696346f4cc
Co-authored-by: Gordon A Macpherson <gordon.a.macpherson@gmail.com> Co-authored-by: Rémi Verschelde <rverschelde@gmail.com>
482 lines
13 KiB
C++
482 lines
13 KiB
C++
// SPDX-License-Identifier: Apache-2.0
|
|
// ----------------------------------------------------------------------------
|
|
// Copyright 2011-2023 Arm Limited
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License"); you may not
|
|
// use this file except in compliance with the License. You may obtain a copy
|
|
// of the License at:
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
// License for the specific language governing permissions and limitations
|
|
// under the License.
|
|
// ----------------------------------------------------------------------------
|
|
|
|
/**
|
|
* @brief Functions for generating partition tables on demand.
|
|
*/
|
|
|
|
#include "astcenc_internal.h"
|
|
|
|
/** @brief The number of 64-bit words needed to represent a canonical partition bit pattern. */
|
|
#define BIT_PATTERN_WORDS (((ASTCENC_BLOCK_MAX_TEXELS * 2) + 63) / 64)
|
|
|
|
/**
|
|
* @brief Generate a canonical representation of a partition pattern.
|
|
*
|
|
* The returned value stores two bits per texel, for up to 6x6x6 texels, where the two bits store
|
|
* the remapped texel index. Remapping ensures that we only match on the partition pattern,
|
|
* independent of the partition order generated by the hash.
|
|
*
|
|
* @param texel_count The number of texels in the block.
|
|
* @param partition_of_texel The partition assignments, in hash order.
|
|
* @param[out] bit_pattern The output bit pattern representation.
|
|
*/
|
|
static void generate_canonical_partitioning(
|
|
unsigned int texel_count,
|
|
const uint8_t* partition_of_texel,
|
|
uint64_t bit_pattern[BIT_PATTERN_WORDS]
|
|
) {
|
|
// Clear the pattern
|
|
for (unsigned int i = 0; i < BIT_PATTERN_WORDS; i++)
|
|
{
|
|
bit_pattern[i] = 0;
|
|
}
|
|
|
|
// Store a mapping to reorder the raw partitions so that the partitions are ordered such
|
|
// that the lowest texel index in partition N is smaller than the lowest texel index in
|
|
// partition N + 1.
|
|
int mapped_index[BLOCK_MAX_PARTITIONS];
|
|
int map_weight_count = 0;
|
|
|
|
for (unsigned int i = 0; i < BLOCK_MAX_PARTITIONS; i++)
|
|
{
|
|
mapped_index[i] = -1;
|
|
}
|
|
|
|
for (unsigned int i = 0; i < texel_count; i++)
|
|
{
|
|
int index = partition_of_texel[i];
|
|
if (mapped_index[index] < 0)
|
|
{
|
|
mapped_index[index] = map_weight_count++;
|
|
}
|
|
|
|
uint64_t xlat_index = mapped_index[index];
|
|
bit_pattern[i >> 5] |= xlat_index << (2 * (i & 0x1F));
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Compare two canonical patterns to see if they are the same.
|
|
*
|
|
* @param part1 The first canonical bit pattern to check.
|
|
* @param part2 The second canonical bit pattern to check.
|
|
*
|
|
* @return @c true if the patterns are the same, @c false otherwise.
|
|
*/
|
|
static bool compare_canonical_partitionings(
|
|
const uint64_t part1[BIT_PATTERN_WORDS],
|
|
const uint64_t part2[BIT_PATTERN_WORDS]
|
|
) {
|
|
return (part1[0] == part2[0])
|
|
#if BIT_PATTERN_WORDS > 1
|
|
&& (part1[1] == part2[1])
|
|
#endif
|
|
#if BIT_PATTERN_WORDS > 2
|
|
&& (part1[2] == part2[2])
|
|
#endif
|
|
#if BIT_PATTERN_WORDS > 3
|
|
&& (part1[3] == part2[3])
|
|
#endif
|
|
#if BIT_PATTERN_WORDS > 4
|
|
&& (part1[4] == part2[4])
|
|
#endif
|
|
#if BIT_PATTERN_WORDS > 5
|
|
&& (part1[5] == part2[5])
|
|
#endif
|
|
#if BIT_PATTERN_WORDS > 6
|
|
&& (part1[6] == part2[6])
|
|
#endif
|
|
;
|
|
}
|
|
|
|
/**
|
|
* @brief Hash function used for procedural partition assignment.
|
|
*
|
|
* @param inp The hash seed.
|
|
*
|
|
* @return The hashed value.
|
|
*/
|
|
static uint32_t hash52(
|
|
uint32_t inp
|
|
) {
|
|
inp ^= inp >> 15;
|
|
|
|
// (2^4 + 1) * (2^7 + 1) * (2^17 - 1)
|
|
inp *= 0xEEDE0891;
|
|
inp ^= inp >> 5;
|
|
inp += inp << 16;
|
|
inp ^= inp >> 7;
|
|
inp ^= inp >> 3;
|
|
inp ^= inp << 6;
|
|
inp ^= inp >> 17;
|
|
return inp;
|
|
}
|
|
|
|
/**
|
|
* @brief Select texel assignment for a single coordinate.
|
|
*
|
|
* @param seed The seed - the partition index from the block.
|
|
* @param x The texel X coordinate in the block.
|
|
* @param y The texel Y coordinate in the block.
|
|
* @param z The texel Z coordinate in the block.
|
|
* @param partition_count The total partition count of this encoding.
|
|
* @param small_block @c true if the block has fewer than 32 texels.
|
|
*
|
|
* @return The assigned partition index for this texel.
|
|
*/
|
|
static uint8_t select_partition(
|
|
int seed,
|
|
int x,
|
|
int y,
|
|
int z,
|
|
int partition_count,
|
|
bool small_block
|
|
) {
|
|
// For small blocks bias the coordinates to get better distribution
|
|
if (small_block)
|
|
{
|
|
x <<= 1;
|
|
y <<= 1;
|
|
z <<= 1;
|
|
}
|
|
|
|
seed += (partition_count - 1) * 1024;
|
|
|
|
uint32_t rnum = hash52(seed);
|
|
|
|
uint8_t seed1 = rnum & 0xF;
|
|
uint8_t seed2 = (rnum >> 4) & 0xF;
|
|
uint8_t seed3 = (rnum >> 8) & 0xF;
|
|
uint8_t seed4 = (rnum >> 12) & 0xF;
|
|
uint8_t seed5 = (rnum >> 16) & 0xF;
|
|
uint8_t seed6 = (rnum >> 20) & 0xF;
|
|
uint8_t seed7 = (rnum >> 24) & 0xF;
|
|
uint8_t seed8 = (rnum >> 28) & 0xF;
|
|
uint8_t seed9 = (rnum >> 18) & 0xF;
|
|
uint8_t seed10 = (rnum >> 22) & 0xF;
|
|
uint8_t seed11 = (rnum >> 26) & 0xF;
|
|
uint8_t seed12 = ((rnum >> 30) | (rnum << 2)) & 0xF;
|
|
|
|
// Squaring all the seeds in order to bias their distribution towards lower values.
|
|
seed1 *= seed1;
|
|
seed2 *= seed2;
|
|
seed3 *= seed3;
|
|
seed4 *= seed4;
|
|
seed5 *= seed5;
|
|
seed6 *= seed6;
|
|
seed7 *= seed7;
|
|
seed8 *= seed8;
|
|
seed9 *= seed9;
|
|
seed10 *= seed10;
|
|
seed11 *= seed11;
|
|
seed12 *= seed12;
|
|
|
|
int sh1, sh2;
|
|
if (seed & 1)
|
|
{
|
|
sh1 = (seed & 2 ? 4 : 5);
|
|
sh2 = (partition_count == 3 ? 6 : 5);
|
|
}
|
|
else
|
|
{
|
|
sh1 = (partition_count == 3 ? 6 : 5);
|
|
sh2 = (seed & 2 ? 4 : 5);
|
|
}
|
|
|
|
int sh3 = (seed & 0x10) ? sh1 : sh2;
|
|
|
|
seed1 >>= sh1;
|
|
seed2 >>= sh2;
|
|
seed3 >>= sh1;
|
|
seed4 >>= sh2;
|
|
seed5 >>= sh1;
|
|
seed6 >>= sh2;
|
|
seed7 >>= sh1;
|
|
seed8 >>= sh2;
|
|
|
|
seed9 >>= sh3;
|
|
seed10 >>= sh3;
|
|
seed11 >>= sh3;
|
|
seed12 >>= sh3;
|
|
|
|
int a = seed1 * x + seed2 * y + seed11 * z + (rnum >> 14);
|
|
int b = seed3 * x + seed4 * y + seed12 * z + (rnum >> 10);
|
|
int c = seed5 * x + seed6 * y + seed9 * z + (rnum >> 6);
|
|
int d = seed7 * x + seed8 * y + seed10 * z + (rnum >> 2);
|
|
|
|
// Apply the saw
|
|
a &= 0x3F;
|
|
b &= 0x3F;
|
|
c &= 0x3F;
|
|
d &= 0x3F;
|
|
|
|
// Remove some of the components if we are to output < 4 partitions.
|
|
if (partition_count <= 3)
|
|
{
|
|
d = 0;
|
|
}
|
|
|
|
if (partition_count <= 2)
|
|
{
|
|
c = 0;
|
|
}
|
|
|
|
if (partition_count <= 1)
|
|
{
|
|
b = 0;
|
|
}
|
|
|
|
uint8_t partition;
|
|
if (a >= b && a >= c && a >= d)
|
|
{
|
|
partition = 0;
|
|
}
|
|
else if (b >= c && b >= d)
|
|
{
|
|
partition = 1;
|
|
}
|
|
else if (c >= d)
|
|
{
|
|
partition = 2;
|
|
}
|
|
else
|
|
{
|
|
partition = 3;
|
|
}
|
|
|
|
return partition;
|
|
}
|
|
|
|
/**
|
|
* @brief Generate a single partition info structure.
|
|
*
|
|
* @param[out] bsd The block size information.
|
|
* @param partition_count The partition count of this partitioning.
|
|
* @param partition_index The partition index / seed of this partitioning.
|
|
* @param partition_remap_index The remapped partition index of this partitioning.
|
|
* @param[out] pi The partition info structure to populate.
|
|
*
|
|
* @return True if this is a useful partition index, False if we can skip it.
|
|
*/
|
|
static bool generate_one_partition_info_entry(
|
|
block_size_descriptor& bsd,
|
|
unsigned int partition_count,
|
|
unsigned int partition_index,
|
|
unsigned int partition_remap_index,
|
|
partition_info& pi
|
|
) {
|
|
int texels_per_block = bsd.texel_count;
|
|
bool small_block = texels_per_block < 32;
|
|
|
|
uint8_t *partition_of_texel = pi.partition_of_texel;
|
|
|
|
// Assign texels to partitions
|
|
int texel_idx = 0;
|
|
int counts[BLOCK_MAX_PARTITIONS] { 0 };
|
|
for (unsigned int z = 0; z < bsd.zdim; z++)
|
|
{
|
|
for (unsigned int y = 0; y < bsd.ydim; y++)
|
|
{
|
|
for (unsigned int x = 0; x < bsd.xdim; x++)
|
|
{
|
|
uint8_t part = select_partition(partition_index, x, y, z, partition_count, small_block);
|
|
pi.texels_of_partition[part][counts[part]++] = static_cast<uint8_t>(texel_idx++);
|
|
*partition_of_texel++ = part;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Fill loop tail so we can overfetch later
|
|
for (unsigned int i = 0; i < partition_count; i++)
|
|
{
|
|
int ptex_count = counts[i];
|
|
int ptex_count_simd = round_up_to_simd_multiple_vla(ptex_count);
|
|
for (int j = ptex_count; j < ptex_count_simd; j++)
|
|
{
|
|
pi.texels_of_partition[i][j] = pi.texels_of_partition[i][ptex_count - 1];
|
|
}
|
|
}
|
|
|
|
// Populate the actual procedural partition count
|
|
if (counts[0] == 0)
|
|
{
|
|
pi.partition_count = 0;
|
|
}
|
|
else if (counts[1] == 0)
|
|
{
|
|
pi.partition_count = 1;
|
|
}
|
|
else if (counts[2] == 0)
|
|
{
|
|
pi.partition_count = 2;
|
|
}
|
|
else if (counts[3] == 0)
|
|
{
|
|
pi.partition_count = 3;
|
|
}
|
|
else
|
|
{
|
|
pi.partition_count = 4;
|
|
}
|
|
|
|
// Populate the partition index
|
|
pi.partition_index = static_cast<uint16_t>(partition_index);
|
|
|
|
// Populate the coverage bitmaps for 2/3/4 partitions
|
|
uint64_t* bitmaps { nullptr };
|
|
if (partition_count == 2)
|
|
{
|
|
bitmaps = bsd.coverage_bitmaps_2[partition_remap_index];
|
|
}
|
|
else if (partition_count == 3)
|
|
{
|
|
bitmaps = bsd.coverage_bitmaps_3[partition_remap_index];
|
|
}
|
|
else if (partition_count == 4)
|
|
{
|
|
bitmaps = bsd.coverage_bitmaps_4[partition_remap_index];
|
|
}
|
|
|
|
for (unsigned int i = 0; i < BLOCK_MAX_PARTITIONS; i++)
|
|
{
|
|
pi.partition_texel_count[i] = static_cast<uint8_t>(counts[i]);
|
|
}
|
|
|
|
// Valid partitionings have texels in all of the requested partitions
|
|
bool valid = pi.partition_count == partition_count;
|
|
|
|
if (bitmaps)
|
|
{
|
|
// Populate the partition coverage bitmap
|
|
for (unsigned int i = 0; i < partition_count; i++)
|
|
{
|
|
bitmaps[i] = 0ULL;
|
|
}
|
|
|
|
unsigned int texels_to_process = astc::min(bsd.texel_count, BLOCK_MAX_KMEANS_TEXELS);
|
|
for (unsigned int i = 0; i < texels_to_process; i++)
|
|
{
|
|
unsigned int idx = bsd.kmeans_texels[i];
|
|
bitmaps[pi.partition_of_texel[idx]] |= 1ULL << i;
|
|
}
|
|
}
|
|
|
|
return valid;
|
|
}
|
|
|
|
static void build_partition_table_for_one_partition_count(
|
|
block_size_descriptor& bsd,
|
|
bool can_omit_partitionings,
|
|
unsigned int partition_count_cutoff,
|
|
unsigned int partition_count,
|
|
partition_info* ptab,
|
|
uint64_t* canonical_patterns
|
|
) {
|
|
unsigned int next_index = 0;
|
|
bsd.partitioning_count_selected[partition_count - 1] = 0;
|
|
bsd.partitioning_count_all[partition_count - 1] = 0;
|
|
|
|
// Skip tables larger than config max partition count if we can omit modes
|
|
if (can_omit_partitionings && (partition_count > partition_count_cutoff))
|
|
{
|
|
return;
|
|
}
|
|
|
|
// Iterate through twice
|
|
// - Pass 0: Keep selected partitionings
|
|
// - Pass 1: Keep non-selected partitionings (skip if in omit mode)
|
|
unsigned int max_iter = can_omit_partitionings ? 1 : 2;
|
|
|
|
// Tracker for things we built in the first iteration
|
|
uint8_t build[BLOCK_MAX_PARTITIONINGS] { 0 };
|
|
for (unsigned int x = 0; x < max_iter; x++)
|
|
{
|
|
for (unsigned int i = 0; i < BLOCK_MAX_PARTITIONINGS; i++)
|
|
{
|
|
// Don't include things we built in the first pass
|
|
if ((x == 1) && build[i])
|
|
{
|
|
continue;
|
|
}
|
|
|
|
bool keep_useful = generate_one_partition_info_entry(bsd, partition_count, i, next_index, ptab[next_index]);
|
|
if ((x == 0) && !keep_useful)
|
|
{
|
|
continue;
|
|
}
|
|
|
|
generate_canonical_partitioning(bsd.texel_count, ptab[next_index].partition_of_texel, canonical_patterns + next_index * BIT_PATTERN_WORDS);
|
|
bool keep_canonical = true;
|
|
for (unsigned int j = 0; j < next_index; j++)
|
|
{
|
|
bool match = compare_canonical_partitionings(canonical_patterns + next_index * BIT_PATTERN_WORDS, canonical_patterns + j * BIT_PATTERN_WORDS);
|
|
if (match)
|
|
{
|
|
keep_canonical = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (keep_useful && keep_canonical)
|
|
{
|
|
if (x == 0)
|
|
{
|
|
bsd.partitioning_packed_index[partition_count - 2][i] = static_cast<uint16_t>(next_index);
|
|
bsd.partitioning_count_selected[partition_count - 1]++;
|
|
bsd.partitioning_count_all[partition_count - 1]++;
|
|
build[i] = 1;
|
|
next_index++;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (x == 1)
|
|
{
|
|
bsd.partitioning_packed_index[partition_count - 2][i] = static_cast<uint16_t>(next_index);
|
|
bsd.partitioning_count_all[partition_count - 1]++;
|
|
next_index++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* See header for documentation. */
|
|
void init_partition_tables(
|
|
block_size_descriptor& bsd,
|
|
bool can_omit_partitionings,
|
|
unsigned int partition_count_cutoff
|
|
) {
|
|
partition_info* par_tab2 = bsd.partitionings;
|
|
partition_info* par_tab3 = par_tab2 + BLOCK_MAX_PARTITIONINGS;
|
|
partition_info* par_tab4 = par_tab3 + BLOCK_MAX_PARTITIONINGS;
|
|
partition_info* par_tab1 = par_tab4 + BLOCK_MAX_PARTITIONINGS;
|
|
|
|
generate_one_partition_info_entry(bsd, 1, 0, 0, *par_tab1);
|
|
bsd.partitioning_count_selected[0] = 1;
|
|
bsd.partitioning_count_all[0] = 1;
|
|
|
|
uint64_t* canonical_patterns = new uint64_t[BLOCK_MAX_PARTITIONINGS * BIT_PATTERN_WORDS];
|
|
|
|
build_partition_table_for_one_partition_count(bsd, can_omit_partitionings, partition_count_cutoff, 2, par_tab2, canonical_patterns);
|
|
build_partition_table_for_one_partition_count(bsd, can_omit_partitionings, partition_count_cutoff, 3, par_tab3, canonical_patterns);
|
|
build_partition_table_for_one_partition_count(bsd, can_omit_partitionings, partition_count_cutoff, 4, par_tab4, canonical_patterns);
|
|
|
|
delete[] canonical_patterns;
|
|
}
|