godot/doc/classes/Vector4.xml

333 lines
14 KiB
XML

<?xml version="1.0" encoding="UTF-8" ?>
<class name="Vector4" version="4.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="../class.xsd">
<brief_description>
Vector used for 4D math using floating point coordinates.
</brief_description>
<description>
4-element structure that can be used to represent any quadruplet of numeric values.
It uses floating-point coordinates. See [Vector4i] for its integer counterpart.
[b]Note:[/b] In a boolean context, a Vector4 will evaluate to [code]false[/code] if it's equal to [code]Vector4(0, 0, 0, 0)[/code]. Otherwise, a Vector4 will always evaluate to [code]true[/code].
</description>
<tutorials>
</tutorials>
<constructors>
<constructor name="Vector4">
<return type="Vector4" />
<description>
Constructs a default-initialized [Vector4] with all components set to [code]0[/code].
</description>
</constructor>
<constructor name="Vector4">
<return type="Vector4" />
<argument index="0" name="from" type="Vector4" />
<description>
Constructs a [Vector4] as a copy of the given [Vector4].
</description>
</constructor>
<constructor name="Vector4">
<return type="Vector4" />
<argument index="0" name="from" type="Vector4i" />
<description>
Constructs a new [Vector4] from [Vector4i].
</description>
</constructor>
<constructor name="Vector4">
<return type="Vector4" />
<argument index="0" name="x" type="float" />
<argument index="1" name="y" type="float" />
<argument index="2" name="z" type="float" />
<argument index="3" name="w" type="float" />
<description>
Returns a [Vector4] with the given components.
</description>
</constructor>
</constructors>
<methods>
<method name="abs" qualifiers="const">
<return type="Vector4" />
<description>
Returns a new vector with all components in absolute values (i.e. positive).
</description>
</method>
<method name="ceil" qualifiers="const">
<return type="Vector4" />
<description>
Returns a new vector with all components rounded up (towards positive infinity).
</description>
</method>
<method name="clamp" qualifiers="const">
<return type="Vector4" />
<argument index="0" name="min" type="Vector4" />
<argument index="1" name="max" type="Vector4" />
<description>
Returns a new vector with all components clamped between the components of [code]min[/code] and [code]max[/code], by running [method @GlobalScope.clamp] on each component.
</description>
</method>
<method name="dot" qualifiers="const">
<return type="float" />
<argument index="0" name="with" type="Vector4" />
<description>
Returns the dot product of this vector and [code]with[/code].
</description>
</method>
<method name="floor" qualifiers="const">
<return type="Vector4" />
<description>
Returns a new vector with all components rounded down (towards negative infinity).
</description>
</method>
<method name="inverse" qualifiers="const">
<return type="Vector4" />
<description>
Returns the inverse of the vector. This is the same as [code]Vector4(1.0 / v.x, 1.0 / v.y, 1.0 / v.z, 1.0 / v.w)[/code].
</description>
</method>
<method name="is_equal_approx" qualifiers="const">
<return type="bool" />
<argument index="0" name="with" type="Vector4" />
<description>
Returns [code]true[/code] if this vector and [code]v[/code] are approximately equal, by running [method @GlobalScope.is_equal_approx] on each component.
</description>
</method>
<method name="is_normalized" qualifiers="const">
<return type="bool" />
<description>
Returns [code]true[/code] if the vector is normalized, i.e. its length is equal to 1.
</description>
</method>
<method name="length" qualifiers="const">
<return type="float" />
<description>
Returns the length (magnitude) of this vector.
</description>
</method>
<method name="length_squared" qualifiers="const">
<return type="float" />
<description>
Returns the squared length (squared magnitude) of this vector. This method runs faster than [method length].
</description>
</method>
<method name="lerp" qualifiers="const">
<return type="Vector4" />
<argument index="0" name="to" type="Vector4" />
<argument index="1" name="weight" type="float" />
<description>
Returns the result of the linear interpolation between this vector and [code]to[/code] by amount [code]weight[/code]. [code]weight[/code] is on the range of [code]0.0[/code] to [code]1.0[/code], representing the amount of interpolation.
</description>
</method>
<method name="max_axis_index" qualifiers="const">
<return type="int" />
<description>
Returns the axis of the vector's highest value. See [code]AXIS_*[/code] constants. If all components are equal, this method returns [constant AXIS_X].
</description>
</method>
<method name="min_axis_index" qualifiers="const">
<return type="int" />
<description>
Returns the axis of the vector's lowest value. See [code]AXIS_*[/code] constants. If all components are equal, this method returns [constant AXIS_W].
</description>
</method>
<method name="normalized" qualifiers="const">
<return type="Vector4" />
<description>
Returns the vector scaled to unit length. Equivalent to [code]v / v.length()[/code].
</description>
</method>
<method name="round" qualifiers="const">
<return type="Vector4" />
<description>
Returns a new vector with all components rounded to the nearest integer, with halfway cases rounded away from zero.
</description>
</method>
<method name="sign" qualifiers="const">
<return type="Vector4" />
<description>
Returns a new vector with each component set to one or negative one, depending on the signs of the components, or zero if the component is zero, by calling [method @GlobalScope.sign] on each component.
</description>
</method>
</methods>
<members>
<member name="w" type="float" setter="" getter="" default="0.0">
The vector's W component. Also accessible by using the index position [code][3][/code].
</member>
<member name="x" type="float" setter="" getter="" default="0.0">
The vector's X component. Also accessible by using the index position [code][0][/code].
</member>
<member name="y" type="float" setter="" getter="" default="0.0">
The vector's Y component. Also accessible by using the index position [code][1][/code].
</member>
<member name="z" type="float" setter="" getter="" default="0.0">
The vector's Z component. Also accessible by using the index position [code][2][/code].
</member>
</members>
<constants>
<constant name="AXIS_X" value="0">
Enumerated value for the X axis. Returned by [method max_axis_index] and [method min_axis_index].
</constant>
<constant name="AXIS_Y" value="1">
Enumerated value for the Y axis. Returned by [method max_axis_index] and [method min_axis_index].
</constant>
<constant name="AXIS_Z" value="2">
Enumerated value for the Z axis. Returned by [method max_axis_index] and [method min_axis_index].
</constant>
<constant name="AXIS_W" value="3">
Enumerated value for the W axis. Returned by [method max_axis_index] and [method min_axis_index].
</constant>
<constant name="ZERO" value="Vector4(0, 0, 0, 0)">
Zero vector, a vector with all components set to [code]0[/code].
</constant>
<constant name="ONE" value="Vector4(1, 1, 1, 1)">
One vector, a vector with all components set to [code]1[/code].
</constant>
<constant name="INF" value="Vector4(inf, inf, inf, inf)">
Infinity vector, a vector with all components set to [constant @GDScript.INF].
</constant>
</constants>
<operators>
<operator name="operator !=">
<return type="bool" />
<argument index="0" name="right" type="Vector4" />
<description>
Returns [code]true[/code] if the vectors are not equal.
[b]Note:[/b] Due to floating-point precision errors, consider using [method is_equal_approx] instead, which is more reliable.
</description>
</operator>
<operator name="operator *">
<return type="Vector4" />
<argument index="0" name="right" type="Projection" />
<description>
Inversely transforms (multiplies) the [Vector4] by the given [Projection] matrix.
</description>
</operator>
<operator name="operator *">
<return type="Vector4" />
<argument index="0" name="right" type="Vector4" />
<description>
Multiplies each component of the [Vector4] by the components of the given [Vector4].
[codeblock]
print(Vector4(10, 20, 30, 40) * Vector4(3, 4, 5, 6)) # Prints "(30, 80, 150, 240)"
[/codeblock]
</description>
</operator>
<operator name="operator *">
<return type="Vector4" />
<argument index="0" name="right" type="float" />
<description>
Multiplies each component of the [Vector4] by the given [float].
[codeblock]
print(Vector4(10, 20, 30, 40) * 2) # Prints "(20, 40, 60, 80)"
[/codeblock]
</description>
</operator>
<operator name="operator *">
<return type="Vector4" />
<argument index="0" name="right" type="int" />
<description>
Multiplies each component of the [Vector4] by the given [int].
</description>
</operator>
<operator name="operator +">
<return type="Vector4" />
<argument index="0" name="right" type="Vector4" />
<description>
Adds each component of the [Vector4] by the components of the given [Vector4].
[codeblock]
print(Vector4(10, 20, 30, 40) + Vector4(3, 4, 5, 6)) # Prints "(13, 24, 35, 46)"
[/codeblock]
</description>
</operator>
<operator name="operator -">
<return type="Vector4" />
<argument index="0" name="right" type="Vector4" />
<description>
Subtracts each component of the [Vector4] by the components of the given [Vector4].
[codeblock]
print(Vector4(10, 20, 30, 40) - Vector4(3, 4, 5, 6)) # Prints "(7, 16, 25, 34)"
[/codeblock]
</description>
</operator>
<operator name="operator /">
<return type="Vector4" />
<argument index="0" name="right" type="Vector4" />
<description>
Divides each component of the [Vector4] by the components of the given [Vector4].
[codeblock]
print(Vector4(10, 20, 30, 40) / Vector4(2, 5, 3, 4)) # Prints "(5, 4, 10, 10)"
[/codeblock]
</description>
</operator>
<operator name="operator /">
<return type="Vector4" />
<argument index="0" name="right" type="float" />
<description>
Divides each component of the [Vector4] by the given [float].
[codeblock]
print(Vector4(10, 20, 30, 40) / 2 # Prints "(5, 10, 15, 20)"
[/codeblock]
</description>
</operator>
<operator name="operator /">
<return type="Vector4" />
<argument index="0" name="right" type="int" />
<description>
Divides each component of the [Vector4] by the given [int].
</description>
</operator>
<operator name="operator &lt;">
<return type="bool" />
<argument index="0" name="right" type="Vector4" />
<description>
Compares two [Vector4] vectors by first checking if the X value of the left vector is less than the X value of the [code]right[/code] vector. If the X values are exactly equal, then it repeats this check with the Y values of the two vectors, Z values of the two vectors, and then with the W values. This operator is useful for sorting vectors.
</description>
</operator>
<operator name="operator &lt;=">
<return type="bool" />
<argument index="0" name="right" type="Vector4" />
<description>
Compares two [Vector4] vectors by first checking if the X value of the left vector is less than or equal to the X value of the [code]right[/code] vector. If the X values are exactly equal, then it repeats this check with the Y values of the two vectors, Z values of the two vectors, and then with the W values. This operator is useful for sorting vectors.
</description>
</operator>
<operator name="operator ==">
<return type="bool" />
<argument index="0" name="right" type="Vector4" />
<description>
Returns [code]true[/code] if the vectors are exactly equal.
[b]Note:[/b] Due to floating-point precision errors, consider using [method is_equal_approx] instead, which is more reliable.
</description>
</operator>
<operator name="operator &gt;">
<return type="bool" />
<argument index="0" name="right" type="Vector4" />
<description>
Compares two [Vector4] vectors by first checking if the X value of the left vector is greater than the X value of the [code]right[/code] vector. If the X values are exactly equal, then it repeats this check with the Y values of the two vectors, Z values of the two vectors, and then with the W values. This operator is useful for sorting vectors.
</description>
</operator>
<operator name="operator &gt;=">
<return type="bool" />
<argument index="0" name="right" type="Vector4" />
<description>
Access vector components using their index. [code]v[0][/code] is equivalent to [code]v.x[/code], [code]v[1][/code] is equivalent to [code]v.y[/code], and [code]v[2][/code] is equivalent to [code]v.z[/code].
</description>
</operator>
<operator name="operator []">
<return type="float" />
<argument index="0" name="index" type="int" />
<description>
Access vector components using their index. [code]v[0][/code] is equivalent to [code]v.x[/code], [code]v[1][/code] is equivalent to [code]v.y[/code], [code]v[2][/code] is equivalent to [code]v.z[/code], and [code]v[3][/code] is equivalent to [code]v.w[/code].
</description>
</operator>
<operator name="operator unary+">
<return type="Vector4" />
<description>
Returns the same value as if the [code]+[/code] was not there. Unary [code]+[/code] does nothing, but sometimes it can make your code more readable.
</description>
</operator>
<operator name="operator unary-">
<return type="Vector4" />
<description>
Returns the negative value of the [Vector4]. This is the same as writing [code]Vector4(-v.x, -v.y, -v.z, -v.w)[/code]. This operation flips the direction of the vector while keeping the same magnitude. With floats, the number zero can be either positive or negative.
</description>
</operator>
</operators>
</class>