1801 lines
66 KiB
C
1801 lines
66 KiB
C
// Copyright 2012 Google Inc. All Rights Reserved.
|
|
//
|
|
// Use of this source code is governed by a BSD-style license
|
|
// that can be found in the COPYING file in the root of the source
|
|
// tree. An additional intellectual property rights grant can be found
|
|
// in the file PATENTS. All contributing project authors may
|
|
// be found in the AUTHORS file in the root of the source tree.
|
|
// -----------------------------------------------------------------------------
|
|
//
|
|
// Author: Jyrki Alakuijala (jyrki@google.com)
|
|
//
|
|
|
|
#include <assert.h>
|
|
#include <math.h>
|
|
|
|
#include "./backward_references_enc.h"
|
|
#include "./histogram_enc.h"
|
|
#include "../dsp/lossless.h"
|
|
#include "../dsp/lossless_common.h"
|
|
#include "../dsp/dsp.h"
|
|
#include "../utils/color_cache_utils.h"
|
|
#include "../utils/utils.h"
|
|
|
|
#define VALUES_IN_BYTE 256
|
|
|
|
#define MIN_BLOCK_SIZE 256 // minimum block size for backward references
|
|
|
|
#define MAX_ENTROPY (1e30f)
|
|
|
|
// 1M window (4M bytes) minus 120 special codes for short distances.
|
|
#define WINDOW_SIZE_BITS 20
|
|
#define WINDOW_SIZE ((1 << WINDOW_SIZE_BITS) - 120)
|
|
|
|
// Minimum number of pixels for which it is cheaper to encode a
|
|
// distance + length instead of each pixel as a literal.
|
|
#define MIN_LENGTH 4
|
|
// If you change this, you need MAX_LENGTH_BITS + WINDOW_SIZE_BITS <= 32 as it
|
|
// is used in VP8LHashChain.
|
|
#define MAX_LENGTH_BITS 12
|
|
// We want the max value to be attainable and stored in MAX_LENGTH_BITS bits.
|
|
#define MAX_LENGTH ((1 << MAX_LENGTH_BITS) - 1)
|
|
#if MAX_LENGTH_BITS + WINDOW_SIZE_BITS > 32
|
|
#error "MAX_LENGTH_BITS + WINDOW_SIZE_BITS > 32"
|
|
#endif
|
|
|
|
// -----------------------------------------------------------------------------
|
|
|
|
static const uint8_t plane_to_code_lut[128] = {
|
|
96, 73, 55, 39, 23, 13, 5, 1, 255, 255, 255, 255, 255, 255, 255, 255,
|
|
101, 78, 58, 42, 26, 16, 8, 2, 0, 3, 9, 17, 27, 43, 59, 79,
|
|
102, 86, 62, 46, 32, 20, 10, 6, 4, 7, 11, 21, 33, 47, 63, 87,
|
|
105, 90, 70, 52, 37, 28, 18, 14, 12, 15, 19, 29, 38, 53, 71, 91,
|
|
110, 99, 82, 66, 48, 35, 30, 24, 22, 25, 31, 36, 49, 67, 83, 100,
|
|
115, 108, 94, 76, 64, 50, 44, 40, 34, 41, 45, 51, 65, 77, 95, 109,
|
|
118, 113, 103, 92, 80, 68, 60, 56, 54, 57, 61, 69, 81, 93, 104, 114,
|
|
119, 116, 111, 106, 97, 88, 84, 74, 72, 75, 85, 89, 98, 107, 112, 117
|
|
};
|
|
|
|
static int DistanceToPlaneCode(int xsize, int dist) {
|
|
const int yoffset = dist / xsize;
|
|
const int xoffset = dist - yoffset * xsize;
|
|
if (xoffset <= 8 && yoffset < 8) {
|
|
return plane_to_code_lut[yoffset * 16 + 8 - xoffset] + 1;
|
|
} else if (xoffset > xsize - 8 && yoffset < 7) {
|
|
return plane_to_code_lut[(yoffset + 1) * 16 + 8 + (xsize - xoffset)] + 1;
|
|
}
|
|
return dist + 120;
|
|
}
|
|
|
|
// Returns the exact index where array1 and array2 are different. For an index
|
|
// inferior or equal to best_len_match, the return value just has to be strictly
|
|
// inferior to best_len_match. The current behavior is to return 0 if this index
|
|
// is best_len_match, and the index itself otherwise.
|
|
// If no two elements are the same, it returns max_limit.
|
|
static WEBP_INLINE int FindMatchLength(const uint32_t* const array1,
|
|
const uint32_t* const array2,
|
|
int best_len_match, int max_limit) {
|
|
// Before 'expensive' linear match, check if the two arrays match at the
|
|
// current best length index.
|
|
if (array1[best_len_match] != array2[best_len_match]) return 0;
|
|
|
|
return VP8LVectorMismatch(array1, array2, max_limit);
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// VP8LBackwardRefs
|
|
|
|
struct PixOrCopyBlock {
|
|
PixOrCopyBlock* next_; // next block (or NULL)
|
|
PixOrCopy* start_; // data start
|
|
int size_; // currently used size
|
|
};
|
|
|
|
static void ClearBackwardRefs(VP8LBackwardRefs* const refs) {
|
|
assert(refs != NULL);
|
|
if (refs->tail_ != NULL) {
|
|
*refs->tail_ = refs->free_blocks_; // recycle all blocks at once
|
|
}
|
|
refs->free_blocks_ = refs->refs_;
|
|
refs->tail_ = &refs->refs_;
|
|
refs->last_block_ = NULL;
|
|
refs->refs_ = NULL;
|
|
}
|
|
|
|
void VP8LBackwardRefsClear(VP8LBackwardRefs* const refs) {
|
|
assert(refs != NULL);
|
|
ClearBackwardRefs(refs);
|
|
while (refs->free_blocks_ != NULL) {
|
|
PixOrCopyBlock* const next = refs->free_blocks_->next_;
|
|
WebPSafeFree(refs->free_blocks_);
|
|
refs->free_blocks_ = next;
|
|
}
|
|
}
|
|
|
|
void VP8LBackwardRefsInit(VP8LBackwardRefs* const refs, int block_size) {
|
|
assert(refs != NULL);
|
|
memset(refs, 0, sizeof(*refs));
|
|
refs->tail_ = &refs->refs_;
|
|
refs->block_size_ =
|
|
(block_size < MIN_BLOCK_SIZE) ? MIN_BLOCK_SIZE : block_size;
|
|
}
|
|
|
|
VP8LRefsCursor VP8LRefsCursorInit(const VP8LBackwardRefs* const refs) {
|
|
VP8LRefsCursor c;
|
|
c.cur_block_ = refs->refs_;
|
|
if (refs->refs_ != NULL) {
|
|
c.cur_pos = c.cur_block_->start_;
|
|
c.last_pos_ = c.cur_pos + c.cur_block_->size_;
|
|
} else {
|
|
c.cur_pos = NULL;
|
|
c.last_pos_ = NULL;
|
|
}
|
|
return c;
|
|
}
|
|
|
|
void VP8LRefsCursorNextBlock(VP8LRefsCursor* const c) {
|
|
PixOrCopyBlock* const b = c->cur_block_->next_;
|
|
c->cur_pos = (b == NULL) ? NULL : b->start_;
|
|
c->last_pos_ = (b == NULL) ? NULL : b->start_ + b->size_;
|
|
c->cur_block_ = b;
|
|
}
|
|
|
|
// Create a new block, either from the free list or allocated
|
|
static PixOrCopyBlock* BackwardRefsNewBlock(VP8LBackwardRefs* const refs) {
|
|
PixOrCopyBlock* b = refs->free_blocks_;
|
|
if (b == NULL) { // allocate new memory chunk
|
|
const size_t total_size =
|
|
sizeof(*b) + refs->block_size_ * sizeof(*b->start_);
|
|
b = (PixOrCopyBlock*)WebPSafeMalloc(1ULL, total_size);
|
|
if (b == NULL) {
|
|
refs->error_ |= 1;
|
|
return NULL;
|
|
}
|
|
b->start_ = (PixOrCopy*)((uint8_t*)b + sizeof(*b)); // not always aligned
|
|
} else { // recycle from free-list
|
|
refs->free_blocks_ = b->next_;
|
|
}
|
|
*refs->tail_ = b;
|
|
refs->tail_ = &b->next_;
|
|
refs->last_block_ = b;
|
|
b->next_ = NULL;
|
|
b->size_ = 0;
|
|
return b;
|
|
}
|
|
|
|
static WEBP_INLINE void BackwardRefsCursorAdd(VP8LBackwardRefs* const refs,
|
|
const PixOrCopy v) {
|
|
PixOrCopyBlock* b = refs->last_block_;
|
|
if (b == NULL || b->size_ == refs->block_size_) {
|
|
b = BackwardRefsNewBlock(refs);
|
|
if (b == NULL) return; // refs->error_ is set
|
|
}
|
|
b->start_[b->size_++] = v;
|
|
}
|
|
|
|
int VP8LBackwardRefsCopy(const VP8LBackwardRefs* const src,
|
|
VP8LBackwardRefs* const dst) {
|
|
const PixOrCopyBlock* b = src->refs_;
|
|
ClearBackwardRefs(dst);
|
|
assert(src->block_size_ == dst->block_size_);
|
|
while (b != NULL) {
|
|
PixOrCopyBlock* const new_b = BackwardRefsNewBlock(dst);
|
|
if (new_b == NULL) return 0; // dst->error_ is set
|
|
memcpy(new_b->start_, b->start_, b->size_ * sizeof(*b->start_));
|
|
new_b->size_ = b->size_;
|
|
b = b->next_;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// Hash chains
|
|
|
|
int VP8LHashChainInit(VP8LHashChain* const p, int size) {
|
|
assert(p->size_ == 0);
|
|
assert(p->offset_length_ == NULL);
|
|
assert(size > 0);
|
|
p->offset_length_ =
|
|
(uint32_t*)WebPSafeMalloc(size, sizeof(*p->offset_length_));
|
|
if (p->offset_length_ == NULL) return 0;
|
|
p->size_ = size;
|
|
|
|
return 1;
|
|
}
|
|
|
|
void VP8LHashChainClear(VP8LHashChain* const p) {
|
|
assert(p != NULL);
|
|
WebPSafeFree(p->offset_length_);
|
|
|
|
p->size_ = 0;
|
|
p->offset_length_ = NULL;
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------
|
|
|
|
#define HASH_MULTIPLIER_HI (0xc6a4a793ULL)
|
|
#define HASH_MULTIPLIER_LO (0x5bd1e996ULL)
|
|
|
|
static WEBP_INLINE uint32_t GetPixPairHash64(const uint32_t* const argb) {
|
|
uint32_t key;
|
|
key = (argb[1] * HASH_MULTIPLIER_HI) & 0xffffffffu;
|
|
key += (argb[0] * HASH_MULTIPLIER_LO) & 0xffffffffu;
|
|
key = key >> (32 - HASH_BITS);
|
|
return key;
|
|
}
|
|
|
|
// Returns the maximum number of hash chain lookups to do for a
|
|
// given compression quality. Return value in range [8, 86].
|
|
static int GetMaxItersForQuality(int quality) {
|
|
return 8 + (quality * quality) / 128;
|
|
}
|
|
|
|
static int GetWindowSizeForHashChain(int quality, int xsize) {
|
|
const int max_window_size = (quality > 75) ? WINDOW_SIZE
|
|
: (quality > 50) ? (xsize << 8)
|
|
: (quality > 25) ? (xsize << 6)
|
|
: (xsize << 4);
|
|
assert(xsize > 0);
|
|
return (max_window_size > WINDOW_SIZE) ? WINDOW_SIZE : max_window_size;
|
|
}
|
|
|
|
static WEBP_INLINE int MaxFindCopyLength(int len) {
|
|
return (len < MAX_LENGTH) ? len : MAX_LENGTH;
|
|
}
|
|
|
|
int VP8LHashChainFill(VP8LHashChain* const p, int quality,
|
|
const uint32_t* const argb, int xsize, int ysize,
|
|
int low_effort) {
|
|
const int size = xsize * ysize;
|
|
const int iter_max = GetMaxItersForQuality(quality);
|
|
const uint32_t window_size = GetWindowSizeForHashChain(quality, xsize);
|
|
int pos;
|
|
int argb_comp;
|
|
uint32_t base_position;
|
|
int32_t* hash_to_first_index;
|
|
// Temporarily use the p->offset_length_ as a hash chain.
|
|
int32_t* chain = (int32_t*)p->offset_length_;
|
|
assert(size > 0);
|
|
assert(p->size_ != 0);
|
|
assert(p->offset_length_ != NULL);
|
|
|
|
if (size <= 2) {
|
|
p->offset_length_[0] = p->offset_length_[size - 1] = 0;
|
|
return 1;
|
|
}
|
|
|
|
hash_to_first_index =
|
|
(int32_t*)WebPSafeMalloc(HASH_SIZE, sizeof(*hash_to_first_index));
|
|
if (hash_to_first_index == NULL) return 0;
|
|
|
|
// Set the int32_t array to -1.
|
|
memset(hash_to_first_index, 0xff, HASH_SIZE * sizeof(*hash_to_first_index));
|
|
// Fill the chain linking pixels with the same hash.
|
|
argb_comp = (argb[0] == argb[1]);
|
|
for (pos = 0; pos < size - 2;) {
|
|
uint32_t hash_code;
|
|
const int argb_comp_next = (argb[pos + 1] == argb[pos + 2]);
|
|
if (argb_comp && argb_comp_next) {
|
|
// Consecutive pixels with the same color will share the same hash.
|
|
// We therefore use a different hash: the color and its repetition
|
|
// length.
|
|
uint32_t tmp[2];
|
|
uint32_t len = 1;
|
|
tmp[0] = argb[pos];
|
|
// Figure out how far the pixels are the same.
|
|
// The last pixel has a different 64 bit hash, as its next pixel does
|
|
// not have the same color, so we just need to get to the last pixel equal
|
|
// to its follower.
|
|
while (pos + (int)len + 2 < size && argb[pos + len + 2] == argb[pos]) {
|
|
++len;
|
|
}
|
|
if (len > MAX_LENGTH) {
|
|
// Skip the pixels that match for distance=1 and length>MAX_LENGTH
|
|
// because they are linked to their predecessor and we automatically
|
|
// check that in the main for loop below. Skipping means setting no
|
|
// predecessor in the chain, hence -1.
|
|
memset(chain + pos, 0xff, (len - MAX_LENGTH) * sizeof(*chain));
|
|
pos += len - MAX_LENGTH;
|
|
len = MAX_LENGTH;
|
|
}
|
|
// Process the rest of the hash chain.
|
|
while (len) {
|
|
tmp[1] = len--;
|
|
hash_code = GetPixPairHash64(tmp);
|
|
chain[pos] = hash_to_first_index[hash_code];
|
|
hash_to_first_index[hash_code] = pos++;
|
|
}
|
|
argb_comp = 0;
|
|
} else {
|
|
// Just move one pixel forward.
|
|
hash_code = GetPixPairHash64(argb + pos);
|
|
chain[pos] = hash_to_first_index[hash_code];
|
|
hash_to_first_index[hash_code] = pos++;
|
|
argb_comp = argb_comp_next;
|
|
}
|
|
}
|
|
// Process the penultimate pixel.
|
|
chain[pos] = hash_to_first_index[GetPixPairHash64(argb + pos)];
|
|
|
|
WebPSafeFree(hash_to_first_index);
|
|
|
|
// Find the best match interval at each pixel, defined by an offset to the
|
|
// pixel and a length. The right-most pixel cannot match anything to the right
|
|
// (hence a best length of 0) and the left-most pixel nothing to the left
|
|
// (hence an offset of 0).
|
|
assert(size > 2);
|
|
p->offset_length_[0] = p->offset_length_[size - 1] = 0;
|
|
for (base_position = size - 2; base_position > 0;) {
|
|
const int max_len = MaxFindCopyLength(size - 1 - base_position);
|
|
const uint32_t* const argb_start = argb + base_position;
|
|
int iter = iter_max;
|
|
int best_length = 0;
|
|
uint32_t best_distance = 0;
|
|
uint32_t best_argb;
|
|
const int min_pos =
|
|
(base_position > window_size) ? base_position - window_size : 0;
|
|
const int length_max = (max_len < 256) ? max_len : 256;
|
|
uint32_t max_base_position;
|
|
|
|
pos = chain[base_position];
|
|
if (!low_effort) {
|
|
int curr_length;
|
|
// Heuristic: use the comparison with the above line as an initialization.
|
|
if (base_position >= (uint32_t)xsize) {
|
|
curr_length = FindMatchLength(argb_start - xsize, argb_start,
|
|
best_length, max_len);
|
|
if (curr_length > best_length) {
|
|
best_length = curr_length;
|
|
best_distance = xsize;
|
|
}
|
|
--iter;
|
|
}
|
|
// Heuristic: compare to the previous pixel.
|
|
curr_length =
|
|
FindMatchLength(argb_start - 1, argb_start, best_length, max_len);
|
|
if (curr_length > best_length) {
|
|
best_length = curr_length;
|
|
best_distance = 1;
|
|
}
|
|
--iter;
|
|
// Skip the for loop if we already have the maximum.
|
|
if (best_length == MAX_LENGTH) pos = min_pos - 1;
|
|
}
|
|
best_argb = argb_start[best_length];
|
|
|
|
for (; pos >= min_pos && --iter; pos = chain[pos]) {
|
|
int curr_length;
|
|
assert(base_position > (uint32_t)pos);
|
|
|
|
if (argb[pos + best_length] != best_argb) continue;
|
|
|
|
curr_length = VP8LVectorMismatch(argb + pos, argb_start, max_len);
|
|
if (best_length < curr_length) {
|
|
best_length = curr_length;
|
|
best_distance = base_position - pos;
|
|
best_argb = argb_start[best_length];
|
|
// Stop if we have reached a good enough length.
|
|
if (best_length >= length_max) break;
|
|
}
|
|
}
|
|
// We have the best match but in case the two intervals continue matching
|
|
// to the left, we have the best matches for the left-extended pixels.
|
|
max_base_position = base_position;
|
|
while (1) {
|
|
assert(best_length <= MAX_LENGTH);
|
|
assert(best_distance <= WINDOW_SIZE);
|
|
p->offset_length_[base_position] =
|
|
(best_distance << MAX_LENGTH_BITS) | (uint32_t)best_length;
|
|
--base_position;
|
|
// Stop if we don't have a match or if we are out of bounds.
|
|
if (best_distance == 0 || base_position == 0) break;
|
|
// Stop if we cannot extend the matching intervals to the left.
|
|
if (base_position < best_distance ||
|
|
argb[base_position - best_distance] != argb[base_position]) {
|
|
break;
|
|
}
|
|
// Stop if we are matching at its limit because there could be a closer
|
|
// matching interval with the same maximum length. Then again, if the
|
|
// matching interval is as close as possible (best_distance == 1), we will
|
|
// never find anything better so let's continue.
|
|
if (best_length == MAX_LENGTH && best_distance != 1 &&
|
|
base_position + MAX_LENGTH < max_base_position) {
|
|
break;
|
|
}
|
|
if (best_length < MAX_LENGTH) {
|
|
++best_length;
|
|
max_base_position = base_position;
|
|
}
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static WEBP_INLINE int HashChainFindOffset(const VP8LHashChain* const p,
|
|
const int base_position) {
|
|
return p->offset_length_[base_position] >> MAX_LENGTH_BITS;
|
|
}
|
|
|
|
static WEBP_INLINE int HashChainFindLength(const VP8LHashChain* const p,
|
|
const int base_position) {
|
|
return p->offset_length_[base_position] & ((1U << MAX_LENGTH_BITS) - 1);
|
|
}
|
|
|
|
static WEBP_INLINE void HashChainFindCopy(const VP8LHashChain* const p,
|
|
int base_position,
|
|
int* const offset_ptr,
|
|
int* const length_ptr) {
|
|
*offset_ptr = HashChainFindOffset(p, base_position);
|
|
*length_ptr = HashChainFindLength(p, base_position);
|
|
}
|
|
|
|
static WEBP_INLINE void AddSingleLiteral(uint32_t pixel, int use_color_cache,
|
|
VP8LColorCache* const hashers,
|
|
VP8LBackwardRefs* const refs) {
|
|
PixOrCopy v;
|
|
if (use_color_cache) {
|
|
const uint32_t key = VP8LColorCacheGetIndex(hashers, pixel);
|
|
if (VP8LColorCacheLookup(hashers, key) == pixel) {
|
|
v = PixOrCopyCreateCacheIdx(key);
|
|
} else {
|
|
v = PixOrCopyCreateLiteral(pixel);
|
|
VP8LColorCacheSet(hashers, key, pixel);
|
|
}
|
|
} else {
|
|
v = PixOrCopyCreateLiteral(pixel);
|
|
}
|
|
BackwardRefsCursorAdd(refs, v);
|
|
}
|
|
|
|
static int BackwardReferencesRle(int xsize, int ysize,
|
|
const uint32_t* const argb,
|
|
int cache_bits, VP8LBackwardRefs* const refs) {
|
|
const int pix_count = xsize * ysize;
|
|
int i, k;
|
|
const int use_color_cache = (cache_bits > 0);
|
|
VP8LColorCache hashers;
|
|
|
|
if (use_color_cache && !VP8LColorCacheInit(&hashers, cache_bits)) {
|
|
return 0;
|
|
}
|
|
ClearBackwardRefs(refs);
|
|
// Add first pixel as literal.
|
|
AddSingleLiteral(argb[0], use_color_cache, &hashers, refs);
|
|
i = 1;
|
|
while (i < pix_count) {
|
|
const int max_len = MaxFindCopyLength(pix_count - i);
|
|
const int rle_len = FindMatchLength(argb + i, argb + i - 1, 0, max_len);
|
|
const int prev_row_len = (i < xsize) ? 0 :
|
|
FindMatchLength(argb + i, argb + i - xsize, 0, max_len);
|
|
if (rle_len >= prev_row_len && rle_len >= MIN_LENGTH) {
|
|
BackwardRefsCursorAdd(refs, PixOrCopyCreateCopy(1, rle_len));
|
|
// We don't need to update the color cache here since it is always the
|
|
// same pixel being copied, and that does not change the color cache
|
|
// state.
|
|
i += rle_len;
|
|
} else if (prev_row_len >= MIN_LENGTH) {
|
|
BackwardRefsCursorAdd(refs, PixOrCopyCreateCopy(xsize, prev_row_len));
|
|
if (use_color_cache) {
|
|
for (k = 0; k < prev_row_len; ++k) {
|
|
VP8LColorCacheInsert(&hashers, argb[i + k]);
|
|
}
|
|
}
|
|
i += prev_row_len;
|
|
} else {
|
|
AddSingleLiteral(argb[i], use_color_cache, &hashers, refs);
|
|
i++;
|
|
}
|
|
}
|
|
if (use_color_cache) VP8LColorCacheClear(&hashers);
|
|
return !refs->error_;
|
|
}
|
|
|
|
static int BackwardReferencesLz77(int xsize, int ysize,
|
|
const uint32_t* const argb, int cache_bits,
|
|
const VP8LHashChain* const hash_chain,
|
|
VP8LBackwardRefs* const refs) {
|
|
int i;
|
|
int i_last_check = -1;
|
|
int ok = 0;
|
|
int cc_init = 0;
|
|
const int use_color_cache = (cache_bits > 0);
|
|
const int pix_count = xsize * ysize;
|
|
VP8LColorCache hashers;
|
|
|
|
if (use_color_cache) {
|
|
cc_init = VP8LColorCacheInit(&hashers, cache_bits);
|
|
if (!cc_init) goto Error;
|
|
}
|
|
ClearBackwardRefs(refs);
|
|
for (i = 0; i < pix_count;) {
|
|
// Alternative#1: Code the pixels starting at 'i' using backward reference.
|
|
int offset = 0;
|
|
int len = 0;
|
|
int j;
|
|
HashChainFindCopy(hash_chain, i, &offset, &len);
|
|
if (len >= MIN_LENGTH) {
|
|
const int len_ini = len;
|
|
int max_reach = 0;
|
|
assert(i + len < pix_count);
|
|
// Only start from what we have not checked already.
|
|
i_last_check = (i > i_last_check) ? i : i_last_check;
|
|
// We know the best match for the current pixel but we try to find the
|
|
// best matches for the current pixel AND the next one combined.
|
|
// The naive method would use the intervals:
|
|
// [i,i+len) + [i+len, length of best match at i+len)
|
|
// while we check if we can use:
|
|
// [i,j) (where j<=i+len) + [j, length of best match at j)
|
|
for (j = i_last_check + 1; j <= i + len_ini; ++j) {
|
|
const int len_j = HashChainFindLength(hash_chain, j);
|
|
const int reach =
|
|
j + (len_j >= MIN_LENGTH ? len_j : 1); // 1 for single literal.
|
|
if (reach > max_reach) {
|
|
len = j - i;
|
|
max_reach = reach;
|
|
}
|
|
}
|
|
} else {
|
|
len = 1;
|
|
}
|
|
// Go with literal or backward reference.
|
|
assert(len > 0);
|
|
if (len == 1) {
|
|
AddSingleLiteral(argb[i], use_color_cache, &hashers, refs);
|
|
} else {
|
|
BackwardRefsCursorAdd(refs, PixOrCopyCreateCopy(offset, len));
|
|
if (use_color_cache) {
|
|
for (j = i; j < i + len; ++j) VP8LColorCacheInsert(&hashers, argb[j]);
|
|
}
|
|
}
|
|
i += len;
|
|
}
|
|
|
|
ok = !refs->error_;
|
|
Error:
|
|
if (cc_init) VP8LColorCacheClear(&hashers);
|
|
return ok;
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------
|
|
|
|
typedef struct {
|
|
double alpha_[VALUES_IN_BYTE];
|
|
double red_[VALUES_IN_BYTE];
|
|
double blue_[VALUES_IN_BYTE];
|
|
double distance_[NUM_DISTANCE_CODES];
|
|
double* literal_;
|
|
} CostModel;
|
|
|
|
static int BackwardReferencesTraceBackwards(
|
|
int xsize, int ysize, const uint32_t* const argb, int quality,
|
|
int cache_bits, const VP8LHashChain* const hash_chain,
|
|
VP8LBackwardRefs* const refs);
|
|
|
|
static void ConvertPopulationCountTableToBitEstimates(
|
|
int num_symbols, const uint32_t population_counts[], double output[]) {
|
|
uint32_t sum = 0;
|
|
int nonzeros = 0;
|
|
int i;
|
|
for (i = 0; i < num_symbols; ++i) {
|
|
sum += population_counts[i];
|
|
if (population_counts[i] > 0) {
|
|
++nonzeros;
|
|
}
|
|
}
|
|
if (nonzeros <= 1) {
|
|
memset(output, 0, num_symbols * sizeof(*output));
|
|
} else {
|
|
const double logsum = VP8LFastLog2(sum);
|
|
for (i = 0; i < num_symbols; ++i) {
|
|
output[i] = logsum - VP8LFastLog2(population_counts[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int CostModelBuild(CostModel* const m, int cache_bits,
|
|
VP8LBackwardRefs* const refs) {
|
|
int ok = 0;
|
|
VP8LHistogram* const histo = VP8LAllocateHistogram(cache_bits);
|
|
if (histo == NULL) goto Error;
|
|
|
|
VP8LHistogramCreate(histo, refs, cache_bits);
|
|
|
|
ConvertPopulationCountTableToBitEstimates(
|
|
VP8LHistogramNumCodes(histo->palette_code_bits_),
|
|
histo->literal_, m->literal_);
|
|
ConvertPopulationCountTableToBitEstimates(
|
|
VALUES_IN_BYTE, histo->red_, m->red_);
|
|
ConvertPopulationCountTableToBitEstimates(
|
|
VALUES_IN_BYTE, histo->blue_, m->blue_);
|
|
ConvertPopulationCountTableToBitEstimates(
|
|
VALUES_IN_BYTE, histo->alpha_, m->alpha_);
|
|
ConvertPopulationCountTableToBitEstimates(
|
|
NUM_DISTANCE_CODES, histo->distance_, m->distance_);
|
|
ok = 1;
|
|
|
|
Error:
|
|
VP8LFreeHistogram(histo);
|
|
return ok;
|
|
}
|
|
|
|
static WEBP_INLINE double GetLiteralCost(const CostModel* const m, uint32_t v) {
|
|
return m->alpha_[v >> 24] +
|
|
m->red_[(v >> 16) & 0xff] +
|
|
m->literal_[(v >> 8) & 0xff] +
|
|
m->blue_[v & 0xff];
|
|
}
|
|
|
|
static WEBP_INLINE double GetCacheCost(const CostModel* const m, uint32_t idx) {
|
|
const int literal_idx = VALUES_IN_BYTE + NUM_LENGTH_CODES + idx;
|
|
return m->literal_[literal_idx];
|
|
}
|
|
|
|
static WEBP_INLINE double GetLengthCost(const CostModel* const m,
|
|
uint32_t length) {
|
|
int code, extra_bits;
|
|
VP8LPrefixEncodeBits(length, &code, &extra_bits);
|
|
return m->literal_[VALUES_IN_BYTE + code] + extra_bits;
|
|
}
|
|
|
|
static WEBP_INLINE double GetDistanceCost(const CostModel* const m,
|
|
uint32_t distance) {
|
|
int code, extra_bits;
|
|
VP8LPrefixEncodeBits(distance, &code, &extra_bits);
|
|
return m->distance_[code] + extra_bits;
|
|
}
|
|
|
|
static void AddSingleLiteralWithCostModel(const uint32_t* const argb,
|
|
VP8LColorCache* const hashers,
|
|
const CostModel* const cost_model,
|
|
int idx, int use_color_cache,
|
|
double prev_cost, float* const cost,
|
|
uint16_t* const dist_array) {
|
|
double cost_val = prev_cost;
|
|
const uint32_t color = argb[0];
|
|
const int ix = use_color_cache ? VP8LColorCacheContains(hashers, color) : -1;
|
|
if (ix >= 0) {
|
|
// use_color_cache is true and hashers contains color
|
|
const double mul0 = 0.68;
|
|
cost_val += GetCacheCost(cost_model, ix) * mul0;
|
|
} else {
|
|
const double mul1 = 0.82;
|
|
if (use_color_cache) VP8LColorCacheInsert(hashers, color);
|
|
cost_val += GetLiteralCost(cost_model, color) * mul1;
|
|
}
|
|
if (cost[idx] > cost_val) {
|
|
cost[idx] = (float)cost_val;
|
|
dist_array[idx] = 1; // only one is inserted.
|
|
}
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// CostManager and interval handling
|
|
|
|
// Empirical value to avoid high memory consumption but good for performance.
|
|
#define COST_CACHE_INTERVAL_SIZE_MAX 100
|
|
|
|
// To perform backward reference every pixel at index index_ is considered and
|
|
// the cost for the MAX_LENGTH following pixels computed. Those following pixels
|
|
// at index index_ + k (k from 0 to MAX_LENGTH) have a cost of:
|
|
// distance_cost_ at index_ + GetLengthCost(cost_model, k)
|
|
// (named cost) (named cached cost)
|
|
// and the minimum value is kept. GetLengthCost(cost_model, k) is cached in an
|
|
// array of size MAX_LENGTH.
|
|
// Instead of performing MAX_LENGTH comparisons per pixel, we keep track of the
|
|
// minimal values using intervals, for which lower_ and upper_ bounds are kept.
|
|
// An interval is defined by the index_ of the pixel that generated it and
|
|
// is only useful in a range of indices from start_ to end_ (exclusive), i.e.
|
|
// it contains the minimum value for pixels between start_ and end_.
|
|
// Intervals are stored in a linked list and ordered by start_. When a new
|
|
// interval has a better minimum, old intervals are split or removed.
|
|
typedef struct CostInterval CostInterval;
|
|
struct CostInterval {
|
|
double lower_;
|
|
double upper_;
|
|
int start_;
|
|
int end_;
|
|
double distance_cost_;
|
|
int index_;
|
|
CostInterval* previous_;
|
|
CostInterval* next_;
|
|
};
|
|
|
|
// The GetLengthCost(cost_model, k) part of the costs is also bounded for
|
|
// efficiency in a set of intervals of a different type.
|
|
// If those intervals are small enough, they are not used for comparison and
|
|
// written into the costs right away.
|
|
typedef struct {
|
|
double lower_; // Lower bound of the interval.
|
|
double upper_; // Upper bound of the interval.
|
|
int start_;
|
|
int end_; // Exclusive.
|
|
int do_write_; // If !=0, the interval is saved to cost instead of being kept
|
|
// for comparison.
|
|
} CostCacheInterval;
|
|
|
|
// This structure is in charge of managing intervals and costs.
|
|
// It caches the different CostCacheInterval, caches the different
|
|
// GetLengthCost(cost_model, k) in cost_cache_ and the CostInterval's (whose
|
|
// count_ is limited by COST_CACHE_INTERVAL_SIZE_MAX).
|
|
#define COST_MANAGER_MAX_FREE_LIST 10
|
|
typedef struct {
|
|
CostInterval* head_;
|
|
int count_; // The number of stored intervals.
|
|
CostCacheInterval* cache_intervals_;
|
|
size_t cache_intervals_size_;
|
|
double cost_cache_[MAX_LENGTH]; // Contains the GetLengthCost(cost_model, k).
|
|
double min_cost_cache_; // The minimum value in cost_cache_[1:].
|
|
double max_cost_cache_; // The maximum value in cost_cache_[1:].
|
|
float* costs_;
|
|
uint16_t* dist_array_;
|
|
// Most of the time, we only need few intervals -> use a free-list, to avoid
|
|
// fragmentation with small allocs in most common cases.
|
|
CostInterval intervals_[COST_MANAGER_MAX_FREE_LIST];
|
|
CostInterval* free_intervals_;
|
|
// These are regularly malloc'd remains. This list can't grow larger than than
|
|
// size COST_CACHE_INTERVAL_SIZE_MAX - COST_MANAGER_MAX_FREE_LIST, note.
|
|
CostInterval* recycled_intervals_;
|
|
// Buffer used in BackwardReferencesHashChainDistanceOnly to store the ends
|
|
// of the intervals that can have impacted the cost at a pixel.
|
|
int* interval_ends_;
|
|
int interval_ends_size_;
|
|
} CostManager;
|
|
|
|
static int IsCostCacheIntervalWritable(int start, int end) {
|
|
// 100 is the length for which we consider an interval for comparison, and not
|
|
// for writing.
|
|
// The first intervals are very small and go in increasing size. This constant
|
|
// helps merging them into one big interval (up to index 150/200 usually from
|
|
// which intervals start getting much bigger).
|
|
// This value is empirical.
|
|
return (end - start + 1 < 100);
|
|
}
|
|
|
|
static void CostIntervalAddToFreeList(CostManager* const manager,
|
|
CostInterval* const interval) {
|
|
interval->next_ = manager->free_intervals_;
|
|
manager->free_intervals_ = interval;
|
|
}
|
|
|
|
static int CostIntervalIsInFreeList(const CostManager* const manager,
|
|
const CostInterval* const interval) {
|
|
return (interval >= &manager->intervals_[0] &&
|
|
interval <= &manager->intervals_[COST_MANAGER_MAX_FREE_LIST - 1]);
|
|
}
|
|
|
|
static void CostManagerInitFreeList(CostManager* const manager) {
|
|
int i;
|
|
manager->free_intervals_ = NULL;
|
|
for (i = 0; i < COST_MANAGER_MAX_FREE_LIST; ++i) {
|
|
CostIntervalAddToFreeList(manager, &manager->intervals_[i]);
|
|
}
|
|
}
|
|
|
|
static void DeleteIntervalList(CostManager* const manager,
|
|
const CostInterval* interval) {
|
|
while (interval != NULL) {
|
|
const CostInterval* const next = interval->next_;
|
|
if (!CostIntervalIsInFreeList(manager, interval)) {
|
|
WebPSafeFree((void*)interval);
|
|
} // else: do nothing
|
|
interval = next;
|
|
}
|
|
}
|
|
|
|
static void CostManagerClear(CostManager* const manager) {
|
|
if (manager == NULL) return;
|
|
|
|
WebPSafeFree(manager->costs_);
|
|
WebPSafeFree(manager->cache_intervals_);
|
|
WebPSafeFree(manager->interval_ends_);
|
|
|
|
// Clear the interval lists.
|
|
DeleteIntervalList(manager, manager->head_);
|
|
manager->head_ = NULL;
|
|
DeleteIntervalList(manager, manager->recycled_intervals_);
|
|
manager->recycled_intervals_ = NULL;
|
|
|
|
// Reset pointers, count_ and cache_intervals_size_.
|
|
memset(manager, 0, sizeof(*manager));
|
|
CostManagerInitFreeList(manager);
|
|
}
|
|
|
|
static int CostManagerInit(CostManager* const manager,
|
|
uint16_t* const dist_array, int pix_count,
|
|
const CostModel* const cost_model) {
|
|
int i;
|
|
const int cost_cache_size = (pix_count > MAX_LENGTH) ? MAX_LENGTH : pix_count;
|
|
// This constant is tied to the cost_model we use.
|
|
// Empirically, differences between intervals is usually of more than 1.
|
|
const double min_cost_diff = 0.1;
|
|
|
|
manager->costs_ = NULL;
|
|
manager->cache_intervals_ = NULL;
|
|
manager->interval_ends_ = NULL;
|
|
manager->head_ = NULL;
|
|
manager->recycled_intervals_ = NULL;
|
|
manager->count_ = 0;
|
|
manager->dist_array_ = dist_array;
|
|
CostManagerInitFreeList(manager);
|
|
|
|
// Fill in the cost_cache_.
|
|
manager->cache_intervals_size_ = 1;
|
|
manager->cost_cache_[0] = 0;
|
|
for (i = 1; i < cost_cache_size; ++i) {
|
|
manager->cost_cache_[i] = GetLengthCost(cost_model, i);
|
|
// Get an approximation of the number of bound intervals.
|
|
if (fabs(manager->cost_cache_[i] - manager->cost_cache_[i - 1]) >
|
|
min_cost_diff) {
|
|
++manager->cache_intervals_size_;
|
|
}
|
|
// Compute the minimum of cost_cache_.
|
|
if (i == 1) {
|
|
manager->min_cost_cache_ = manager->cost_cache_[1];
|
|
manager->max_cost_cache_ = manager->cost_cache_[1];
|
|
} else if (manager->cost_cache_[i] < manager->min_cost_cache_) {
|
|
manager->min_cost_cache_ = manager->cost_cache_[i];
|
|
} else if (manager->cost_cache_[i] > manager->max_cost_cache_) {
|
|
manager->max_cost_cache_ = manager->cost_cache_[i];
|
|
}
|
|
}
|
|
|
|
// With the current cost models, we have 15 intervals, so we are safe by
|
|
// setting a maximum of COST_CACHE_INTERVAL_SIZE_MAX.
|
|
if (manager->cache_intervals_size_ > COST_CACHE_INTERVAL_SIZE_MAX) {
|
|
manager->cache_intervals_size_ = COST_CACHE_INTERVAL_SIZE_MAX;
|
|
}
|
|
manager->cache_intervals_ = (CostCacheInterval*)WebPSafeMalloc(
|
|
manager->cache_intervals_size_, sizeof(*manager->cache_intervals_));
|
|
if (manager->cache_intervals_ == NULL) {
|
|
CostManagerClear(manager);
|
|
return 0;
|
|
}
|
|
|
|
// Fill in the cache_intervals_.
|
|
{
|
|
double cost_prev = -1e38f; // unprobably low initial value
|
|
CostCacheInterval* prev = NULL;
|
|
CostCacheInterval* cur = manager->cache_intervals_;
|
|
const CostCacheInterval* const end =
|
|
manager->cache_intervals_ + manager->cache_intervals_size_;
|
|
|
|
// Consecutive values in cost_cache_ are compared and if a big enough
|
|
// difference is found, a new interval is created and bounded.
|
|
for (i = 0; i < cost_cache_size; ++i) {
|
|
const double cost_val = manager->cost_cache_[i];
|
|
if (i == 0 ||
|
|
(fabs(cost_val - cost_prev) > min_cost_diff && cur + 1 < end)) {
|
|
if (i > 1) {
|
|
const int is_writable =
|
|
IsCostCacheIntervalWritable(cur->start_, cur->end_);
|
|
// Merge with the previous interval if both are writable.
|
|
if (is_writable && cur != manager->cache_intervals_ &&
|
|
prev->do_write_) {
|
|
// Update the previous interval.
|
|
prev->end_ = cur->end_;
|
|
if (cur->lower_ < prev->lower_) {
|
|
prev->lower_ = cur->lower_;
|
|
} else if (cur->upper_ > prev->upper_) {
|
|
prev->upper_ = cur->upper_;
|
|
}
|
|
} else {
|
|
cur->do_write_ = is_writable;
|
|
prev = cur;
|
|
++cur;
|
|
}
|
|
}
|
|
// Initialize an interval.
|
|
cur->start_ = i;
|
|
cur->do_write_ = 0;
|
|
cur->lower_ = cost_val;
|
|
cur->upper_ = cost_val;
|
|
} else {
|
|
// Update the current interval bounds.
|
|
if (cost_val < cur->lower_) {
|
|
cur->lower_ = cost_val;
|
|
} else if (cost_val > cur->upper_) {
|
|
cur->upper_ = cost_val;
|
|
}
|
|
}
|
|
cur->end_ = i + 1;
|
|
cost_prev = cost_val;
|
|
}
|
|
manager->cache_intervals_size_ = cur + 1 - manager->cache_intervals_;
|
|
}
|
|
|
|
manager->costs_ = (float*)WebPSafeMalloc(pix_count, sizeof(*manager->costs_));
|
|
if (manager->costs_ == NULL) {
|
|
CostManagerClear(manager);
|
|
return 0;
|
|
}
|
|
// Set the initial costs_ high for every pixel as we will keep the minimum.
|
|
for (i = 0; i < pix_count; ++i) manager->costs_[i] = 1e38f;
|
|
|
|
// The cost at pixel is influenced by the cost intervals from previous pixels.
|
|
// Let us take the specific case where the offset is the same (which actually
|
|
// happens a lot in case of uniform regions).
|
|
// pixel i contributes to j>i a cost of: offset cost + cost_cache_[j-i]
|
|
// pixel i+1 contributes to j>i a cost of: 2*offset cost + cost_cache_[j-i-1]
|
|
// pixel i+2 contributes to j>i a cost of: 3*offset cost + cost_cache_[j-i-2]
|
|
// and so on.
|
|
// A pixel i influences the following length(j) < MAX_LENGTH pixels. What is
|
|
// the value of j such that pixel i + j cannot influence any of those pixels?
|
|
// This value is such that:
|
|
// max of cost_cache_ < j*offset cost + min of cost_cache_
|
|
// (pixel i + j 's cost cannot beat the worst cost given by pixel i).
|
|
// This value will be used to optimize the cost computation in
|
|
// BackwardReferencesHashChainDistanceOnly.
|
|
{
|
|
// The offset cost is computed in GetDistanceCost and has a minimum value of
|
|
// the minimum in cost_model->distance_. The case where the offset cost is 0
|
|
// will be dealt with differently later so we are only interested in the
|
|
// minimum non-zero offset cost.
|
|
double offset_cost_min = 0.;
|
|
int size;
|
|
for (i = 0; i < NUM_DISTANCE_CODES; ++i) {
|
|
if (cost_model->distance_[i] != 0) {
|
|
if (offset_cost_min == 0.) {
|
|
offset_cost_min = cost_model->distance_[i];
|
|
} else if (cost_model->distance_[i] < offset_cost_min) {
|
|
offset_cost_min = cost_model->distance_[i];
|
|
}
|
|
}
|
|
}
|
|
// In case all the cost_model->distance_ is 0, the next non-zero cost we
|
|
// can have is from the extra bit in GetDistanceCost, hence 1.
|
|
if (offset_cost_min < 1.) offset_cost_min = 1.;
|
|
|
|
size = 1 + (int)ceil((manager->max_cost_cache_ - manager->min_cost_cache_) /
|
|
offset_cost_min);
|
|
// Empirically, we usually end up with a value below 100.
|
|
if (size > MAX_LENGTH) size = MAX_LENGTH;
|
|
|
|
manager->interval_ends_ =
|
|
(int*)WebPSafeMalloc(size, sizeof(*manager->interval_ends_));
|
|
if (manager->interval_ends_ == NULL) {
|
|
CostManagerClear(manager);
|
|
return 0;
|
|
}
|
|
manager->interval_ends_size_ = size;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
// Given the distance_cost for pixel 'index', update the cost at pixel 'i' if it
|
|
// is smaller than the previously computed value.
|
|
static WEBP_INLINE void UpdateCost(CostManager* const manager, int i, int index,
|
|
double distance_cost) {
|
|
int k = i - index;
|
|
double cost_tmp;
|
|
assert(k >= 0 && k < MAX_LENGTH);
|
|
cost_tmp = distance_cost + manager->cost_cache_[k];
|
|
|
|
if (manager->costs_[i] > cost_tmp) {
|
|
manager->costs_[i] = (float)cost_tmp;
|
|
manager->dist_array_[i] = k + 1;
|
|
}
|
|
}
|
|
|
|
// Given the distance_cost for pixel 'index', update the cost for all the pixels
|
|
// between 'start' and 'end' excluded.
|
|
static WEBP_INLINE void UpdateCostPerInterval(CostManager* const manager,
|
|
int start, int end, int index,
|
|
double distance_cost) {
|
|
int i;
|
|
for (i = start; i < end; ++i) UpdateCost(manager, i, index, distance_cost);
|
|
}
|
|
|
|
// Given two intervals, make 'prev' be the previous one of 'next' in 'manager'.
|
|
static WEBP_INLINE void ConnectIntervals(CostManager* const manager,
|
|
CostInterval* const prev,
|
|
CostInterval* const next) {
|
|
if (prev != NULL) {
|
|
prev->next_ = next;
|
|
} else {
|
|
manager->head_ = next;
|
|
}
|
|
|
|
if (next != NULL) next->previous_ = prev;
|
|
}
|
|
|
|
// Pop an interval in the manager.
|
|
static WEBP_INLINE void PopInterval(CostManager* const manager,
|
|
CostInterval* const interval) {
|
|
CostInterval* const next = interval->next_;
|
|
|
|
if (interval == NULL) return;
|
|
|
|
ConnectIntervals(manager, interval->previous_, next);
|
|
if (CostIntervalIsInFreeList(manager, interval)) {
|
|
CostIntervalAddToFreeList(manager, interval);
|
|
} else { // recycle regularly malloc'd intervals too
|
|
interval->next_ = manager->recycled_intervals_;
|
|
manager->recycled_intervals_ = interval;
|
|
}
|
|
--manager->count_;
|
|
assert(manager->count_ >= 0);
|
|
}
|
|
|
|
// Update the cost at index i by going over all the stored intervals that
|
|
// overlap with i.
|
|
static WEBP_INLINE void UpdateCostPerIndex(CostManager* const manager, int i) {
|
|
CostInterval* current = manager->head_;
|
|
|
|
while (current != NULL && current->start_ <= i) {
|
|
if (current->end_ <= i) {
|
|
// We have an outdated interval, remove it.
|
|
CostInterval* next = current->next_;
|
|
PopInterval(manager, current);
|
|
current = next;
|
|
} else {
|
|
UpdateCost(manager, i, current->index_, current->distance_cost_);
|
|
current = current->next_;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Given a current orphan interval and its previous interval, before
|
|
// it was orphaned (which can be NULL), set it at the right place in the list
|
|
// of intervals using the start_ ordering and the previous interval as a hint.
|
|
static WEBP_INLINE void PositionOrphanInterval(CostManager* const manager,
|
|
CostInterval* const current,
|
|
CostInterval* previous) {
|
|
assert(current != NULL);
|
|
|
|
if (previous == NULL) previous = manager->head_;
|
|
while (previous != NULL && current->start_ < previous->start_) {
|
|
previous = previous->previous_;
|
|
}
|
|
while (previous != NULL && previous->next_ != NULL &&
|
|
previous->next_->start_ < current->start_) {
|
|
previous = previous->next_;
|
|
}
|
|
|
|
if (previous != NULL) {
|
|
ConnectIntervals(manager, current, previous->next_);
|
|
} else {
|
|
ConnectIntervals(manager, current, manager->head_);
|
|
}
|
|
ConnectIntervals(manager, previous, current);
|
|
}
|
|
|
|
// Insert an interval in the list contained in the manager by starting at
|
|
// interval_in as a hint. The intervals are sorted by start_ value.
|
|
static WEBP_INLINE void InsertInterval(CostManager* const manager,
|
|
CostInterval* const interval_in,
|
|
double distance_cost, double lower,
|
|
double upper, int index, int start,
|
|
int end) {
|
|
CostInterval* interval_new;
|
|
|
|
if (IsCostCacheIntervalWritable(start, end) ||
|
|
manager->count_ >= COST_CACHE_INTERVAL_SIZE_MAX) {
|
|
// Write down the interval if it is too small.
|
|
UpdateCostPerInterval(manager, start, end, index, distance_cost);
|
|
return;
|
|
}
|
|
if (manager->free_intervals_ != NULL) {
|
|
interval_new = manager->free_intervals_;
|
|
manager->free_intervals_ = interval_new->next_;
|
|
} else if (manager->recycled_intervals_ != NULL) {
|
|
interval_new = manager->recycled_intervals_;
|
|
manager->recycled_intervals_ = interval_new->next_;
|
|
} else { // malloc for good
|
|
interval_new = (CostInterval*)WebPSafeMalloc(1, sizeof(*interval_new));
|
|
if (interval_new == NULL) {
|
|
// Write down the interval if we cannot create it.
|
|
UpdateCostPerInterval(manager, start, end, index, distance_cost);
|
|
return;
|
|
}
|
|
}
|
|
|
|
interval_new->distance_cost_ = distance_cost;
|
|
interval_new->lower_ = lower;
|
|
interval_new->upper_ = upper;
|
|
interval_new->index_ = index;
|
|
interval_new->start_ = start;
|
|
interval_new->end_ = end;
|
|
PositionOrphanInterval(manager, interval_new, interval_in);
|
|
|
|
++manager->count_;
|
|
}
|
|
|
|
// When an interval has its start_ or end_ modified, it needs to be
|
|
// repositioned in the linked list.
|
|
static WEBP_INLINE void RepositionInterval(CostManager* const manager,
|
|
CostInterval* const interval) {
|
|
if (IsCostCacheIntervalWritable(interval->start_, interval->end_)) {
|
|
// Maybe interval has been resized and is small enough to be removed.
|
|
UpdateCostPerInterval(manager, interval->start_, interval->end_,
|
|
interval->index_, interval->distance_cost_);
|
|
PopInterval(manager, interval);
|
|
return;
|
|
}
|
|
|
|
// Early exit if interval is at the right spot.
|
|
if ((interval->previous_ == NULL ||
|
|
interval->previous_->start_ <= interval->start_) &&
|
|
(interval->next_ == NULL ||
|
|
interval->start_ <= interval->next_->start_)) {
|
|
return;
|
|
}
|
|
|
|
ConnectIntervals(manager, interval->previous_, interval->next_);
|
|
PositionOrphanInterval(manager, interval, interval->previous_);
|
|
}
|
|
|
|
// Given a new cost interval defined by its start at index, its last value and
|
|
// distance_cost, add its contributions to the previous intervals and costs.
|
|
// If handling the interval or one of its subintervals becomes to heavy, its
|
|
// contribution is added to the costs right away.
|
|
static WEBP_INLINE void PushInterval(CostManager* const manager,
|
|
double distance_cost, int index,
|
|
int last) {
|
|
size_t i;
|
|
CostInterval* interval = manager->head_;
|
|
CostInterval* interval_next;
|
|
const CostCacheInterval* const cost_cache_intervals =
|
|
manager->cache_intervals_;
|
|
|
|
for (i = 0; i < manager->cache_intervals_size_ &&
|
|
cost_cache_intervals[i].start_ < last;
|
|
++i) {
|
|
// Define the intersection of the ith interval with the new one.
|
|
int start = index + cost_cache_intervals[i].start_;
|
|
const int end = index + (cost_cache_intervals[i].end_ > last
|
|
? last
|
|
: cost_cache_intervals[i].end_);
|
|
const double lower_in = cost_cache_intervals[i].lower_;
|
|
const double upper_in = cost_cache_intervals[i].upper_;
|
|
const double lower_full_in = distance_cost + lower_in;
|
|
const double upper_full_in = distance_cost + upper_in;
|
|
|
|
if (cost_cache_intervals[i].do_write_) {
|
|
UpdateCostPerInterval(manager, start, end, index, distance_cost);
|
|
continue;
|
|
}
|
|
|
|
for (; interval != NULL && interval->start_ < end && start < end;
|
|
interval = interval_next) {
|
|
const double lower_full_interval =
|
|
interval->distance_cost_ + interval->lower_;
|
|
const double upper_full_interval =
|
|
interval->distance_cost_ + interval->upper_;
|
|
|
|
interval_next = interval->next_;
|
|
|
|
// Make sure we have some overlap
|
|
if (start >= interval->end_) continue;
|
|
|
|
if (lower_full_in >= upper_full_interval) {
|
|
// When intervals are represented, the lower, the better.
|
|
// [**********************************************************]
|
|
// start end
|
|
// [----------------------------------]
|
|
// interval->start_ interval->end_
|
|
// If we are worse than what we already have, add whatever we have so
|
|
// far up to interval.
|
|
const int start_new = interval->end_;
|
|
InsertInterval(manager, interval, distance_cost, lower_in, upper_in,
|
|
index, start, interval->start_);
|
|
start = start_new;
|
|
continue;
|
|
}
|
|
|
|
// We know the two intervals intersect.
|
|
if (upper_full_in >= lower_full_interval) {
|
|
// There is no clear cut on which is best, so let's keep both.
|
|
// [*********[*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*]***********]
|
|
// start interval->start_ interval->end_ end
|
|
// OR
|
|
// [*********[*-*-*-*-*-*-*-*-*-*-*-]----------------------]
|
|
// start interval->start_ end interval->end_
|
|
const int end_new = (interval->end_ <= end) ? interval->end_ : end;
|
|
InsertInterval(manager, interval, distance_cost, lower_in, upper_in,
|
|
index, start, end_new);
|
|
start = end_new;
|
|
} else if (start <= interval->start_ && interval->end_ <= end) {
|
|
// [----------------------------------]
|
|
// interval->start_ interval->end_
|
|
// [**************************************************************]
|
|
// start end
|
|
// We can safely remove the old interval as it is fully included.
|
|
PopInterval(manager, interval);
|
|
} else {
|
|
if (interval->start_ <= start && end <= interval->end_) {
|
|
// [--------------------------------------------------------------]
|
|
// interval->start_ interval->end_
|
|
// [*****************************]
|
|
// start end
|
|
// We have to split the old interval as it fully contains the new one.
|
|
const int end_original = interval->end_;
|
|
interval->end_ = start;
|
|
InsertInterval(manager, interval, interval->distance_cost_,
|
|
interval->lower_, interval->upper_, interval->index_,
|
|
end, end_original);
|
|
} else if (interval->start_ < start) {
|
|
// [------------------------------------]
|
|
// interval->start_ interval->end_
|
|
// [*****************************]
|
|
// start end
|
|
interval->end_ = start;
|
|
} else {
|
|
// [------------------------------------]
|
|
// interval->start_ interval->end_
|
|
// [*****************************]
|
|
// start end
|
|
interval->start_ = end;
|
|
}
|
|
|
|
// The interval has been modified, we need to reposition it or write it.
|
|
RepositionInterval(manager, interval);
|
|
}
|
|
}
|
|
// Insert the remaining interval from start to end.
|
|
InsertInterval(manager, interval, distance_cost, lower_in, upper_in, index,
|
|
start, end);
|
|
}
|
|
}
|
|
|
|
static int BackwardReferencesHashChainDistanceOnly(
|
|
int xsize, int ysize, const uint32_t* const argb, int quality,
|
|
int cache_bits, const VP8LHashChain* const hash_chain,
|
|
VP8LBackwardRefs* const refs, uint16_t* const dist_array) {
|
|
int i;
|
|
int ok = 0;
|
|
int cc_init = 0;
|
|
const int pix_count = xsize * ysize;
|
|
const int use_color_cache = (cache_bits > 0);
|
|
const size_t literal_array_size = sizeof(double) *
|
|
(NUM_LITERAL_CODES + NUM_LENGTH_CODES +
|
|
((cache_bits > 0) ? (1 << cache_bits) : 0));
|
|
const size_t cost_model_size = sizeof(CostModel) + literal_array_size;
|
|
CostModel* const cost_model =
|
|
(CostModel*)WebPSafeCalloc(1ULL, cost_model_size);
|
|
VP8LColorCache hashers;
|
|
const int skip_length = 32 + quality;
|
|
const int skip_min_distance_code = 2;
|
|
CostManager* cost_manager =
|
|
(CostManager*)WebPSafeMalloc(1ULL, sizeof(*cost_manager));
|
|
|
|
if (cost_model == NULL || cost_manager == NULL) goto Error;
|
|
|
|
cost_model->literal_ = (double*)(cost_model + 1);
|
|
if (use_color_cache) {
|
|
cc_init = VP8LColorCacheInit(&hashers, cache_bits);
|
|
if (!cc_init) goto Error;
|
|
}
|
|
|
|
if (!CostModelBuild(cost_model, cache_bits, refs)) {
|
|
goto Error;
|
|
}
|
|
|
|
if (!CostManagerInit(cost_manager, dist_array, pix_count, cost_model)) {
|
|
goto Error;
|
|
}
|
|
|
|
// We loop one pixel at a time, but store all currently best points to
|
|
// non-processed locations from this point.
|
|
dist_array[0] = 0;
|
|
// Add first pixel as literal.
|
|
AddSingleLiteralWithCostModel(argb + 0, &hashers, cost_model, 0,
|
|
use_color_cache, 0.0, cost_manager->costs_,
|
|
dist_array);
|
|
|
|
for (i = 1; i < pix_count - 1; ++i) {
|
|
int offset = 0, len = 0;
|
|
double prev_cost = cost_manager->costs_[i - 1];
|
|
HashChainFindCopy(hash_chain, i, &offset, &len);
|
|
if (len >= 2) {
|
|
// If we are dealing with a non-literal.
|
|
const int code = DistanceToPlaneCode(xsize, offset);
|
|
const double offset_cost = GetDistanceCost(cost_model, code);
|
|
const int first_i = i;
|
|
int j_max = 0, interval_ends_index = 0;
|
|
const int is_offset_zero = (offset_cost == 0.);
|
|
|
|
if (!is_offset_zero) {
|
|
j_max = (int)ceil(
|
|
(cost_manager->max_cost_cache_ - cost_manager->min_cost_cache_) /
|
|
offset_cost);
|
|
if (j_max < 1) {
|
|
j_max = 1;
|
|
} else if (j_max > cost_manager->interval_ends_size_ - 1) {
|
|
// This could only happen in the case of MAX_LENGTH.
|
|
j_max = cost_manager->interval_ends_size_ - 1;
|
|
}
|
|
} // else j_max is unused anyway.
|
|
|
|
// Instead of considering all contributions from a pixel i by calling:
|
|
// PushInterval(cost_manager, prev_cost + offset_cost, i, len);
|
|
// we optimize these contributions in case offset_cost stays the same for
|
|
// consecutive pixels. This describes a set of pixels similar to a
|
|
// previous set (e.g. constant color regions).
|
|
for (; i < pix_count - 1; ++i) {
|
|
int offset_next, len_next;
|
|
prev_cost = cost_manager->costs_[i - 1];
|
|
|
|
if (is_offset_zero) {
|
|
// No optimization can be made so we just push all of the
|
|
// contributions from i.
|
|
PushInterval(cost_manager, prev_cost, i, len);
|
|
} else {
|
|
// j_max is chosen as the smallest j such that:
|
|
// max of cost_cache_ < j*offset cost + min of cost_cache_
|
|
// Therefore, the pixel influenced by i-j_max, cannot be influenced
|
|
// by i. Only the costs after the end of what i contributed need to be
|
|
// updated. cost_manager->interval_ends_ is a circular buffer that
|
|
// stores those ends.
|
|
const double distance_cost = prev_cost + offset_cost;
|
|
int j = cost_manager->interval_ends_[interval_ends_index];
|
|
if (i - first_i <= j_max ||
|
|
!IsCostCacheIntervalWritable(j, i + len)) {
|
|
PushInterval(cost_manager, distance_cost, i, len);
|
|
} else {
|
|
for (; j < i + len; ++j) {
|
|
UpdateCost(cost_manager, j, i, distance_cost);
|
|
}
|
|
}
|
|
// Store the new end in the circular buffer.
|
|
assert(interval_ends_index < cost_manager->interval_ends_size_);
|
|
cost_manager->interval_ends_[interval_ends_index] = i + len;
|
|
if (++interval_ends_index > j_max) interval_ends_index = 0;
|
|
}
|
|
|
|
// Check whether i is the last pixel to consider, as it is handled
|
|
// differently.
|
|
if (i + 1 >= pix_count - 1) break;
|
|
HashChainFindCopy(hash_chain, i + 1, &offset_next, &len_next);
|
|
if (offset_next != offset) break;
|
|
len = len_next;
|
|
UpdateCostPerIndex(cost_manager, i);
|
|
AddSingleLiteralWithCostModel(argb + i, &hashers, cost_model, i,
|
|
use_color_cache, prev_cost,
|
|
cost_manager->costs_, dist_array);
|
|
}
|
|
// Submit the last pixel.
|
|
UpdateCostPerIndex(cost_manager, i + 1);
|
|
|
|
// This if is for speedup only. It roughly doubles the speed, and
|
|
// makes compression worse by .1 %.
|
|
if (len >= skip_length && code <= skip_min_distance_code) {
|
|
// Long copy for short distances, let's skip the middle
|
|
// lookups for better copies.
|
|
// 1) insert the hashes.
|
|
if (use_color_cache) {
|
|
int k;
|
|
for (k = 0; k < len; ++k) {
|
|
VP8LColorCacheInsert(&hashers, argb[i + k]);
|
|
}
|
|
}
|
|
// 2) jump.
|
|
{
|
|
const int i_next = i + len - 1; // for loop does ++i, thus -1 here.
|
|
for (; i <= i_next; ++i) UpdateCostPerIndex(cost_manager, i + 1);
|
|
i = i_next;
|
|
}
|
|
goto next_symbol;
|
|
}
|
|
if (len > 2) {
|
|
// Also try the smallest interval possible (size 2).
|
|
double cost_total =
|
|
prev_cost + offset_cost + GetLengthCost(cost_model, 1);
|
|
if (cost_manager->costs_[i + 1] > cost_total) {
|
|
cost_manager->costs_[i + 1] = (float)cost_total;
|
|
dist_array[i + 1] = 2;
|
|
}
|
|
}
|
|
} else {
|
|
// The pixel is added as a single literal so just update the costs.
|
|
UpdateCostPerIndex(cost_manager, i + 1);
|
|
}
|
|
|
|
AddSingleLiteralWithCostModel(argb + i, &hashers, cost_model, i,
|
|
use_color_cache, prev_cost,
|
|
cost_manager->costs_, dist_array);
|
|
|
|
next_symbol: ;
|
|
}
|
|
// Handle the last pixel.
|
|
if (i == (pix_count - 1)) {
|
|
AddSingleLiteralWithCostModel(
|
|
argb + i, &hashers, cost_model, i, use_color_cache,
|
|
cost_manager->costs_[pix_count - 2], cost_manager->costs_, dist_array);
|
|
}
|
|
|
|
ok = !refs->error_;
|
|
Error:
|
|
if (cc_init) VP8LColorCacheClear(&hashers);
|
|
CostManagerClear(cost_manager);
|
|
WebPSafeFree(cost_model);
|
|
WebPSafeFree(cost_manager);
|
|
return ok;
|
|
}
|
|
|
|
// We pack the path at the end of *dist_array and return
|
|
// a pointer to this part of the array. Example:
|
|
// dist_array = [1x2xx3x2] => packed [1x2x1232], chosen_path = [1232]
|
|
static void TraceBackwards(uint16_t* const dist_array,
|
|
int dist_array_size,
|
|
uint16_t** const chosen_path,
|
|
int* const chosen_path_size) {
|
|
uint16_t* path = dist_array + dist_array_size;
|
|
uint16_t* cur = dist_array + dist_array_size - 1;
|
|
while (cur >= dist_array) {
|
|
const int k = *cur;
|
|
--path;
|
|
*path = k;
|
|
cur -= k;
|
|
}
|
|
*chosen_path = path;
|
|
*chosen_path_size = (int)(dist_array + dist_array_size - path);
|
|
}
|
|
|
|
static int BackwardReferencesHashChainFollowChosenPath(
|
|
const uint32_t* const argb, int cache_bits,
|
|
const uint16_t* const chosen_path, int chosen_path_size,
|
|
const VP8LHashChain* const hash_chain, VP8LBackwardRefs* const refs) {
|
|
const int use_color_cache = (cache_bits > 0);
|
|
int ix;
|
|
int i = 0;
|
|
int ok = 0;
|
|
int cc_init = 0;
|
|
VP8LColorCache hashers;
|
|
|
|
if (use_color_cache) {
|
|
cc_init = VP8LColorCacheInit(&hashers, cache_bits);
|
|
if (!cc_init) goto Error;
|
|
}
|
|
|
|
ClearBackwardRefs(refs);
|
|
for (ix = 0; ix < chosen_path_size; ++ix) {
|
|
const int len = chosen_path[ix];
|
|
if (len != 1) {
|
|
int k;
|
|
const int offset = HashChainFindOffset(hash_chain, i);
|
|
BackwardRefsCursorAdd(refs, PixOrCopyCreateCopy(offset, len));
|
|
if (use_color_cache) {
|
|
for (k = 0; k < len; ++k) {
|
|
VP8LColorCacheInsert(&hashers, argb[i + k]);
|
|
}
|
|
}
|
|
i += len;
|
|
} else {
|
|
PixOrCopy v;
|
|
const int idx =
|
|
use_color_cache ? VP8LColorCacheContains(&hashers, argb[i]) : -1;
|
|
if (idx >= 0) {
|
|
// use_color_cache is true and hashers contains argb[i]
|
|
// push pixel as a color cache index
|
|
v = PixOrCopyCreateCacheIdx(idx);
|
|
} else {
|
|
if (use_color_cache) VP8LColorCacheInsert(&hashers, argb[i]);
|
|
v = PixOrCopyCreateLiteral(argb[i]);
|
|
}
|
|
BackwardRefsCursorAdd(refs, v);
|
|
++i;
|
|
}
|
|
}
|
|
ok = !refs->error_;
|
|
Error:
|
|
if (cc_init) VP8LColorCacheClear(&hashers);
|
|
return ok;
|
|
}
|
|
|
|
// Returns 1 on success.
|
|
static int BackwardReferencesTraceBackwards(
|
|
int xsize, int ysize, const uint32_t* const argb, int quality,
|
|
int cache_bits, const VP8LHashChain* const hash_chain,
|
|
VP8LBackwardRefs* const refs) {
|
|
int ok = 0;
|
|
const int dist_array_size = xsize * ysize;
|
|
uint16_t* chosen_path = NULL;
|
|
int chosen_path_size = 0;
|
|
uint16_t* dist_array =
|
|
(uint16_t*)WebPSafeMalloc(dist_array_size, sizeof(*dist_array));
|
|
|
|
if (dist_array == NULL) goto Error;
|
|
|
|
if (!BackwardReferencesHashChainDistanceOnly(
|
|
xsize, ysize, argb, quality, cache_bits, hash_chain,
|
|
refs, dist_array)) {
|
|
goto Error;
|
|
}
|
|
TraceBackwards(dist_array, dist_array_size, &chosen_path, &chosen_path_size);
|
|
if (!BackwardReferencesHashChainFollowChosenPath(
|
|
argb, cache_bits, chosen_path, chosen_path_size, hash_chain, refs)) {
|
|
goto Error;
|
|
}
|
|
ok = 1;
|
|
Error:
|
|
WebPSafeFree(dist_array);
|
|
return ok;
|
|
}
|
|
|
|
static void BackwardReferences2DLocality(int xsize,
|
|
const VP8LBackwardRefs* const refs) {
|
|
VP8LRefsCursor c = VP8LRefsCursorInit(refs);
|
|
while (VP8LRefsCursorOk(&c)) {
|
|
if (PixOrCopyIsCopy(c.cur_pos)) {
|
|
const int dist = c.cur_pos->argb_or_distance;
|
|
const int transformed_dist = DistanceToPlaneCode(xsize, dist);
|
|
c.cur_pos->argb_or_distance = transformed_dist;
|
|
}
|
|
VP8LRefsCursorNext(&c);
|
|
}
|
|
}
|
|
|
|
// Computes the entropies for a color cache size (in bits) between 0 (unused)
|
|
// and cache_bits_max (inclusive).
|
|
// Returns 1 on success, 0 in case of allocation error.
|
|
static int ComputeCacheEntropies(const uint32_t* argb,
|
|
const VP8LBackwardRefs* const refs,
|
|
int cache_bits_max, double entropies[]) {
|
|
int cc_init[MAX_COLOR_CACHE_BITS + 1] = { 0 };
|
|
VP8LColorCache hashers[MAX_COLOR_CACHE_BITS + 1];
|
|
VP8LRefsCursor c = VP8LRefsCursorInit(refs);
|
|
VP8LHistogram* histos[MAX_COLOR_CACHE_BITS + 1] = { NULL };
|
|
int ok = 0;
|
|
int i;
|
|
|
|
for (i = 0; i <= cache_bits_max; ++i) {
|
|
histos[i] = VP8LAllocateHistogram(i);
|
|
if (histos[i] == NULL) goto Error;
|
|
if (i == 0) continue;
|
|
cc_init[i] = VP8LColorCacheInit(&hashers[i], i);
|
|
if (!cc_init[i]) goto Error;
|
|
}
|
|
|
|
assert(cache_bits_max >= 0);
|
|
// Do not use the color cache for cache_bits=0.
|
|
while (VP8LRefsCursorOk(&c)) {
|
|
VP8LHistogramAddSinglePixOrCopy(histos[0], c.cur_pos);
|
|
VP8LRefsCursorNext(&c);
|
|
}
|
|
if (cache_bits_max > 0) {
|
|
c = VP8LRefsCursorInit(refs);
|
|
while (VP8LRefsCursorOk(&c)) {
|
|
const PixOrCopy* const v = c.cur_pos;
|
|
if (PixOrCopyIsLiteral(v)) {
|
|
const uint32_t pix = *argb++;
|
|
// The keys of the caches can be derived from the longest one.
|
|
int key = HashPix(pix, 32 - cache_bits_max);
|
|
for (i = cache_bits_max; i >= 1; --i, key >>= 1) {
|
|
if (VP8LColorCacheLookup(&hashers[i], key) == pix) {
|
|
++histos[i]->literal_[NUM_LITERAL_CODES + NUM_LENGTH_CODES + key];
|
|
} else {
|
|
VP8LColorCacheSet(&hashers[i], key, pix);
|
|
++histos[i]->blue_[pix & 0xff];
|
|
++histos[i]->literal_[(pix >> 8) & 0xff];
|
|
++histos[i]->red_[(pix >> 16) & 0xff];
|
|
++histos[i]->alpha_[pix >> 24];
|
|
}
|
|
}
|
|
} else {
|
|
// Update the histograms for distance/length.
|
|
int len = PixOrCopyLength(v);
|
|
int code_dist, code_len, extra_bits;
|
|
uint32_t argb_prev = *argb ^ 0xffffffffu;
|
|
VP8LPrefixEncodeBits(len, &code_len, &extra_bits);
|
|
VP8LPrefixEncodeBits(PixOrCopyDistance(v), &code_dist, &extra_bits);
|
|
for (i = 1; i <= cache_bits_max; ++i) {
|
|
++histos[i]->literal_[NUM_LITERAL_CODES + code_len];
|
|
++histos[i]->distance_[code_dist];
|
|
}
|
|
// Update the colors caches.
|
|
do {
|
|
if (*argb != argb_prev) {
|
|
// Efficiency: insert only if the color changes.
|
|
int key = HashPix(*argb, 32 - cache_bits_max);
|
|
for (i = cache_bits_max; i >= 1; --i, key >>= 1) {
|
|
hashers[i].colors_[key] = *argb;
|
|
}
|
|
argb_prev = *argb;
|
|
}
|
|
argb++;
|
|
} while (--len != 0);
|
|
}
|
|
VP8LRefsCursorNext(&c);
|
|
}
|
|
}
|
|
for (i = 0; i <= cache_bits_max; ++i) {
|
|
entropies[i] = VP8LHistogramEstimateBits(histos[i]);
|
|
}
|
|
ok = 1;
|
|
Error:
|
|
for (i = 0; i <= cache_bits_max; ++i) {
|
|
if (cc_init[i]) VP8LColorCacheClear(&hashers[i]);
|
|
VP8LFreeHistogram(histos[i]);
|
|
}
|
|
return ok;
|
|
}
|
|
|
|
// Evaluate optimal cache bits for the local color cache.
|
|
// The input *best_cache_bits sets the maximum cache bits to use (passing 0
|
|
// implies disabling the local color cache). The local color cache is also
|
|
// disabled for the lower (<= 25) quality.
|
|
// Returns 0 in case of memory error.
|
|
static int CalculateBestCacheSize(const uint32_t* const argb,
|
|
int xsize, int ysize, int quality,
|
|
const VP8LHashChain* const hash_chain,
|
|
VP8LBackwardRefs* const refs,
|
|
int* const lz77_computed,
|
|
int* const best_cache_bits) {
|
|
int i;
|
|
int cache_bits_high = (quality <= 25) ? 0 : *best_cache_bits;
|
|
double entropy_min = MAX_ENTROPY;
|
|
double entropies[MAX_COLOR_CACHE_BITS + 1];
|
|
|
|
assert(cache_bits_high <= MAX_COLOR_CACHE_BITS);
|
|
|
|
*lz77_computed = 0;
|
|
if (cache_bits_high == 0) {
|
|
*best_cache_bits = 0;
|
|
// Local color cache is disabled.
|
|
return 1;
|
|
}
|
|
// Compute LZ77 with no cache (0 bits), as the ideal LZ77 with a color cache
|
|
// is not that different in practice.
|
|
if (!BackwardReferencesLz77(xsize, ysize, argb, 0, hash_chain, refs)) {
|
|
return 0;
|
|
}
|
|
// Find the cache_bits giving the lowest entropy. The search is done in a
|
|
// brute-force way as the function (entropy w.r.t cache_bits) can be
|
|
// anything in practice.
|
|
if (!ComputeCacheEntropies(argb, refs, cache_bits_high, entropies)) {
|
|
return 0;
|
|
}
|
|
for (i = 0; i <= cache_bits_high; ++i) {
|
|
if (i == 0 || entropies[i] < entropy_min) {
|
|
entropy_min = entropies[i];
|
|
*best_cache_bits = i;
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
// Update (in-place) backward references for specified cache_bits.
|
|
static int BackwardRefsWithLocalCache(const uint32_t* const argb,
|
|
int cache_bits,
|
|
VP8LBackwardRefs* const refs) {
|
|
int pixel_index = 0;
|
|
VP8LColorCache hashers;
|
|
VP8LRefsCursor c = VP8LRefsCursorInit(refs);
|
|
if (!VP8LColorCacheInit(&hashers, cache_bits)) return 0;
|
|
|
|
while (VP8LRefsCursorOk(&c)) {
|
|
PixOrCopy* const v = c.cur_pos;
|
|
if (PixOrCopyIsLiteral(v)) {
|
|
const uint32_t argb_literal = v->argb_or_distance;
|
|
const int ix = VP8LColorCacheContains(&hashers, argb_literal);
|
|
if (ix >= 0) {
|
|
// hashers contains argb_literal
|
|
*v = PixOrCopyCreateCacheIdx(ix);
|
|
} else {
|
|
VP8LColorCacheInsert(&hashers, argb_literal);
|
|
}
|
|
++pixel_index;
|
|
} else {
|
|
// refs was created without local cache, so it can not have cache indexes.
|
|
int k;
|
|
assert(PixOrCopyIsCopy(v));
|
|
for (k = 0; k < v->len; ++k) {
|
|
VP8LColorCacheInsert(&hashers, argb[pixel_index++]);
|
|
}
|
|
}
|
|
VP8LRefsCursorNext(&c);
|
|
}
|
|
VP8LColorCacheClear(&hashers);
|
|
return 1;
|
|
}
|
|
|
|
static VP8LBackwardRefs* GetBackwardReferencesLowEffort(
|
|
int width, int height, const uint32_t* const argb,
|
|
int* const cache_bits, const VP8LHashChain* const hash_chain,
|
|
VP8LBackwardRefs refs_array[2]) {
|
|
VP8LBackwardRefs* refs_lz77 = &refs_array[0];
|
|
*cache_bits = 0;
|
|
if (!BackwardReferencesLz77(width, height, argb, 0, hash_chain, refs_lz77)) {
|
|
return NULL;
|
|
}
|
|
BackwardReferences2DLocality(width, refs_lz77);
|
|
return refs_lz77;
|
|
}
|
|
|
|
static VP8LBackwardRefs* GetBackwardReferences(
|
|
int width, int height, const uint32_t* const argb, int quality,
|
|
int* const cache_bits, const VP8LHashChain* const hash_chain,
|
|
VP8LBackwardRefs refs_array[2]) {
|
|
int lz77_is_useful;
|
|
int lz77_computed;
|
|
double bit_cost_lz77, bit_cost_rle;
|
|
VP8LBackwardRefs* best = NULL;
|
|
VP8LBackwardRefs* refs_lz77 = &refs_array[0];
|
|
VP8LBackwardRefs* refs_rle = &refs_array[1];
|
|
VP8LHistogram* histo = NULL;
|
|
|
|
if (!CalculateBestCacheSize(argb, width, height, quality, hash_chain,
|
|
refs_lz77, &lz77_computed, cache_bits)) {
|
|
goto Error;
|
|
}
|
|
|
|
if (lz77_computed) {
|
|
// Transform refs_lz77 for the optimized cache_bits.
|
|
if (*cache_bits > 0) {
|
|
if (!BackwardRefsWithLocalCache(argb, *cache_bits, refs_lz77)) {
|
|
goto Error;
|
|
}
|
|
}
|
|
} else {
|
|
if (!BackwardReferencesLz77(width, height, argb, *cache_bits, hash_chain,
|
|
refs_lz77)) {
|
|
goto Error;
|
|
}
|
|
}
|
|
|
|
if (!BackwardReferencesRle(width, height, argb, *cache_bits, refs_rle)) {
|
|
goto Error;
|
|
}
|
|
|
|
histo = VP8LAllocateHistogram(*cache_bits);
|
|
if (histo == NULL) goto Error;
|
|
|
|
{
|
|
// Evaluate LZ77 coding.
|
|
VP8LHistogramCreate(histo, refs_lz77, *cache_bits);
|
|
bit_cost_lz77 = VP8LHistogramEstimateBits(histo);
|
|
// Evaluate RLE coding.
|
|
VP8LHistogramCreate(histo, refs_rle, *cache_bits);
|
|
bit_cost_rle = VP8LHistogramEstimateBits(histo);
|
|
// Decide if LZ77 is useful.
|
|
lz77_is_useful = (bit_cost_lz77 < bit_cost_rle);
|
|
}
|
|
|
|
// Choose appropriate backward reference.
|
|
if (lz77_is_useful) {
|
|
// TraceBackwards is costly. Don't execute it at lower quality.
|
|
const int try_lz77_trace_backwards = (quality >= 25);
|
|
best = refs_lz77; // default guess: lz77 is better
|
|
if (try_lz77_trace_backwards) {
|
|
VP8LBackwardRefs* const refs_trace = refs_rle;
|
|
if (!VP8LBackwardRefsCopy(refs_lz77, refs_trace)) {
|
|
best = NULL;
|
|
goto Error;
|
|
}
|
|
if (BackwardReferencesTraceBackwards(width, height, argb, quality,
|
|
*cache_bits, hash_chain,
|
|
refs_trace)) {
|
|
double bit_cost_trace;
|
|
// Evaluate LZ77 coding.
|
|
VP8LHistogramCreate(histo, refs_trace, *cache_bits);
|
|
bit_cost_trace = VP8LHistogramEstimateBits(histo);
|
|
if (bit_cost_trace < bit_cost_lz77) {
|
|
best = refs_trace;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
best = refs_rle;
|
|
}
|
|
|
|
BackwardReferences2DLocality(width, best);
|
|
|
|
Error:
|
|
VP8LFreeHistogram(histo);
|
|
return best;
|
|
}
|
|
|
|
VP8LBackwardRefs* VP8LGetBackwardReferences(
|
|
int width, int height, const uint32_t* const argb, int quality,
|
|
int low_effort, int* const cache_bits,
|
|
const VP8LHashChain* const hash_chain, VP8LBackwardRefs refs_array[2]) {
|
|
if (low_effort) {
|
|
return GetBackwardReferencesLowEffort(width, height, argb, cache_bits,
|
|
hash_chain, refs_array);
|
|
} else {
|
|
return GetBackwardReferences(width, height, argb, quality, cache_bits,
|
|
hash_chain, refs_array);
|
|
}
|
|
}
|