport.width, -2.0f / viewport.height, 1.0f));
glViewport(viewport.x, window_size.height - (viewport.height + viewport.y), viewport.width, viewport.height);
}
void RasterizerIPhone::begin_scene(RID p_fx, VS::ScenarioDebugMode p_debug) {
opaque_render_list.clear();
alpha_render_list.clear();
light_instance_count = 0;
scene_fx = p_fx.is_valid() ? fx_owner.get(p_fx) : NULL;
};
void RasterizerIPhone::begin_shadow_map(RID p_light_instance, int p_shadow_pass) {
}
void RasterizerIPhone::set_camera(const Transform &p_world, const CameraMatrix &p_projection) {
camera_transform = p_world;
camera_transform_inverse = camera_transform.inverse();
camera_projection = p_projection;
camera_plane = Plane(camera_transform.origin, camera_transform.basis.get_axis(2));
camera_z_near = camera_projection.get_z_near();
camera_z_far = camera_projection.get_z_far();
camera_projection.get_viewport_size(camera_vp_size.x, camera_vp_size.y);
}
void RasterizerIPhone::add_light(RID p_light_instance) {
#define LIGHT_FADE_TRESHOLD 0.05
ERR_FAIL_COND(light_instance_count >= MAX_LIGHTS);
LightInstance *li = light_instance_owner.get(p_light_instance);
ERR_FAIL_COND(!li);
/* make light hash */
// actually, not really a hash, but helps to sort the lights
// and avoid recompiling redudant shader versions
li->hash_aux = li->base->type;
if (li->base->shadow_enabled)
li->hash_aux |= (1 << 3);
if (li->base->projector.is_valid())
li->hash_aux |= (1 << 4);
if (li->base->shadow_enabled && li->base->volumetric_enabled)
li->hash_aux |= (1 << 5);
switch (li->base->type) {
case VisualServer::LIGHT_DIRECTIONAL: {
Vector3 dir = li->transform.basis.get_axis(2);
li->light_vector.x = dir.x;
li->light_vector.y = dir.y;
li->light_vector.z = dir.z;
} break;
case VisualServer::LIGHT_OMNI: {
float radius = li->base->vars[VisualServer::LIGHT_PARAM_RADIUS];
if (radius == 0)
radius = 0.0001;
li->linear_att = (1 / LIGHT_FADE_TRESHOLD) / radius;
li->light_vector.x = li->transform.origin.x;
li->light_vector.y = li->transform.origin.y;
li->light_vector.z = li->transform.origin.z;
} break;
case VisualServer::LIGHT_SPOT: {
float radius = li->base->vars[VisualServer::LIGHT_PARAM_RADIUS];
if (radius == 0)
radius = 0.0001;
li->linear_att = (1 / LIGHT_FADE_TRESHOLD) / radius;
li->light_vector.x = li->transform.origin.x;
li->light_vector.y = li->transform.origin.y;
li->light_vector.z = li->transform.origin.z;
Vector3 dir = -li->transform.basis.get_axis(2);
li->spot_vector.x = dir.x;
li->spot_vector.y = dir.y;
li->spot_vector.z = dir.z;
} break;
}
light_instances[light_instance_count++] = li;
}
void RasterizerIPhone::_add_geometry(const Geometry *p_geometry, const Transform &p_world, uint32_t p_vertex_format, const RID *p_light_instances, int p_light_count, const ParamOverrideMap *p_material_overrides, const Skeleton *p_skeleton, GeometryOwner *p_owner) {
Material *m = NULL;
if (p_geometry->material.is_valid())
m = material_owner.get(p_geometry->material);
if (!m) {
m = material_owner.get(default_material);
}
ERR_FAIL_COND(!m);
LightInstance *lights[RenderList::MAX_LIGHTS];
int light_count = 0;
RenderList *render_list = &opaque_render_list;
if (p_geometry->has_alpha || m->detail_blend_mode != VS::MATERIAL_BLEND_MODE_MIX) {
render_list = &alpha_render_list;
};
if (!m->flags[VS::MATERIAL_FLAG_UNSHADED]) {
light_count = p_light_count;
for (int i = 0; i < light_count; i++) {
lights[i] = light_instance_owner.get(p_light_instances[i]);
}
}
render_list->add_element(p_geometry, m, p_world, lights, light_count, p_material_overrides, p_skeleton, camera_plane.distance(p_world.origin), p_owner);
}
void RasterizerIPhone::add_mesh(RID p_mesh, const Transform *p_world, const RID *p_light_instances, int p_light_count, const ParamOverrideMap *p_material_overrides, RID p_skeleton) {
Mesh *mesh = mesh_owner.get(p_mesh);
int ssize = mesh->surfaces.size();
for (int i = 0; i < ssize; i++) {
Surface *s = mesh->surfaces[i];
Skeleton *sk = p_skeleton.is_valid() ? skeleton_owner.get(p_skeleton) : NULL;
_add_geometry(s, *p_world, s->format, p_light_instances, p_light_count, p_material_overrides, sk, NULL);
}
mesh->last_pass = frame;
}
void RasterizerIPhone::add_multimesh(RID p_multimesh, const Transform *p_world, const RID *p_light_instances, int p_light_count, const ParamOverrideMap *p_material_overrides) {
}
void RasterizerIPhone::add_poly(RID p_poly, const Transform *p_world, const RID *p_light_instances, int p_light_count, const ParamOverrideMap *p_material_overrides) {
Poly *p = poly_owner.get(p_poly);
if (!p->primitives.empty()) {
const Poly::Primitive *pp = &p->primitives[0];
uint32_t format = VisualServer::ARRAY_FORMAT_VERTEX;
if (!pp->normals.empty())
format |= VisualServer::ARRAY_FORMAT_NORMAL;
if (!pp->colors.empty())
format |= VisualServer::ARRAY_FORMAT_COLOR;
if (!pp->uvs.empty())
format |= VisualServer::ARRAY_TEX_UV;
_add_geometry(p, *p_world, format, p_light_instances, p_light_count, p_material_overrides, NULL, NULL);
}
}
void RasterizerIPhone::add_beam(RID p_beam, const Transform *p_world, const RID *p_light_instances, int p_light_count, const ParamOverrideMap *p_material_overrides) {
}
void RasterizerIPhone::add_particles(RID p_particle_instance, const RID *p_light_instances, int p_light_count, const ParamOverrideMap *p_material_overrides) {
}
void RasterizerIPhone::_setup_material(const Geometry *p_geometry, const Material *p_material) {
if (p_material->flags[VS::MATERIAL_FLAG_DOUBLE_SIDED])
glDisable(GL_CULL_FACE);
else {
glEnable(GL_CULL_FACE);
glCullFace((p_material->flags[VS::MATERIAL_FLAG_INVERT_FACES]) ? GL_FRONT : GL_BACK);
}
glEnable(GL_COLOR_MATERIAL); /* unused, unless color array */
//glColorMaterial( GL_FRONT_AND_BACK, GL_DIFFUSE );
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
///ambient @TODO offer global ambient group option
float ambient_rgba[4] = {
1,
1,
1,
1.0
};
glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT, ambient_rgba);
///diffuse
const Color &diffuse_color = p_material->parameters[VS::FIXED_MATERIAL_PARAM_DIFFUSE];
float diffuse_rgba[4] = {
(float)diffuse_color.r,
(float)diffuse_color.g,
(float)diffuse_color.b,
(float)diffuse_color.a
};
glColor4f(diffuse_rgba[0], diffuse_rgba[1], diffuse_rgba[2], diffuse_rgba[3]);
glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, diffuse_rgba);
//specular
const Color &specular_color = p_material->parameters[VS::FIXED_MATERIAL_PARAM_SPECULAR];
float specular_rgba[4] = {
(float)specular_color.r,
(float)specular_color.g,
(float)specular_color.b,
1.0
};
glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR, specular_rgba);
const Color &emission_color = p_material->parameters[VS::FIXED_MATERIAL_PARAM_EMISSION];
float emission_rgba[4] = {
(float)emission_color.r,
(float)emission_color.g,
(float)emission_color.b,
1.0
};
glMaterialfv(GL_FRONT_AND_BACK, GL_EMISSION, emission_rgba);
glMaterialf(GL_FRONT_AND_BACK, GL_SHININESS, p_material->parameters[VS::FIXED_MATERIAL_PARAM_SPECULAR_EXP]);
if (p_material->flags[VS::MATERIAL_FLAG_UNSHADED]) {
glDisable(GL_LIGHTING);
} else {
glEnable(GL_LIGHTING);
glDisable(GL_LIGHTING);
}
//depth test?
/*
if (p_material->flags[VS::MATERIAL_FLAG_WIREFRAME])
glPolygonMode(GL_FRONT_AND_BACK,GL_LINE);
else
glPolygonMode(GL_FRONT_AND_BACK,GL_FILL);
*/
if (p_material->textures[VS::FIXED_MATERIAL_PARAM_DIFFUSE]) {
Texture *texture = texture_owner.get(p_material->textures[VS::FIXED_MATERIAL_PARAM_DIFFUSE]);
ERR_FAIL_COND(!texture);
glActiveTexture(GL_TEXTURE0);
glEnable(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, texture->tex_id);
};
};
void RasterizerIPhone::_setup_light(LightInstance *p_instance, int p_idx) {
Light *ld = p_instance->base;
int glid = GL_LIGHT0 + p_idx;
glLightfv(glid, GL_AMBIENT, ld->colors[VS::LIGHT_COLOR_AMBIENT].components);
glLightfv(glid, GL_DIFFUSE, ld->colors[VS::LIGHT_COLOR_DIFFUSE].components);
glLightfv(glid, GL_SPECULAR, ld->colors[VS::LIGHT_COLOR_SPECULAR].components);
switch (ld->type) {
case VS::LIGHT_DIRECTIONAL: {
/* This doesnt have attenuation */
glMatrixMode(GL_MODELVIEW);
glPushMatrix();
glLoadIdentity();
Vector3 v(0.0, 0.0, -1.0); // directional lights point up by default
v = p_instance->transform.get_basis().xform(v);
v = camera_transform_inverse.get_basis().xform(v);
v.normalize(); // this sucks, so it will be optimized at some point
v = -v;
float lightpos[4] = { v.x, v.y, v.z, 0.0 };
glLightfv(glid, GL_POSITION, lightpos); //at modelview
glPopMatrix();
} break;
case VS::LIGHT_OMNI: {
glLightf(glid, GL_SPOT_CUTOFF, 180.0);
glLightf(glid, GL_CONSTANT_ATTENUATION, ld->vars[VS::LIGHT_PARAM_ATTENUATION]);
glLightf(glid, GL_LINEAR_ATTENUATION, ld->vars[VS::LIGHT_PARAM_RADIUS]);
glLightf(glid, GL_QUADRATIC_ATTENUATION, ld->vars[VS::LIGHT_PARAM_ENERGY]); // wut?
glMatrixMode(GL_MODELVIEW);
glPushMatrix();
glLoadIdentity();
Vector3 pos = p_instance->transform.get_origin();
pos = camera_transform_inverse.xform(pos);
float lightpos[4] = { pos.x, pos.y, pos.z, 1.0 };
glLightfv(glid, GL_POSITION, lightpos); //at modelview
glPopMatrix();
} break;
case VS::LIGHT_SPOT: {
glLightf(glid, GL_SPOT_CUTOFF, ld->vars[VS::LIGHT_PARAM_SPOT_ANGLE]);
glLightf(glid, GL_SPOT_EXPONENT, ld->vars[VS::LIGHT_PARAM_SPOT_ATTENUATION]);
glLightf(glid, GL_CONSTANT_ATTENUATION, ld->vars[VS::LIGHT_PARAM_ATTENUATION]);
glLightf(glid, GL_LINEAR_ATTENUATION, ld->vars[VS::LIGHT_PARAM_RADIUS]);
glLightf(glid, GL_QUADRATIC_ATTENUATION, ld->vars[VS::LIGHT_PARAM_ENERGY]); // wut?
glMatrixMode(GL_MODELVIEW);
glPushMatrix();
glLoadIdentity();
Vector3 v(0.0, 0.0, -1.0); // directional lights point up by default
v = p_instance->transform.get_basis().xform(v);
v = camera_transform_inverse.get_basis().xform(v);
v.normalize(); // this sucks, so it will be optimized at some point
float lightdir[4] = { v.x, v.y, v.z, 1.0 };
glLightfv(glid, GL_SPOT_DIRECTION, lightdir); //at modelview
v = p_instance->transform.get_origin();
v = camera_transform_inverse.xform(v);
float lightpos[4] = { v.x, v.y, v.z, 1.0 };
glLightfv(glid, GL_POSITION, lightpos); //at modelview
glPopMatrix();
} break;
default: break;
}
};
void RasterizerIPhone::_setup_lights(LightInstance **p_lights, int p_light_count) {
for (int i = 0; i < MAX_LIGHTS; i++) {
if (i < p_light_count) {
glEnable(GL_LIGHT0 + i);
_setup_light(p_lights[i], i);
} else {
glDisable(GL_LIGHT0 + i);
}
}
}
static const int gl_client_states[] = {
GL_VERTEX_ARRAY,
GL_NORMAL_ARRAY,
-1, // ARRAY_TANGENT
GL_COLOR_ARRAY,
GL_TEXTURE_COORD_ARRAY, // ARRAY_TEX_UV
GL_TEXTURE_COORD_ARRAY, // ARRAY_TEX_UV2
-1, // ARRAY_BONES
-1, // ARRAY_WEIGHTS
-1, // ARRAY_INDEX
};
void RasterizerIPhone::_setup_geometry(const Geometry *p_geometry, const Material *p_material) {
switch (p_geometry->type) {
case Geometry::GEOMETRY_SURFACE: {
Surface *surf = (Surface *)p_geometry;
uint8_t *base = 0;
bool use_VBO = (surf->array_local == 0);
if (!use_VBO) {
base = surf->array_local;
glBindBuffer(GL_ARRAY_BUFFER, 0);
} else {
glBindBuffer(GL_ARRAY_BUFFER, surf->vertex_id);
};
const Surface::ArrayData *a = surf->array;
for (int i = 0; i < VS::ARRAY_MAX; i++) {
const Surface::ArrayData &ad = surf->array[i];
if (ad.size == 0) {
if (gl_client_states[i] != -1) {
glDisableClientState(gl_client_states[i]);
};
continue; // this one is disabled.
}
ERR_CONTINUE(!ad.configured);
if (gl_client_states[i] != -1) {
glEnableClientState(gl_client_states[i]);
};
switch (i) {
case VS::ARRAY_VERTEX:
if (!use_VBO)
glVertexPointer(3, GL_FLOAT, surf->stride, (GLvoid *)&base[a->ofs]);
else if (surf->array[VS::ARRAY_BONES].size)
glVertexPointer(3, GL_FLOAT, 0, skinned_buffer);
else
glVertexPointer(3, GL_FLOAT, surf->stride, (GLvoid *)a->ofs);
break;
case VS::ARRAY_NORMAL:
if (use_VBO)
glNormalPointer(GL_FLOAT, surf->stride, (GLvoid *)a->ofs);
else
glNormalPointer(GL_FLOAT, surf->stride, (GLvoid *)&base[a->ofs]);
break;
case VS::ARRAY_TANGENT:
break;
case VS::ARRAY_COLOR:
if (use_VBO)
glColorPointer(4, GL_UNSIGNED_BYTE, surf->stride, (GLvoid *)a->ofs);
else
glColorPointer(4, GL_UNSIGNED_BYTE, surf->stride, (GLvoid *)&base[a->ofs]);
break;
case VS::ARRAY_TEX_UV:
case VS::ARRAY_TEX_UV2:
if (use_VBO)
glTexCoordPointer(2, GL_FLOAT, surf->stride, (GLvoid *)a->ofs);
else
glTexCoordPointer(2, GL_FLOAT, surf->stride, &base[a->ofs]);
break;
case VS::ARRAY_BONES:
case VS::ARRAY_WEIGHTS:
case VS::ARRAY_INDEX:
break;
};
}
// process skeleton here
} break;
default: break;
};
};
static const GLenum gl_primitive[] = {
GL_POINTS,
GL_LINES,
GL_LINE_STRIP,
GL_LINE_LOOP,
GL_TRIANGLES,
GL_TRIANGLE_STRIP,
GL_TRIANGLE_FAN
};
void RasterizerIPhone::_render(const Geometry *p_geometry, const Material *p_material, const Skeleton *p_skeleton) {
switch (p_geometry->type) {
case Geometry::GEOMETRY_SURFACE: {
Surface *s = (Surface *)p_geometry;
if (s->index_array_len > 0) {
if (s->index_array_local) {
glDrawElements(gl_primitive[s->primitive], s->index_array_len, (s->index_array_len > (1 << 8)) ? GL_UNSIGNED_SHORT : GL_UNSIGNED_BYTE, s->index_array_local);
} else {
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, s->index_id);
glDrawElements(gl_primitive[s->primitive], s->index_array_len, (s->index_array_len > (1 << 8)) ? GL_UNSIGNED_SHORT : GL_UNSIGNED_BYTE, 0);
}
} else {
glDrawArrays(gl_primitive[s->primitive], 0, s->array_len);
};
} break;
default: break;
};
};
void RasterizerIPhone::_render_list_forward(RenderList *p_render_list) {
const Material *prev_material = NULL;
uint64_t prev_light_hash = 0;
const Skeleton *prev_skeleton = NULL;
const Geometry *prev_geometry = NULL;
const ParamOverrideMap *prev_overrides = NULL; // make it diferent than NULL
Geometry::Type prev_geometry_type = Geometry::GEOMETRY_INVALID;
glMatrixMode(GL_PROJECTION);
glLoadMatrixf(&camera_projection.matrix[0][0]);
for (int i = 0; i < p_render_list->element_count; i++) {
RenderList::Element *e = p_render_list->elements[i];
const Material *material = e->material;
uint64_t light_hash = e->light_hash;
const Skeleton *skeleton = e->skeleton;
const Geometry *geometry = e->geometry;
const ParamOverrideMap *material_overrides = e->material_overrides;
if (material != prev_material || geometry->type != prev_geometry_type) {
_setup_material(e->geometry, material);
//_setup_material_overrides(e->material,NULL,material_overrides);
//_setup_material_skeleton(material,skeleton);
} else {
if (material_overrides != prev_overrides) {
//_setup_material_overrides(e->material,prev_overrides,material_overrides);
}
if (prev_skeleton != skeleton) {
//_setup_material_skeleton(material,skeleton);
};
}
if (geometry != prev_geometry || geometry->type != prev_geometry_type) {
_setup_geometry(geometry, material);
};
if (i == 0 || light_hash != prev_light_hash)
_setup_lights(e->lights, e->light_count);
glMatrixMode(GL_MODELVIEW);
_gl_load_transform(camera_transform_inverse);
_gl_mult_transform(e->transform);
_render(geometry, material, skeleton);
prev_material = material;
prev_skeleton = skeleton;
prev_geometry = geometry;
prev_light_hash = e->light_hash;
prev_geometry_type = geometry->type;
prev_overrides = material_overrides;
}
};
void RasterizerIPhone::end_scene() {
glEnable(GL_BLEND);
glDepthMask(GL_FALSE);
opaque_render_list.sort_mat_light();
_render_list_forward(&opaque_render_list);
glDisable(GL_BLEND);
glDepthMask(GL_TRUE);
alpha_render_list.sort_z();
_render_list_forward(&alpha_render_list);
}
void RasterizerIPhone::end_shadow_map() {
}
void RasterizerIPhone::end_frame() {
//ContextGL::get_singleton()->swap_buffers();
}
/* CANVAS API */
void RasterizerIPhone::canvas_begin() {
glDisable(GL_CULL_FACE);
glDisable(GL_DEPTH_TEST);
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glLineWidth(1.0);
glDisable(GL_LIGHTING);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
}
void RasterizerIPhone::canvas_set_transparency(float p_transparency) {
}
void RasterizerIPhone::canvas_set_rect(const Rect2 &p_rect, bool p_clip) {
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glScalef(2.0 / window_size.x, -2.0 / window_size.y, 0);
glTranslatef((-(window_size.x / 2.0)) + p_rect.pos.x, (-(window_size.y / 2.0)) + p_rect.pos.y, 0);
if (p_clip) {
glEnable(GL_SCISSOR_TEST);
glScissor(viewport.x + p_rect.pos.x, viewport.y + (viewport.height - (p_rect.pos.y + p_rect.size.height)),
p_rect.size.width, p_rect.size.height);
} else {
glDisable(GL_SCISSOR_TEST);
}
}
void RasterizerIPhone::canvas_draw_line(const Point2 &p_from, const Point2 &p_to, const Color &p_color, float p_width) {
glColor4f(1, 1, 1, 1);
float verts[6] = {
p_from.x, p_from.y, 0,
p_to.x, p_to.y, 0
};
float colors[] = {
p_color.r, p_color.g, p_color.b, p_color.a,
p_color.r, p_color.g, p_color.b, p_color.a,
};
glLineWidth(p_width);
_draw_primitive(2, verts, 0, colors, 0);
}
static void _draw_textured_quad(const Rect2 &p_rect, const Rect2 &p_src_region, const Size2 &p_tex_size) {
float texcoords[] = {
p_src_region.pos.x / p_tex_size.width,
p_src_region.pos.y / p_tex_size.height,
(p_src_region.pos.x + p_src_region.size.width) / p_tex_size.width,
p_src_region.pos.y / p_tex_size.height,
(p_src_region.pos.x + p_src_region.size.width) / p_tex_size.width,
(p_src_region.pos.y + p_src_region.size.height) / p_tex_size.height,
p_src_region.pos.x / p_tex_size.width,
(p_src_region.pos.y + p_src_region.size.height) / p_tex_size.height,
};
float coords[] = {
p_rect.pos.x, p_rect.pos.y, 0,
p_rect.pos.x + p_rect.size.width, p_rect.pos.y, 0,
p_rect.pos.x + p_rect.size.width, p_rect.pos.y + p_rect.size.height, 0,
p_rect.pos.x, p_rect.pos.y + p_rect.size.height, 0
};
_draw_primitive(4, coords, 0, 0, texcoords);
}
static void _draw_quad(const Rect2 &p_rect) {
float coords[] = {
p_rect.pos.x, p_rect.pos.y, 0,
p_rect.pos.x + p_rect.size.width, p_rect.pos.y, 0,
p_rect.pos.x + p_rect.size.width, p_rect.pos.y + p_rect.size.height, 0,
p_rect.pos.x, p_rect.pos.y + p_rect.size.height, 0
};
_draw_primitive(4, coords, 0, 0, 0);
}
void RasterizerIPhone::canvas_draw_rect(const Rect2 &p_rect, bool p_region, const Rect2 &p_source, bool p_tile, RID p_texture, const Color &p_modulate) {
glColor4f(p_modulate.r, p_modulate.g, p_modulate.b, p_modulate.a);
if (p_texture.is_valid()) {
glEnable(GL_TEXTURE_2D);
Texture *texture = texture_owner.get(p_texture);
ERR_FAIL_COND(!texture);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, texture->tex_id);
if (!p_region) {
Rect2 region = Rect2(0, 0, texture->width, texture->height);
_draw_textured_quad(p_rect, region, region.size);
} else {
_draw_textured_quad(p_rect, p_source, Size2(texture->width, texture->height));
}
} else {
_draw_quad(p_rect);
}
}
void RasterizerIPhone::canvas_draw_style_box(const Rect2 &p_rect, const Rect2 &p_src_region, RID p_texture, const float *p_margin, bool p_draw_center) {
glColor4f(1, 1, 1, 1);
Texture *texture = texture_owner.get(p_texture);
ERR_FAIL_COND(!texture);
glEnable(GL_TEXTURE_2D);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, texture->tex_id);
Rect2 region = p_src_region;
if (region.size.width <= 0)
region.size.width = texture->width;
if (region.size.height <= 0)
region.size.height = texture->height;
/* CORNERS */
_draw_textured_quad( // top left
Rect2(p_rect.pos, Size2(p_margin[MARGIN_LEFT], p_margin[MARGIN_TOP])),
Rect2(region.pos, Size2(p_margin[MARGIN_LEFT], p_margin[MARGIN_TOP])),
Size2(texture->width, texture->height));
_draw_textured_quad( // top right
Rect2(Point2(p_rect.pos.x + p_rect.size.width - p_margin[MARGIN_RIGHT], p_rect.pos.y), Size2(p_margin[MARGIN_RIGHT], p_margin[MARGIN_TOP])),
Rect2(Point2(region.pos.x + region.size.width - p_margin[MARGIN_RIGHT], region.pos.y), Size2(p_margin[MARGIN_RIGHT], p_margin[MARGIN_TOP])),
Size2(texture->width, texture->height));
_draw_textured_quad( // bottom left
Rect2(Point2(p_rect.pos.x, p_rect.pos.y + p_rect.size.height - p_margin[MARGIN_BOTTOM]), Size2(p_margin[MARGIN_LEFT], p_margin[MARGIN_BOTTOM])),
Rect2(Point2(region.pos.x, region.pos.y + region.size.height - p_margin[MARGIN_BOTTOM]), Size2(p_margin[MARGIN_LEFT], p_margin[MARGIN_BOTTOM])),
Size2(texture->width, texture->height));
_draw_textured_quad( // bottom right
Rect2(Point2(p_rect.pos.x + p_rect.size.width - p_margin[MARGIN_RIGHT], p_rect.pos.y + p_rect.size.height - p_margin[MARGIN_BOTTOM]), Size2(p_margin[MARGIN_RIGHT], p_margin[MARGIN_BOTTOM])),
Rect2(Point2(region.pos.x + region.size.width - p_margin[MARGIN_RIGHT], region.pos.y + region.size.height - p_margin[MARGIN_BOTTOM]), Size2(p_margin[MARGIN_RIGHT], p_margin[MARGIN_BOTTOM])),
Size2(texture->width, texture->height));
Rect2 rect_center(p_rect.pos + Point2(p_margin[MARGIN_LEFT], p_margin[MARGIN_TOP]), Size2(p_rect.size.width - p_margin[MARGIN_LEFT] - p_margin[MARGIN_RIGHT], p_rect.size.height - p_margin[MARGIN_TOP] - p_margin[MARGIN_BOTTOM]));
Rect2 src_center(Point2(region.pos.x + p_margin[MARGIN_LEFT], region.pos.y + p_margin[MARGIN_TOP]), Size2(region.size.width - p_margin[MARGIN_LEFT] - p_margin[MARGIN_RIGHT], region.size.height - p_margin[MARGIN_TOP] - p_margin[MARGIN_BOTTOM]));
_draw_textured_quad( // top
Rect2(Point2(rect_center.pos.x, p_rect.pos.y), Size2(rect_center.size.width, p_margin[MARGIN_TOP])),
Rect2(Point2(src_center.pos.x, region.pos.y), Size2(src_center.size.width, p_margin[MARGIN_TOP])),
Size2(texture->width, texture->height));
_draw_textured_quad( // bottom
Rect2(Point2(rect_center.pos.x, rect_center.pos.y + rect_center.size.height), Size2(rect_center.size.width, p_margin[MARGIN_BOTTOM])),
Rect2(Point2(src_center.pos.x, src_center.pos.y + src_center.size.height), Size2(src_center.size.width, p_margin[MARGIN_BOTTOM])),
Size2(texture->width, texture->height));
_draw_textured_quad( // left
Rect2(Point2(p_rect.pos.x, rect_center.pos.y), Size2(p_margin[MARGIN_LEFT], rect_center.size.height)),
Rect2(Point2(region.pos.x, region.pos.y + p_margin[MARGIN_TOP]), Size2(p_margin[MARGIN_LEFT], src_center.size.height)),
Size2(texture->width, texture->height));
_draw_textured_quad( // right
Rect2(Point2(rect_center.pos.x + rect_center.size.width, rect_center.pos.y), Size2(p_margin[MARGIN_RIGHT], rect_center.size.height)),
Rect2(Point2(src_center.pos.x + src_center.size.width, region.pos.y + p_margin[MARGIN_TOP]), Size2(p_margin[MARGIN_RIGHT], src_center.size.height)),
Size2(texture->width, texture->height));
if (p_draw_center) {
_draw_textured_quad(
rect_center,
src_center,
Size2(texture->width, texture->height));
}
}
void RasterizerIPhone::canvas_draw_primitive(const Vector<Point2> &p_points, const Vector<Color> &p_colors, const Vector<Point2> &p_uvs, RID p_texture) {
ERR_FAIL_COND(p_points.size() < 1);
float verts[12];
float uvs[8];
float colors[16];
glColor4f(1, 1, 1, 1);
int idx = 0;
for (int i = 0; i < p_points.size(); i++) {
verts[idx++] = p_points[i].x;
verts[idx++] = p_points[i].y;
verts[idx++] = 0;
}
idx = 0;
for (int i = 0; i < p_uvs.size(); i++) {
uvs[idx++] = p_uvs[i].x;
uvs[idx++] = p_uvs[i].y;
}
idx = 0;
for (int i = 0; i < p_colors.size(); i++) {
colors[idx++] = p_colors[i].r;
colors[idx++] = p_colors[i].g;
colors[idx++] = p_colors[i].b;
colors[idx++] = p_colors[i].a;
};
if (p_texture.is_valid()) {
glEnable(GL_TEXTURE_2D);
Texture *texture = texture_owner.get(p_texture);
if (texture) {
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, texture->tex_id);
}
}
_draw_primitive(p_points.size(), &verts[0], NULL, p_colors.size() ? &colors[0] : NULL, p_uvs.size() ? uvs : NULL);
}
/* FX */
RID RasterizerIPhone::fx_create() {
return RID();
}
void RasterizerIPhone::fx_get_effects(RID p_fx, List<String> *p_effects) const {
}
void RasterizerIPhone::fx_set_active(RID p_fx, const String &p_effect, bool p_active) {
}
bool RasterizerIPhone::fx_is_active(RID p_fx, const String &p_effect) const {
return false;
}
void RasterizerIPhone::fx_get_effect_params(RID p_fx, const String &p_effect, List<PropertyInfo> *p_params) const {
}
Variant RasterizerIPhone::fx_get_effect_param(RID p_fx, const String &p_effect, const String &p_param) const {
return Variant();
}
void RasterizerIPhone::fx_set_effect_param(RID p_fx, const String &p_effect, const String &p_param, const Variant &p_pvalue) {
}
/*MISC*/
bool RasterizerIPhone::is_texture(const RID &p_rid) const {
return texture_owner.owns(p_rid);
}
bool RasterizerIPhone::is_material(const RID &p_rid) const {
return material_owner.owns(p_rid);
}
bool RasterizerIPhone::is_mesh(const RID &p_rid) const {
return mesh_owner.owns(p_rid);
}
bool RasterizerIPhone::is_multimesh(const RID &p_rid) const {
return false;
}
bool RasterizerIPhone::is_poly(const RID &p_rid) const {
return poly_owner.owns(p_rid);
}
bool RasterizerIPhone::is_particles(const RID &p_beam) const {
return false;
}
bool RasterizerIPhone::is_beam(const RID &p_beam) const {
return false;
}
bool RasterizerIPhone::is_light(const RID &p_rid) const {
return light_owner.owns(p_rid);
}
bool RasterizerIPhone::is_light_instance(const RID &p_rid) const {
return light_instance_owner.owns(p_rid);
}
bool RasterizerIPhone::is_particles_instance(const RID &p_rid) const {
return false;
}
bool RasterizerIPhone::is_skeleton(const RID &p_rid) const {
return skeleton_owner.owns(p_rid);
}
bool RasterizerIPhone::is_fx(const RID &p_rid) const {
return fx_owner.owns(p_rid);
}
bool RasterizerIPhone::is_shader(const RID &p_rid) const {
return false;
}
void RasterizerIPhone::free(const RID &p_rid) const {
if (texture_owner.owns(p_rid)) {
// delete the texture
Texture *texture = texture_owner.get(p_rid);
glDeleteTextures(1, &texture->tex_id);
texture_owner.free(p_rid);
memdelete(texture);
} else if (material_owner.owns(p_rid)) {
Material *material = material_owner.get(p_rid);
ERR_FAIL_COND(!material);
material_owner.free(p_rid);
memdelete(material);
} else if (mesh_owner.owns(p_rid)) {
Mesh *mesh = mesh_owner.get(p_rid);
ERR_FAIL_COND(!mesh);
for (int i = 0; i < mesh->surfaces.size(); i++) {
Surface *surface = mesh->surfaces[i];
if (surface->array_local != 0) {
memfree(surface->array_local);
};
if (surface->index_array_local != 0) {
memfree(surface->index_array_local);
};
if (surface->vertex_id)
glDeleteBuffers(1, &surface->vertex_id);
if (surface->index_id)
glDeleteBuffers(1, &surface->index_id);
memdelete(surface);
};
mesh->surfaces.clear();
mesh_owner.free(p_rid);
memdelete(mesh);
} else if (skeleton_owner.owns(p_rid)) {
Skeleton *skeleton = skeleton_owner.get(p_rid);
ERR_FAIL_COND(!skeleton)
skeleton_owner.free(p_rid);
memdelete(skeleton);
} else if (light_owner.owns(p_rid)) {
Light *light = light_owner.get(p_rid);
ERR_FAIL_COND(!light)
light_owner.free(p_rid);
memdelete(light);
} else if (light_instance_owner.owns(p_rid)) {
LightInstance *light_instance = light_instance_owner.get(p_rid);
ERR_FAIL_COND(!light_instance);
light_instance_owner.free(p_rid);
memdelete(light_instance);
} else if (fx_owner.owns(p_rid)) {
FX *fx = fx_owner.get(p_rid);
ERR_FAIL_COND(!fx);
fx_owner.free(p_rid);
memdelete(fx);
};
}
void RasterizerIPhone::init() {
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_LEQUAL);
glFrontFace(GL_CW);
glEnable(GL_TEXTURE_2D);
}
void RasterizerIPhone::finish() {
}
int RasterizerIPhone::get_render_info(VS::RenderInfo p_info) {
return false;
}
RasterizerIPhone::RasterizerIPhone() {
frame = 0;
};
RasterizerIPhone::~RasterizerIPhone(){
};
#endif