godot/servers/physics/joints/generic_6dof_joint_sw.cpp
Rémi Verschelde d8223ffa75 Welcome in 2017, dear changelog reader!
That year should bring the long-awaited OpenGL ES 3.0 compatible renderer
with state-of-the-art rendering techniques tuned to work as low as middle
end handheld devices - without compromising with the possibilities given
for higher end desktop games of course. Great times ahead for the Godot
community and the gamers that will play our games!

(cherry picked from commit c7bc44d5ad)
2017-01-12 19:15:30 +01:00

726 lines
19 KiB
C++

/*************************************************************************/
/* generic_6dof_joint_sw.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* http://www.godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
/*
Adapted to Godot from the Bullet library.
See corresponding header file for licensing info.
*/
#include "generic_6dof_joint_sw.h"
#define GENERIC_D6_DISABLE_WARMSTARTING 1
real_t btGetMatrixElem(const Matrix3& mat, int index);
real_t btGetMatrixElem(const Matrix3& mat, int index)
{
int i = index%3;
int j = index/3;
return mat[i][j];
}
///MatrixToEulerXYZ from http://www.geometrictools.com/LibFoundation/Mathematics/Wm4Matrix3.inl.html
bool matrixToEulerXYZ(const Matrix3& mat,Vector3& xyz);
bool matrixToEulerXYZ(const Matrix3& mat,Vector3& xyz)
{
// // rot = cy*cz -cy*sz sy
// // cz*sx*sy+cx*sz cx*cz-sx*sy*sz -cy*sx
// // -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy
//
if (btGetMatrixElem(mat,2) < real_t(1.0))
{
if (btGetMatrixElem(mat,2) > real_t(-1.0))
{
xyz[0] = Math::atan2(-btGetMatrixElem(mat,5),btGetMatrixElem(mat,8));
xyz[1] = Math::asin(btGetMatrixElem(mat,2));
xyz[2] = Math::atan2(-btGetMatrixElem(mat,1),btGetMatrixElem(mat,0));
return true;
}
else
{
// WARNING. Not unique. XA - ZA = -atan2(r10,r11)
xyz[0] = -Math::atan2(btGetMatrixElem(mat,3),btGetMatrixElem(mat,4));
xyz[1] = -Math_PI*0.5;
xyz[2] = real_t(0.0);
return false;
}
}
else
{
// WARNING. Not unique. XAngle + ZAngle = atan2(r10,r11)
xyz[0] = Math::atan2(btGetMatrixElem(mat,3),btGetMatrixElem(mat,4));
xyz[1] = Math_PI*0.5;
xyz[2] = 0.0;
}
return false;
}
//////////////////////////// G6DOFRotationalLimitMotorSW ////////////////////////////////////
int G6DOFRotationalLimitMotorSW::testLimitValue(real_t test_value)
{
if(m_loLimit>m_hiLimit)
{
m_currentLimit = 0;//Free from violation
return 0;
}
if (test_value < m_loLimit)
{
m_currentLimit = 1;//low limit violation
m_currentLimitError = test_value - m_loLimit;
return 1;
}
else if (test_value> m_hiLimit)
{
m_currentLimit = 2;//High limit violation
m_currentLimitError = test_value - m_hiLimit;
return 2;
};
m_currentLimit = 0;//Free from violation
return 0;
}
real_t G6DOFRotationalLimitMotorSW::solveAngularLimits(
real_t timeStep,Vector3& axis,real_t jacDiagABInv,
BodySW * body0, BodySW * body1)
{
if (needApplyTorques()==false) return 0.0f;
real_t target_velocity = m_targetVelocity;
real_t maxMotorForce = m_maxMotorForce;
//current error correction
if (m_currentLimit!=0)
{
target_velocity = -m_ERP*m_currentLimitError/(timeStep);
maxMotorForce = m_maxLimitForce;
}
maxMotorForce *= timeStep;
// current velocity difference
Vector3 vel_diff = body0->get_angular_velocity();
if (body1)
{
vel_diff -= body1->get_angular_velocity();
}
real_t rel_vel = axis.dot(vel_diff);
// correction velocity
real_t motor_relvel = m_limitSoftness*(target_velocity - m_damping*rel_vel);
if ( motor_relvel < CMP_EPSILON && motor_relvel > -CMP_EPSILON )
{
return 0.0f;//no need for applying force
}
// correction impulse
real_t unclippedMotorImpulse = (1+m_bounce)*motor_relvel*jacDiagABInv;
// clip correction impulse
real_t clippedMotorImpulse;
///@todo: should clip against accumulated impulse
if (unclippedMotorImpulse>0.0f)
{
clippedMotorImpulse = unclippedMotorImpulse > maxMotorForce? maxMotorForce: unclippedMotorImpulse;
}
else
{
clippedMotorImpulse = unclippedMotorImpulse < -maxMotorForce ? -maxMotorForce: unclippedMotorImpulse;
}
// sort with accumulated impulses
real_t lo = real_t(-1e30);
real_t hi = real_t(1e30);
real_t oldaccumImpulse = m_accumulatedImpulse;
real_t sum = oldaccumImpulse + clippedMotorImpulse;
m_accumulatedImpulse = sum > hi ? real_t(0.) : sum < lo ? real_t(0.) : sum;
clippedMotorImpulse = m_accumulatedImpulse - oldaccumImpulse;
Vector3 motorImp = clippedMotorImpulse * axis;
body0->apply_torque_impulse(motorImp);
if (body1) body1->apply_torque_impulse(-motorImp);
return clippedMotorImpulse;
}
//////////////////////////// End G6DOFRotationalLimitMotorSW ////////////////////////////////////
//////////////////////////// G6DOFTranslationalLimitMotorSW ////////////////////////////////////
real_t G6DOFTranslationalLimitMotorSW::solveLinearAxis(
real_t timeStep,
real_t jacDiagABInv,
BodySW* body1,const Vector3 &pointInA,
BodySW* body2,const Vector3 &pointInB,
int limit_index,
const Vector3 & axis_normal_on_a,
const Vector3 & anchorPos)
{
///find relative velocity
// Vector3 rel_pos1 = pointInA - body1->get_transform().origin;
// Vector3 rel_pos2 = pointInB - body2->get_transform().origin;
Vector3 rel_pos1 = anchorPos - body1->get_transform().origin;
Vector3 rel_pos2 = anchorPos - body2->get_transform().origin;
Vector3 vel1 = body1->get_velocity_in_local_point(rel_pos1);
Vector3 vel2 = body2->get_velocity_in_local_point(rel_pos2);
Vector3 vel = vel1 - vel2;
real_t rel_vel = axis_normal_on_a.dot(vel);
/// apply displacement correction
//positional error (zeroth order error)
real_t depth = -(pointInA - pointInB).dot(axis_normal_on_a);
real_t lo = real_t(-1e30);
real_t hi = real_t(1e30);
real_t minLimit = m_lowerLimit[limit_index];
real_t maxLimit = m_upperLimit[limit_index];
//handle the limits
if (minLimit < maxLimit)
{
{
if (depth > maxLimit)
{
depth -= maxLimit;
lo = real_t(0.);
}
else
{
if (depth < minLimit)
{
depth -= minLimit;
hi = real_t(0.);
}
else
{
return 0.0f;
}
}
}
}
real_t normalImpulse= m_limitSoftness[limit_index]*(m_restitution[limit_index]*depth/timeStep - m_damping[limit_index]*rel_vel) * jacDiagABInv;
real_t oldNormalImpulse = m_accumulatedImpulse[limit_index];
real_t sum = oldNormalImpulse + normalImpulse;
m_accumulatedImpulse[limit_index] = sum > hi ? real_t(0.) : sum < lo ? real_t(0.) : sum;
normalImpulse = m_accumulatedImpulse[limit_index] - oldNormalImpulse;
Vector3 impulse_vector = axis_normal_on_a * normalImpulse;
body1->apply_impulse( rel_pos1, impulse_vector);
body2->apply_impulse( rel_pos2, -impulse_vector);
return normalImpulse;
}
//////////////////////////// G6DOFTranslationalLimitMotorSW ////////////////////////////////////
Generic6DOFJointSW::Generic6DOFJointSW(BodySW* rbA, BodySW* rbB, const Transform& frameInA, const Transform& frameInB, bool useLinearReferenceFrameA)
: JointSW(_arr,2)
, m_frameInA(frameInA)
, m_frameInB(frameInB),
m_useLinearReferenceFrameA(useLinearReferenceFrameA)
{
A=rbA;
B=rbB;
A->add_constraint(this,0);
B->add_constraint(this,1);
}
void Generic6DOFJointSW::calculateAngleInfo()
{
Matrix3 relative_frame = m_calculatedTransformA.basis.inverse()*m_calculatedTransformB.basis;
matrixToEulerXYZ(relative_frame,m_calculatedAxisAngleDiff);
// in euler angle mode we do not actually constrain the angular velocity
// along the axes axis[0] and axis[2] (although we do use axis[1]) :
//
// to get constrain w2-w1 along ...not
// ------ --------------------- ------
// d(angle[0])/dt = 0 ax[1] x ax[2] ax[0]
// d(angle[1])/dt = 0 ax[1]
// d(angle[2])/dt = 0 ax[0] x ax[1] ax[2]
//
// constraining w2-w1 along an axis 'a' means that a'*(w2-w1)=0.
// to prove the result for angle[0], write the expression for angle[0] from
// GetInfo1 then take the derivative. to prove this for angle[2] it is
// easier to take the euler rate expression for d(angle[2])/dt with respect
// to the components of w and set that to 0.
Vector3 axis0 = m_calculatedTransformB.basis.get_axis(0);
Vector3 axis2 = m_calculatedTransformA.basis.get_axis(2);
m_calculatedAxis[1] = axis2.cross(axis0);
m_calculatedAxis[0] = m_calculatedAxis[1].cross(axis2);
m_calculatedAxis[2] = axis0.cross(m_calculatedAxis[1]);
// if(m_debugDrawer)
// {
//
// char buff[300];
// sprintf(buff,"\n X: %.2f ; Y: %.2f ; Z: %.2f ",
// m_calculatedAxisAngleDiff[0],
// m_calculatedAxisAngleDiff[1],
// m_calculatedAxisAngleDiff[2]);
// m_debugDrawer->reportErrorWarning(buff);
// }
}
void Generic6DOFJointSW::calculateTransforms()
{
m_calculatedTransformA = A->get_transform() * m_frameInA;
m_calculatedTransformB = B->get_transform() * m_frameInB;
calculateAngleInfo();
}
void Generic6DOFJointSW::buildLinearJacobian(
JacobianEntrySW & jacLinear,const Vector3 & normalWorld,
const Vector3 & pivotAInW,const Vector3 & pivotBInW)
{
memnew_placement(&jacLinear, JacobianEntrySW(
A->get_transform().basis.transposed(),
B->get_transform().basis.transposed(),
pivotAInW - A->get_transform().origin,
pivotBInW - B->get_transform().origin,
normalWorld,
A->get_inv_inertia(),
A->get_inv_mass(),
B->get_inv_inertia(),
B->get_inv_mass()));
}
void Generic6DOFJointSW::buildAngularJacobian(
JacobianEntrySW & jacAngular,const Vector3 & jointAxisW)
{
memnew_placement(&jacAngular, JacobianEntrySW(jointAxisW,
A->get_transform().basis.transposed(),
B->get_transform().basis.transposed(),
A->get_inv_inertia(),
B->get_inv_inertia()));
}
bool Generic6DOFJointSW::testAngularLimitMotor(int axis_index)
{
real_t angle = m_calculatedAxisAngleDiff[axis_index];
//test limits
m_angularLimits[axis_index].testLimitValue(angle);
return m_angularLimits[axis_index].needApplyTorques();
}
bool Generic6DOFJointSW::setup(float p_step) {
// Clear accumulated impulses for the next simulation step
m_linearLimits.m_accumulatedImpulse=Vector3(real_t(0.), real_t(0.), real_t(0.));
int i;
for(i = 0; i < 3; i++)
{
m_angularLimits[i].m_accumulatedImpulse = real_t(0.);
}
//calculates transform
calculateTransforms();
// const Vector3& pivotAInW = m_calculatedTransformA.origin;
// const Vector3& pivotBInW = m_calculatedTransformB.origin;
calcAnchorPos();
Vector3 pivotAInW = m_AnchorPos;
Vector3 pivotBInW = m_AnchorPos;
// not used here
// Vector3 rel_pos1 = pivotAInW - A->get_transform().origin;
// Vector3 rel_pos2 = pivotBInW - B->get_transform().origin;
Vector3 normalWorld;
//linear part
for (i=0;i<3;i++)
{
if (m_linearLimits.enable_limit[i] && m_linearLimits.isLimited(i))
{
if (m_useLinearReferenceFrameA)
normalWorld = m_calculatedTransformA.basis.get_axis(i);
else
normalWorld = m_calculatedTransformB.basis.get_axis(i);
buildLinearJacobian(
m_jacLinear[i],normalWorld ,
pivotAInW,pivotBInW);
}
}
// angular part
for (i=0;i<3;i++)
{
//calculates error angle
if (m_angularLimits[i].m_enableLimit && testAngularLimitMotor(i))
{
normalWorld = this->getAxis(i);
// Create angular atom
buildAngularJacobian(m_jacAng[i],normalWorld);
}
}
return true;
}
void Generic6DOFJointSW::solve(real_t timeStep)
{
m_timeStep = timeStep;
//calculateTransforms();
int i;
// linear
Vector3 pointInA = m_calculatedTransformA.origin;
Vector3 pointInB = m_calculatedTransformB.origin;
real_t jacDiagABInv;
Vector3 linear_axis;
for (i=0;i<3;i++)
{
if (m_linearLimits.enable_limit[i] && m_linearLimits.isLimited(i))
{
jacDiagABInv = real_t(1.) / m_jacLinear[i].getDiagonal();
if (m_useLinearReferenceFrameA)
linear_axis = m_calculatedTransformA.basis.get_axis(i);
else
linear_axis = m_calculatedTransformB.basis.get_axis(i);
m_linearLimits.solveLinearAxis(
m_timeStep,
jacDiagABInv,
A,pointInA,
B,pointInB,
i,linear_axis, m_AnchorPos);
}
}
// angular
Vector3 angular_axis;
real_t angularJacDiagABInv;
for (i=0;i<3;i++)
{
if (m_angularLimits[i].m_enableLimit && m_angularLimits[i].needApplyTorques())
{
// get axis
angular_axis = getAxis(i);
angularJacDiagABInv = real_t(1.) / m_jacAng[i].getDiagonal();
m_angularLimits[i].solveAngularLimits(m_timeStep,angular_axis,angularJacDiagABInv, A,B);
}
}
}
void Generic6DOFJointSW::updateRHS(real_t timeStep)
{
(void)timeStep;
}
Vector3 Generic6DOFJointSW::getAxis(int axis_index) const
{
return m_calculatedAxis[axis_index];
}
real_t Generic6DOFJointSW::getAngle(int axis_index) const
{
return m_calculatedAxisAngleDiff[axis_index];
}
void Generic6DOFJointSW::calcAnchorPos(void)
{
real_t imA = A->get_inv_mass();
real_t imB = B->get_inv_mass();
real_t weight;
if(imB == real_t(0.0))
{
weight = real_t(1.0);
}
else
{
weight = imA / (imA + imB);
}
const Vector3& pA = m_calculatedTransformA.origin;
const Vector3& pB = m_calculatedTransformB.origin;
m_AnchorPos = pA * weight + pB * (real_t(1.0) - weight);
return;
} // Generic6DOFJointSW::calcAnchorPos()
void Generic6DOFJointSW::set_param(Vector3::Axis p_axis,PhysicsServer::G6DOFJointAxisParam p_param, float p_value) {
ERR_FAIL_INDEX(p_axis,3);
switch(p_param) {
case PhysicsServer::G6DOF_JOINT_LINEAR_LOWER_LIMIT: {
m_linearLimits.m_lowerLimit[p_axis]=p_value;
} break;
case PhysicsServer::G6DOF_JOINT_LINEAR_UPPER_LIMIT: {
m_linearLimits.m_upperLimit[p_axis]=p_value;
} break;
case PhysicsServer::G6DOF_JOINT_LINEAR_LIMIT_SOFTNESS: {
m_linearLimits.m_limitSoftness[p_axis]=p_value;
} break;
case PhysicsServer::G6DOF_JOINT_LINEAR_RESTITUTION: {
m_linearLimits.m_restitution[p_axis]=p_value;
} break;
case PhysicsServer::G6DOF_JOINT_LINEAR_DAMPING: {
m_linearLimits.m_damping[p_axis]=p_value;
} break;
case PhysicsServer::G6DOF_JOINT_ANGULAR_LOWER_LIMIT: {
m_angularLimits[p_axis].m_loLimit=p_value;
} break;
case PhysicsServer::G6DOF_JOINT_ANGULAR_UPPER_LIMIT: {
m_angularLimits[p_axis].m_hiLimit=p_value;
} break;
case PhysicsServer::G6DOF_JOINT_ANGULAR_LIMIT_SOFTNESS: {
m_angularLimits[p_axis].m_limitSoftness=p_value;
} break;
case PhysicsServer::G6DOF_JOINT_ANGULAR_DAMPING: {
m_angularLimits[p_axis].m_damping=p_value;
} break;
case PhysicsServer::G6DOF_JOINT_ANGULAR_RESTITUTION: {
m_angularLimits[p_axis].m_bounce=p_value;
} break;
case PhysicsServer::G6DOF_JOINT_ANGULAR_FORCE_LIMIT: {
m_angularLimits[p_axis].m_maxLimitForce=p_value;
} break;
case PhysicsServer::G6DOF_JOINT_ANGULAR_ERP: {
m_angularLimits[p_axis].m_ERP=p_value;
} break;
case PhysicsServer::G6DOF_JOINT_ANGULAR_MOTOR_TARGET_VELOCITY: {
m_angularLimits[p_axis].m_targetVelocity=p_value;
} break;
case PhysicsServer::G6DOF_JOINT_ANGULAR_MOTOR_FORCE_LIMIT: {
m_angularLimits[p_axis].m_maxLimitForce=p_value;
} break;
}
}
float Generic6DOFJointSW::get_param(Vector3::Axis p_axis,PhysicsServer::G6DOFJointAxisParam p_param) const{
ERR_FAIL_INDEX_V(p_axis,3,0);
switch(p_param) {
case PhysicsServer::G6DOF_JOINT_LINEAR_LOWER_LIMIT: {
return m_linearLimits.m_lowerLimit[p_axis];
} break;
case PhysicsServer::G6DOF_JOINT_LINEAR_UPPER_LIMIT: {
return m_linearLimits.m_upperLimit[p_axis];
} break;
case PhysicsServer::G6DOF_JOINT_LINEAR_LIMIT_SOFTNESS: {
return m_linearLimits.m_limitSoftness[p_axis];
} break;
case PhysicsServer::G6DOF_JOINT_LINEAR_RESTITUTION: {
return m_linearLimits.m_restitution[p_axis];
} break;
case PhysicsServer::G6DOF_JOINT_LINEAR_DAMPING: {
return m_linearLimits.m_damping[p_axis];
} break;
case PhysicsServer::G6DOF_JOINT_ANGULAR_LOWER_LIMIT: {
return m_angularLimits[p_axis].m_loLimit;
} break;
case PhysicsServer::G6DOF_JOINT_ANGULAR_UPPER_LIMIT: {
return m_angularLimits[p_axis].m_hiLimit;
} break;
case PhysicsServer::G6DOF_JOINT_ANGULAR_LIMIT_SOFTNESS: {
return m_angularLimits[p_axis].m_limitSoftness;
} break;
case PhysicsServer::G6DOF_JOINT_ANGULAR_DAMPING: {
return m_angularLimits[p_axis].m_damping;
} break;
case PhysicsServer::G6DOF_JOINT_ANGULAR_RESTITUTION: {
return m_angularLimits[p_axis].m_bounce;
} break;
case PhysicsServer::G6DOF_JOINT_ANGULAR_FORCE_LIMIT: {
return m_angularLimits[p_axis].m_maxLimitForce;
} break;
case PhysicsServer::G6DOF_JOINT_ANGULAR_ERP: {
return m_angularLimits[p_axis].m_ERP;
} break;
case PhysicsServer::G6DOF_JOINT_ANGULAR_MOTOR_TARGET_VELOCITY: {
return m_angularLimits[p_axis].m_targetVelocity;
} break;
case PhysicsServer::G6DOF_JOINT_ANGULAR_MOTOR_FORCE_LIMIT: {
return m_angularLimits[p_axis].m_maxLimitForce;
} break;
}
return 0;
}
void Generic6DOFJointSW::set_flag(Vector3::Axis p_axis,PhysicsServer::G6DOFJointAxisFlag p_flag, bool p_value){
ERR_FAIL_INDEX(p_axis,3);
switch(p_flag) {
case PhysicsServer::G6DOF_JOINT_FLAG_ENABLE_LINEAR_LIMIT: {
m_linearLimits.enable_limit[p_axis]=p_value;
} break;
case PhysicsServer::G6DOF_JOINT_FLAG_ENABLE_ANGULAR_LIMIT: {
m_angularLimits[p_axis].m_enableLimit=p_value;
} break;
case PhysicsServer::G6DOF_JOINT_FLAG_ENABLE_MOTOR: {
m_angularLimits[p_axis].m_enableMotor=p_value;
} break;
}
}
bool Generic6DOFJointSW::get_flag(Vector3::Axis p_axis,PhysicsServer::G6DOFJointAxisFlag p_flag) const{
ERR_FAIL_INDEX_V(p_axis,3,0);
switch(p_flag) {
case PhysicsServer::G6DOF_JOINT_FLAG_ENABLE_LINEAR_LIMIT: {
return m_linearLimits.enable_limit[p_axis];
} break;
case PhysicsServer::G6DOF_JOINT_FLAG_ENABLE_ANGULAR_LIMIT: {
return m_angularLimits[p_axis].m_enableLimit;
} break;
case PhysicsServer::G6DOF_JOINT_FLAG_ENABLE_MOTOR: {
return m_angularLimits[p_axis].m_enableMotor;
} break;
}
return 0;
}