godot/servers/rendering/renderer_rd/shaders/environment/sky.glsl
clayjohn 8fa76a5272 Move debanding into internal sky shader code so that it is applied after everything else.
This ensures that the debanding does not scale with exposure or any other effect.
2022-09-13 10:39:04 -07:00

269 lines
7.6 KiB
GLSL

#[vertex]
#version 450
#VERSION_DEFINES
#define MAX_VIEWS 2
#if defined(USE_MULTIVIEW) && defined(has_VK_KHR_multiview)
#extension GL_EXT_multiview : enable
#endif
layout(location = 0) out vec2 uv_interp;
layout(push_constant, std430) uniform Params {
mat3 orientation;
vec4 projections[MAX_VIEWS];
vec3 position;
float time;
vec3 pad;
float luminance_multiplier;
}
params;
void main() {
vec2 base_arr[4] = vec2[](vec2(-1.0, -1.0), vec2(-1.0, 1.0), vec2(1.0, 1.0), vec2(1.0, -1.0));
uv_interp = base_arr[gl_VertexIndex];
gl_Position = vec4(uv_interp, 1.0, 1.0);
}
#[fragment]
#version 450
#VERSION_DEFINES
#ifdef USE_MULTIVIEW
#ifdef has_VK_KHR_multiview
#extension GL_EXT_multiview : enable
#define ViewIndex gl_ViewIndex
#else // has_VK_KHR_multiview
// !BAS! This needs to become an input once we implement our fallback!
#define ViewIndex 0
#endif // has_VK_KHR_multiview
#else // USE_MULTIVIEW
// Set to zero, not supported in non stereo
#define ViewIndex 0
#endif //USE_MULTIVIEW
#define M_PI 3.14159265359
#define MAX_VIEWS 2
layout(location = 0) in vec2 uv_interp;
layout(push_constant, std430) uniform Params {
mat3 orientation;
vec4 projections[MAX_VIEWS];
vec3 position;
float time;
vec3 pad;
float luminance_multiplier;
}
params;
#define SAMPLER_NEAREST_CLAMP 0
#define SAMPLER_LINEAR_CLAMP 1
#define SAMPLER_NEAREST_WITH_MIPMAPS_CLAMP 2
#define SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP 3
#define SAMPLER_NEAREST_WITH_MIPMAPS_ANISOTROPIC_CLAMP 4
#define SAMPLER_LINEAR_WITH_MIPMAPS_ANISOTROPIC_CLAMP 5
#define SAMPLER_NEAREST_REPEAT 6
#define SAMPLER_LINEAR_REPEAT 7
#define SAMPLER_NEAREST_WITH_MIPMAPS_REPEAT 8
#define SAMPLER_LINEAR_WITH_MIPMAPS_REPEAT 9
#define SAMPLER_NEAREST_WITH_MIPMAPS_ANISOTROPIC_REPEAT 10
#define SAMPLER_LINEAR_WITH_MIPMAPS_ANISOTROPIC_REPEAT 11
layout(set = 0, binding = 0) uniform sampler material_samplers[12];
layout(set = 0, binding = 1, std430) restrict readonly buffer GlobalShaderUniformData {
vec4 data[];
}
global_shader_uniforms;
layout(set = 0, binding = 2, std140) uniform SceneData {
bool volumetric_fog_enabled; // 4 - 4
float volumetric_fog_inv_length; // 4 - 8
float volumetric_fog_detail_spread; // 4 - 12
float volumetric_fog_sky_affect; // 4 - 16
bool fog_enabled; // 4 - 20
float fog_sky_affect; // 4 - 24
float fog_density; // 4 - 28
float fog_sun_scatter; // 4 - 32
vec3 fog_light_color; // 12 - 44
float fog_aerial_perspective; // 4 - 48
float z_far; // 4 - 52
uint directional_light_count; // 4 - 56
uint pad1; // 4 - 60
uint pad2; // 4 - 64
}
scene_data;
struct DirectionalLightData {
vec4 direction_energy;
vec4 color_size;
bool enabled;
};
layout(set = 0, binding = 3, std140) uniform DirectionalLights {
DirectionalLightData data[MAX_DIRECTIONAL_LIGHT_DATA_STRUCTS];
}
directional_lights;
#ifdef MATERIAL_UNIFORMS_USED
layout(set = 1, binding = 0, std140) uniform MaterialUniforms{
#MATERIAL_UNIFORMS
} material;
#endif
layout(set = 2, binding = 0) uniform textureCube radiance;
#ifdef USE_CUBEMAP_PASS
layout(set = 2, binding = 1) uniform textureCube half_res;
layout(set = 2, binding = 2) uniform textureCube quarter_res;
#else
layout(set = 2, binding = 1) uniform texture2D half_res;
layout(set = 2, binding = 2) uniform texture2D quarter_res;
#endif
layout(set = 3, binding = 0) uniform texture3D volumetric_fog_texture;
#ifdef USE_CUBEMAP_PASS
#define AT_CUBEMAP_PASS true
#else
#define AT_CUBEMAP_PASS false
#endif
#ifdef USE_HALF_RES_PASS
#define AT_HALF_RES_PASS true
#else
#define AT_HALF_RES_PASS false
#endif
#ifdef USE_QUARTER_RES_PASS
#define AT_QUARTER_RES_PASS true
#else
#define AT_QUARTER_RES_PASS false
#endif
#GLOBALS
layout(location = 0) out vec4 frag_color;
#ifdef USE_DEBANDING
// https://www.iryoku.com/next-generation-post-processing-in-call-of-duty-advanced-warfare
vec3 interleaved_gradient_noise(vec2 pos) {
const vec3 magic = vec3(0.06711056f, 0.00583715f, 52.9829189f);
float res = fract(magic.z * fract(dot(pos, magic.xy))) * 2.0 - 1.0;
return vec3(res, -res, res) / 255.0;
}
#endif
vec4 volumetric_fog_process(vec2 screen_uv) {
vec3 fog_pos = vec3(screen_uv, 1.0);
return texture(sampler3D(volumetric_fog_texture, material_samplers[SAMPLER_LINEAR_CLAMP]), fog_pos);
}
vec4 fog_process(vec3 view, vec3 sky_color) {
vec3 fog_color = mix(scene_data.fog_light_color, sky_color, scene_data.fog_aerial_perspective);
if (scene_data.fog_sun_scatter > 0.001) {
vec4 sun_scatter = vec4(0.0);
float sun_total = 0.0;
for (uint i = 0; i < scene_data.directional_light_count; i++) {
vec3 light_color = directional_lights.data[i].color_size.xyz * directional_lights.data[i].direction_energy.w;
float light_amount = pow(max(dot(view, directional_lights.data[i].direction_energy.xyz), 0.0), 8.0);
fog_color += light_color * light_amount * scene_data.fog_sun_scatter;
}
}
return vec4(fog_color, 1.0);
}
void main() {
vec3 cube_normal;
cube_normal.z = -1.0;
cube_normal.x = (cube_normal.z * (-uv_interp.x - params.projections[ViewIndex].x)) / params.projections[ViewIndex].y;
cube_normal.y = -(cube_normal.z * (-uv_interp.y - params.projections[ViewIndex].z)) / params.projections[ViewIndex].w;
cube_normal = mat3(params.orientation) * cube_normal;
cube_normal = normalize(cube_normal);
vec2 uv = uv_interp * 0.5 + 0.5;
vec2 panorama_coords = vec2(atan(cube_normal.x, -cube_normal.z), acos(cube_normal.y));
if (panorama_coords.x < 0.0) {
panorama_coords.x += M_PI * 2.0;
}
panorama_coords /= vec2(M_PI * 2.0, M_PI);
vec3 color = vec3(0.0, 0.0, 0.0);
float alpha = 1.0; // Only available to subpasses
vec4 half_res_color = vec4(1.0);
vec4 quarter_res_color = vec4(1.0);
vec4 custom_fog = vec4(0.0);
#ifdef USE_CUBEMAP_PASS
#ifdef USES_HALF_RES_COLOR
half_res_color = texture(samplerCube(half_res, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), cube_normal) / params.luminance_multiplier;
#endif
#ifdef USES_QUARTER_RES_COLOR
quarter_res_color = texture(samplerCube(quarter_res, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), cube_normal) / params.luminance_multiplier;
#endif
#else
#ifdef USES_HALF_RES_COLOR
half_res_color = textureLod(sampler2D(half_res, material_samplers[SAMPLER_LINEAR_CLAMP]), uv, 0.0) / params.luminance_multiplier;
#endif
#ifdef USES_QUARTER_RES_COLOR
quarter_res_color = textureLod(sampler2D(quarter_res, material_samplers[SAMPLER_LINEAR_CLAMP]), uv, 0.0) / params.luminance_multiplier;
#endif
#endif
{
#CODE : SKY
}
frag_color.rgb = color;
frag_color.a = alpha;
#if !defined(DISABLE_FOG) && !defined(USE_CUBEMAP_PASS)
// Draw "fixed" fog before volumetric fog to ensure volumetric fog can appear in front of the sky.
if (scene_data.fog_enabled) {
vec4 fog = fog_process(cube_normal, frag_color.rgb);
frag_color.rgb = mix(frag_color.rgb, fog.rgb, fog.a * scene_data.fog_sky_affect);
}
if (scene_data.volumetric_fog_enabled) {
vec4 fog = volumetric_fog_process(uv);
frag_color.rgb = mix(frag_color.rgb, fog.rgb, fog.a * scene_data.volumetric_fog_sky_affect);
}
if (custom_fog.a > 0.0) {
frag_color.rgb = mix(frag_color.rgb, custom_fog.rgb, custom_fog.a);
}
#endif // DISABLE_FOG
// Blending is disabled for Sky, so alpha doesn't blend.
// Alpha is used for subsurface scattering so make sure it doesn't get applied to Sky.
if (!AT_CUBEMAP_PASS && !AT_HALF_RES_PASS && !AT_QUARTER_RES_PASS) {
frag_color.a = 0.0;
}
// For mobile renderer we're multiplying by 0.5 as we're using a UNORM buffer.
// For both mobile and clustered, we also bake in the exposure value for the environment and camera.
frag_color.rgb = frag_color.rgb * params.luminance_multiplier;
#ifdef USE_DEBANDING
frag_color.rgb += interleaved_gradient_noise(gl_FragCoord.xy);
#endif
}