godot/thirdparty/bullet/Bullet3OpenCL/RigidBody/b3GpuJacobiContactSolver.cpp

1306 lines
44 KiB
C++

#include "b3GpuJacobiContactSolver.h"
#include "Bullet3Collision/NarrowPhaseCollision/b3Contact4.h"
#include "Bullet3Common/b3AlignedObjectArray.h"
#include "Bullet3OpenCL/ParallelPrimitives/b3FillCL.h" //b3Int2
class b3Vector3;
#include "Bullet3OpenCL/ParallelPrimitives/b3RadixSort32CL.h"
#include "Bullet3OpenCL/ParallelPrimitives/b3PrefixScanCL.h"
#include "Bullet3OpenCL/ParallelPrimitives/b3LauncherCL.h"
#include "Bullet3OpenCL/Initialize/b3OpenCLUtils.h"
#include "Bullet3OpenCL/RigidBody/kernels/solverUtils.h"
#include "Bullet3Common/b3Logging.h"
#include "b3GpuConstraint4.h"
#include "Bullet3Common/shared/b3Int2.h"
#include "Bullet3Common/shared/b3Int4.h"
#define SOLVER_UTILS_KERNEL_PATH "src/Bullet3OpenCL/RigidBody/kernels/solverUtils.cl"
struct b3GpuJacobiSolverInternalData
{
//btRadixSort32CL* m_sort32;
//btBoundSearchCL* m_search;
b3PrefixScanCL* m_scan;
b3OpenCLArray<unsigned int>* m_bodyCount;
b3OpenCLArray<b3Int2>* m_contactConstraintOffsets;
b3OpenCLArray<unsigned int>* m_offsetSplitBodies;
b3OpenCLArray<b3Vector3>* m_deltaLinearVelocities;
b3OpenCLArray<b3Vector3>* m_deltaAngularVelocities;
b3AlignedObjectArray<b3Vector3> m_deltaLinearVelocitiesCPU;
b3AlignedObjectArray<b3Vector3> m_deltaAngularVelocitiesCPU;
b3OpenCLArray<b3GpuConstraint4>* m_contactConstraints;
b3FillCL* m_filler;
cl_kernel m_countBodiesKernel;
cl_kernel m_contactToConstraintSplitKernel;
cl_kernel m_clearVelocitiesKernel;
cl_kernel m_averageVelocitiesKernel;
cl_kernel m_updateBodyVelocitiesKernel;
cl_kernel m_solveContactKernel;
cl_kernel m_solveFrictionKernel;
};
b3GpuJacobiContactSolver::b3GpuJacobiContactSolver(cl_context ctx, cl_device_id device, cl_command_queue queue, int pairCapacity)
: m_context(ctx),
m_device(device),
m_queue(queue)
{
m_data = new b3GpuJacobiSolverInternalData;
m_data->m_scan = new b3PrefixScanCL(m_context, m_device, m_queue);
m_data->m_bodyCount = new b3OpenCLArray<unsigned int>(m_context, m_queue);
m_data->m_filler = new b3FillCL(m_context, m_device, m_queue);
m_data->m_contactConstraintOffsets = new b3OpenCLArray<b3Int2>(m_context, m_queue);
m_data->m_offsetSplitBodies = new b3OpenCLArray<unsigned int>(m_context, m_queue);
m_data->m_contactConstraints = new b3OpenCLArray<b3GpuConstraint4>(m_context, m_queue);
m_data->m_deltaLinearVelocities = new b3OpenCLArray<b3Vector3>(m_context, m_queue);
m_data->m_deltaAngularVelocities = new b3OpenCLArray<b3Vector3>(m_context, m_queue);
cl_int pErrNum;
const char* additionalMacros = "";
const char* solverUtilsSource = solverUtilsCL;
{
cl_program solverUtilsProg = b3OpenCLUtils::compileCLProgramFromString(ctx, device, solverUtilsSource, &pErrNum, additionalMacros, SOLVER_UTILS_KERNEL_PATH);
b3Assert(solverUtilsProg);
m_data->m_countBodiesKernel = b3OpenCLUtils::compileCLKernelFromString(ctx, device, solverUtilsSource, "CountBodiesKernel", &pErrNum, solverUtilsProg, additionalMacros);
b3Assert(m_data->m_countBodiesKernel);
m_data->m_contactToConstraintSplitKernel = b3OpenCLUtils::compileCLKernelFromString(ctx, device, solverUtilsSource, "ContactToConstraintSplitKernel", &pErrNum, solverUtilsProg, additionalMacros);
b3Assert(m_data->m_contactToConstraintSplitKernel);
m_data->m_clearVelocitiesKernel = b3OpenCLUtils::compileCLKernelFromString(ctx, device, solverUtilsSource, "ClearVelocitiesKernel", &pErrNum, solverUtilsProg, additionalMacros);
b3Assert(m_data->m_clearVelocitiesKernel);
m_data->m_averageVelocitiesKernel = b3OpenCLUtils::compileCLKernelFromString(ctx, device, solverUtilsSource, "AverageVelocitiesKernel", &pErrNum, solverUtilsProg, additionalMacros);
b3Assert(m_data->m_averageVelocitiesKernel);
m_data->m_updateBodyVelocitiesKernel = b3OpenCLUtils::compileCLKernelFromString(ctx, device, solverUtilsSource, "UpdateBodyVelocitiesKernel", &pErrNum, solverUtilsProg, additionalMacros);
b3Assert(m_data->m_updateBodyVelocitiesKernel);
m_data->m_solveContactKernel = b3OpenCLUtils::compileCLKernelFromString(ctx, device, solverUtilsSource, "SolveContactJacobiKernel", &pErrNum, solverUtilsProg, additionalMacros);
b3Assert(m_data->m_solveContactKernel);
m_data->m_solveFrictionKernel = b3OpenCLUtils::compileCLKernelFromString(ctx, device, solverUtilsSource, "SolveFrictionJacobiKernel", &pErrNum, solverUtilsProg, additionalMacros);
b3Assert(m_data->m_solveFrictionKernel);
}
}
b3GpuJacobiContactSolver::~b3GpuJacobiContactSolver()
{
clReleaseKernel(m_data->m_solveContactKernel);
clReleaseKernel(m_data->m_solveFrictionKernel);
clReleaseKernel(m_data->m_countBodiesKernel);
clReleaseKernel(m_data->m_contactToConstraintSplitKernel);
clReleaseKernel(m_data->m_averageVelocitiesKernel);
clReleaseKernel(m_data->m_updateBodyVelocitiesKernel);
clReleaseKernel(m_data->m_clearVelocitiesKernel);
delete m_data->m_deltaLinearVelocities;
delete m_data->m_deltaAngularVelocities;
delete m_data->m_contactConstraints;
delete m_data->m_offsetSplitBodies;
delete m_data->m_contactConstraintOffsets;
delete m_data->m_bodyCount;
delete m_data->m_filler;
delete m_data->m_scan;
delete m_data;
}
b3Vector3 make_float4(float v)
{
return b3MakeVector3(v, v, v);
}
b3Vector4 make_float4(float x, float y, float z, float w)
{
return b3MakeVector4(x, y, z, w);
}
static inline float calcRelVel(const b3Vector3& l0, const b3Vector3& l1, const b3Vector3& a0, const b3Vector3& a1,
const b3Vector3& linVel0, const b3Vector3& angVel0, const b3Vector3& linVel1, const b3Vector3& angVel1)
{
return b3Dot(l0, linVel0) + b3Dot(a0, angVel0) + b3Dot(l1, linVel1) + b3Dot(a1, angVel1);
}
static inline void setLinearAndAngular(const b3Vector3& n, const b3Vector3& r0, const b3Vector3& r1,
b3Vector3& linear, b3Vector3& angular0, b3Vector3& angular1)
{
linear = n;
angular0 = b3Cross(r0, n);
angular1 = -b3Cross(r1, n);
}
static __inline void solveContact(b3GpuConstraint4& cs,
const b3Vector3& posA, const b3Vector3& linVelARO, const b3Vector3& angVelARO, float invMassA, const b3Matrix3x3& invInertiaA,
const b3Vector3& posB, const b3Vector3& linVelBRO, const b3Vector3& angVelBRO, float invMassB, const b3Matrix3x3& invInertiaB,
float maxRambdaDt[4], float minRambdaDt[4], b3Vector3& dLinVelA, b3Vector3& dAngVelA, b3Vector3& dLinVelB, b3Vector3& dAngVelB)
{
for (int ic = 0; ic < 4; ic++)
{
// dont necessary because this makes change to 0
if (cs.m_jacCoeffInv[ic] == 0.f) continue;
{
b3Vector3 angular0, angular1, linear;
b3Vector3 r0 = cs.m_worldPos[ic] - (b3Vector3&)posA;
b3Vector3 r1 = cs.m_worldPos[ic] - (b3Vector3&)posB;
setLinearAndAngular((const b3Vector3&)cs.m_linear, (const b3Vector3&)r0, (const b3Vector3&)r1, linear, angular0, angular1);
float rambdaDt = calcRelVel((const b3Vector3&)cs.m_linear, (const b3Vector3&)-cs.m_linear, angular0, angular1,
linVelARO + dLinVelA, angVelARO + dAngVelA, linVelBRO + dLinVelB, angVelBRO + dAngVelB) +
cs.m_b[ic];
rambdaDt *= cs.m_jacCoeffInv[ic];
{
float prevSum = cs.m_appliedRambdaDt[ic];
float updated = prevSum;
updated += rambdaDt;
updated = b3Max(updated, minRambdaDt[ic]);
updated = b3Min(updated, maxRambdaDt[ic]);
rambdaDt = updated - prevSum;
cs.m_appliedRambdaDt[ic] = updated;
}
b3Vector3 linImp0 = invMassA * linear * rambdaDt;
b3Vector3 linImp1 = invMassB * (-linear) * rambdaDt;
b3Vector3 angImp0 = (invInertiaA * angular0) * rambdaDt;
b3Vector3 angImp1 = (invInertiaB * angular1) * rambdaDt;
#ifdef _WIN32
b3Assert(_finite(linImp0.getX()));
b3Assert(_finite(linImp1.getX()));
#endif
if (invMassA)
{
dLinVelA += linImp0;
dAngVelA += angImp0;
}
if (invMassB)
{
dLinVelB += linImp1;
dAngVelB += angImp1;
}
}
}
}
void solveContact3(b3GpuConstraint4* cs,
b3Vector3* posAPtr, b3Vector3* linVelA, b3Vector3* angVelA, float invMassA, const b3Matrix3x3& invInertiaA,
b3Vector3* posBPtr, b3Vector3* linVelB, b3Vector3* angVelB, float invMassB, const b3Matrix3x3& invInertiaB,
b3Vector3* dLinVelA, b3Vector3* dAngVelA, b3Vector3* dLinVelB, b3Vector3* dAngVelB)
{
float minRambdaDt = 0;
float maxRambdaDt = FLT_MAX;
for (int ic = 0; ic < 4; ic++)
{
if (cs->m_jacCoeffInv[ic] == 0.f) continue;
b3Vector3 angular0, angular1, linear;
b3Vector3 r0 = cs->m_worldPos[ic] - *posAPtr;
b3Vector3 r1 = cs->m_worldPos[ic] - *posBPtr;
setLinearAndAngular(cs->m_linear, r0, r1, linear, angular0, angular1);
float rambdaDt = calcRelVel(cs->m_linear, -cs->m_linear, angular0, angular1,
*linVelA + *dLinVelA, *angVelA + *dAngVelA, *linVelB + *dLinVelB, *angVelB + *dAngVelB) +
cs->m_b[ic];
rambdaDt *= cs->m_jacCoeffInv[ic];
{
float prevSum = cs->m_appliedRambdaDt[ic];
float updated = prevSum;
updated += rambdaDt;
updated = b3Max(updated, minRambdaDt);
updated = b3Min(updated, maxRambdaDt);
rambdaDt = updated - prevSum;
cs->m_appliedRambdaDt[ic] = updated;
}
b3Vector3 linImp0 = invMassA * linear * rambdaDt;
b3Vector3 linImp1 = invMassB * (-linear) * rambdaDt;
b3Vector3 angImp0 = (invInertiaA * angular0) * rambdaDt;
b3Vector3 angImp1 = (invInertiaB * angular1) * rambdaDt;
if (invMassA)
{
*dLinVelA += linImp0;
*dAngVelA += angImp0;
}
if (invMassB)
{
*dLinVelB += linImp1;
*dAngVelB += angImp1;
}
}
}
static inline void solveFriction(b3GpuConstraint4& cs,
const b3Vector3& posA, const b3Vector3& linVelARO, const b3Vector3& angVelARO, float invMassA, const b3Matrix3x3& invInertiaA,
const b3Vector3& posB, const b3Vector3& linVelBRO, const b3Vector3& angVelBRO, float invMassB, const b3Matrix3x3& invInertiaB,
float maxRambdaDt[4], float minRambdaDt[4], b3Vector3& dLinVelA, b3Vector3& dAngVelA, b3Vector3& dLinVelB, b3Vector3& dAngVelB)
{
b3Vector3 linVelA = linVelARO + dLinVelA;
b3Vector3 linVelB = linVelBRO + dLinVelB;
b3Vector3 angVelA = angVelARO + dAngVelA;
b3Vector3 angVelB = angVelBRO + dAngVelB;
if (cs.m_fJacCoeffInv[0] == 0 && cs.m_fJacCoeffInv[0] == 0) return;
const b3Vector3& center = (const b3Vector3&)cs.m_center;
b3Vector3 n = -(const b3Vector3&)cs.m_linear;
b3Vector3 tangent[2];
#if 1
b3PlaneSpace1(n, tangent[0], tangent[1]);
#else
b3Vector3 r = cs.m_worldPos[0] - center;
tangent[0] = cross3(n, r);
tangent[1] = cross3(tangent[0], n);
tangent[0] = normalize3(tangent[0]);
tangent[1] = normalize3(tangent[1]);
#endif
b3Vector3 angular0, angular1, linear;
b3Vector3 r0 = center - posA;
b3Vector3 r1 = center - posB;
for (int i = 0; i < 2; i++)
{
setLinearAndAngular(tangent[i], r0, r1, linear, angular0, angular1);
float rambdaDt = calcRelVel(linear, -linear, angular0, angular1,
linVelA, angVelA, linVelB, angVelB);
rambdaDt *= cs.m_fJacCoeffInv[i];
{
float prevSum = cs.m_fAppliedRambdaDt[i];
float updated = prevSum;
updated += rambdaDt;
updated = b3Max(updated, minRambdaDt[i]);
updated = b3Min(updated, maxRambdaDt[i]);
rambdaDt = updated - prevSum;
cs.m_fAppliedRambdaDt[i] = updated;
}
b3Vector3 linImp0 = invMassA * linear * rambdaDt;
b3Vector3 linImp1 = invMassB * (-linear) * rambdaDt;
b3Vector3 angImp0 = (invInertiaA * angular0) * rambdaDt;
b3Vector3 angImp1 = (invInertiaB * angular1) * rambdaDt;
#ifdef _WIN32
b3Assert(_finite(linImp0.getX()));
b3Assert(_finite(linImp1.getX()));
#endif
if (invMassA)
{
dLinVelA += linImp0;
dAngVelA += angImp0;
}
if (invMassB)
{
dLinVelB += linImp1;
dAngVelB += angImp1;
}
}
{ // angular damping for point constraint
b3Vector3 ab = (posB - posA).normalized();
b3Vector3 ac = (center - posA).normalized();
if (b3Dot(ab, ac) > 0.95f || (invMassA == 0.f || invMassB == 0.f))
{
float angNA = b3Dot(n, angVelA);
float angNB = b3Dot(n, angVelB);
if (invMassA)
dAngVelA -= (angNA * 0.1f) * n;
if (invMassB)
dAngVelB -= (angNB * 0.1f) * n;
}
}
}
float calcJacCoeff(const b3Vector3& linear0, const b3Vector3& linear1, const b3Vector3& angular0, const b3Vector3& angular1,
float invMass0, const b3Matrix3x3* invInertia0, float invMass1, const b3Matrix3x3* invInertia1, float countA, float countB)
{
// linear0,1 are normlized
float jmj0 = invMass0; //dot3F4(linear0, linear0)*invMass0;
float jmj1 = b3Dot(mtMul3(angular0, *invInertia0), angular0);
float jmj2 = invMass1; //dot3F4(linear1, linear1)*invMass1;
float jmj3 = b3Dot(mtMul3(angular1, *invInertia1), angular1);
return -1.f / ((jmj0 + jmj1) * countA + (jmj2 + jmj3) * countB);
// return -1.f/((jmj0+jmj1)+(jmj2+jmj3));
}
void setConstraint4(const b3Vector3& posA, const b3Vector3& linVelA, const b3Vector3& angVelA, float invMassA, const b3Matrix3x3& invInertiaA,
const b3Vector3& posB, const b3Vector3& linVelB, const b3Vector3& angVelB, float invMassB, const b3Matrix3x3& invInertiaB,
b3Contact4* src, float dt, float positionDrift, float positionConstraintCoeff, float countA, float countB,
b3GpuConstraint4* dstC)
{
dstC->m_bodyA = abs(src->m_bodyAPtrAndSignBit);
dstC->m_bodyB = abs(src->m_bodyBPtrAndSignBit);
float dtInv = 1.f / dt;
for (int ic = 0; ic < 4; ic++)
{
dstC->m_appliedRambdaDt[ic] = 0.f;
}
dstC->m_fJacCoeffInv[0] = dstC->m_fJacCoeffInv[1] = 0.f;
dstC->m_linear = src->m_worldNormalOnB;
dstC->m_linear[3] = 0.7f; //src->getFrictionCoeff() );
for (int ic = 0; ic < 4; ic++)
{
b3Vector3 r0 = src->m_worldPosB[ic] - posA;
b3Vector3 r1 = src->m_worldPosB[ic] - posB;
if (ic >= src->m_worldNormalOnB[3]) //npoints
{
dstC->m_jacCoeffInv[ic] = 0.f;
continue;
}
float relVelN;
{
b3Vector3 linear, angular0, angular1;
setLinearAndAngular(src->m_worldNormalOnB, r0, r1, linear, angular0, angular1);
dstC->m_jacCoeffInv[ic] = calcJacCoeff(linear, -linear, angular0, angular1,
invMassA, &invInertiaA, invMassB, &invInertiaB, countA, countB);
relVelN = calcRelVel(linear, -linear, angular0, angular1,
linVelA, angVelA, linVelB, angVelB);
float e = 0.f; //src->getRestituitionCoeff();
if (relVelN * relVelN < 0.004f)
{
e = 0.f;
}
dstC->m_b[ic] = e * relVelN;
//float penetration = src->m_worldPos[ic].w;
dstC->m_b[ic] += (src->m_worldPosB[ic][3] + positionDrift) * positionConstraintCoeff * dtInv;
dstC->m_appliedRambdaDt[ic] = 0.f;
}
}
if (src->m_worldNormalOnB[3] > 0) //npoints
{ // prepare friction
b3Vector3 center = make_float4(0.f);
for (int i = 0; i < src->m_worldNormalOnB[3]; i++)
center += src->m_worldPosB[i];
center /= (float)src->m_worldNormalOnB[3];
b3Vector3 tangent[2];
b3PlaneSpace1(src->m_worldNormalOnB, tangent[0], tangent[1]);
b3Vector3 r[2];
r[0] = center - posA;
r[1] = center - posB;
for (int i = 0; i < 2; i++)
{
b3Vector3 linear, angular0, angular1;
setLinearAndAngular(tangent[i], r[0], r[1], linear, angular0, angular1);
dstC->m_fJacCoeffInv[i] = calcJacCoeff(linear, -linear, angular0, angular1,
invMassA, &invInertiaA, invMassB, &invInertiaB, countA, countB);
dstC->m_fAppliedRambdaDt[i] = 0.f;
}
dstC->m_center = center;
}
for (int i = 0; i < 4; i++)
{
if (i < src->m_worldNormalOnB[3])
{
dstC->m_worldPos[i] = src->m_worldPosB[i];
}
else
{
dstC->m_worldPos[i] = make_float4(0.f);
}
}
}
void ContactToConstraintKernel(b3Contact4* gContact, b3RigidBodyData* gBodies, b3InertiaData* gShapes, b3GpuConstraint4* gConstraintOut, int nContacts,
float dt,
float positionDrift,
float positionConstraintCoeff, int gIdx, b3AlignedObjectArray<unsigned int>& bodyCount)
{
//int gIdx = 0;//GET_GLOBAL_IDX;
if (gIdx < nContacts)
{
int aIdx = abs(gContact[gIdx].m_bodyAPtrAndSignBit);
int bIdx = abs(gContact[gIdx].m_bodyBPtrAndSignBit);
b3Vector3 posA = gBodies[aIdx].m_pos;
b3Vector3 linVelA = gBodies[aIdx].m_linVel;
b3Vector3 angVelA = gBodies[aIdx].m_angVel;
float invMassA = gBodies[aIdx].m_invMass;
b3Matrix3x3 invInertiaA = gShapes[aIdx].m_invInertiaWorld; //.m_invInertia;
b3Vector3 posB = gBodies[bIdx].m_pos;
b3Vector3 linVelB = gBodies[bIdx].m_linVel;
b3Vector3 angVelB = gBodies[bIdx].m_angVel;
float invMassB = gBodies[bIdx].m_invMass;
b3Matrix3x3 invInertiaB = gShapes[bIdx].m_invInertiaWorld; //m_invInertia;
b3GpuConstraint4 cs;
float countA = invMassA ? (float)(bodyCount[aIdx]) : 1;
float countB = invMassB ? (float)(bodyCount[bIdx]) : 1;
setConstraint4(posA, linVelA, angVelA, invMassA, invInertiaA, posB, linVelB, angVelB, invMassB, invInertiaB,
&gContact[gIdx], dt, positionDrift, positionConstraintCoeff, countA, countB,
&cs);
cs.m_batchIdx = gContact[gIdx].m_batchIdx;
gConstraintOut[gIdx] = cs;
}
}
void b3GpuJacobiContactSolver::solveGroupHost(b3RigidBodyData* bodies, b3InertiaData* inertias, int numBodies, b3Contact4* manifoldPtr, int numManifolds, const b3JacobiSolverInfo& solverInfo)
{
B3_PROFILE("b3GpuJacobiContactSolver::solveGroup");
b3AlignedObjectArray<unsigned int> bodyCount;
bodyCount.resize(numBodies);
for (int i = 0; i < numBodies; i++)
bodyCount[i] = 0;
b3AlignedObjectArray<b3Int2> contactConstraintOffsets;
contactConstraintOffsets.resize(numManifolds);
for (int i = 0; i < numManifolds; i++)
{
int pa = manifoldPtr[i].m_bodyAPtrAndSignBit;
int pb = manifoldPtr[i].m_bodyBPtrAndSignBit;
bool isFixedA = (pa < 0) || (pa == solverInfo.m_fixedBodyIndex);
bool isFixedB = (pb < 0) || (pb == solverInfo.m_fixedBodyIndex);
int bodyIndexA = manifoldPtr[i].getBodyA();
int bodyIndexB = manifoldPtr[i].getBodyB();
if (!isFixedA)
{
contactConstraintOffsets[i].x = bodyCount[bodyIndexA];
bodyCount[bodyIndexA]++;
}
if (!isFixedB)
{
contactConstraintOffsets[i].y = bodyCount[bodyIndexB];
bodyCount[bodyIndexB]++;
}
}
b3AlignedObjectArray<unsigned int> offsetSplitBodies;
offsetSplitBodies.resize(numBodies);
unsigned int totalNumSplitBodies;
m_data->m_scan->executeHost(bodyCount, offsetSplitBodies, numBodies, &totalNumSplitBodies);
int numlastBody = bodyCount[numBodies - 1];
totalNumSplitBodies += numlastBody;
printf("totalNumSplitBodies = %d\n", totalNumSplitBodies);
b3AlignedObjectArray<b3GpuConstraint4> contactConstraints;
contactConstraints.resize(numManifolds);
for (int i = 0; i < numManifolds; i++)
{
ContactToConstraintKernel(&manifoldPtr[0], bodies, inertias, &contactConstraints[0], numManifolds,
solverInfo.m_deltaTime,
solverInfo.m_positionDrift,
solverInfo.m_positionConstraintCoeff,
i, bodyCount);
}
int maxIter = solverInfo.m_numIterations;
b3AlignedObjectArray<b3Vector3> deltaLinearVelocities;
b3AlignedObjectArray<b3Vector3> deltaAngularVelocities;
deltaLinearVelocities.resize(totalNumSplitBodies);
deltaAngularVelocities.resize(totalNumSplitBodies);
for (unsigned int i = 0; i < totalNumSplitBodies; i++)
{
deltaLinearVelocities[i].setZero();
deltaAngularVelocities[i].setZero();
}
for (int iter = 0; iter < maxIter; iter++)
{
int i = 0;
for (i = 0; i < numManifolds; i++)
{
//float frictionCoeff = contactConstraints[i].getFrictionCoeff();
int aIdx = (int)contactConstraints[i].m_bodyA;
int bIdx = (int)contactConstraints[i].m_bodyB;
b3RigidBodyData& bodyA = bodies[aIdx];
b3RigidBodyData& bodyB = bodies[bIdx];
b3Vector3 zero = b3MakeVector3(0, 0, 0);
b3Vector3* dlvAPtr = &zero;
b3Vector3* davAPtr = &zero;
b3Vector3* dlvBPtr = &zero;
b3Vector3* davBPtr = &zero;
if (bodyA.m_invMass)
{
int bodyOffsetA = offsetSplitBodies[aIdx];
int constraintOffsetA = contactConstraintOffsets[i].x;
int splitIndexA = bodyOffsetA + constraintOffsetA;
dlvAPtr = &deltaLinearVelocities[splitIndexA];
davAPtr = &deltaAngularVelocities[splitIndexA];
}
if (bodyB.m_invMass)
{
int bodyOffsetB = offsetSplitBodies[bIdx];
int constraintOffsetB = contactConstraintOffsets[i].y;
int splitIndexB = bodyOffsetB + constraintOffsetB;
dlvBPtr = &deltaLinearVelocities[splitIndexB];
davBPtr = &deltaAngularVelocities[splitIndexB];
}
{
float maxRambdaDt[4] = {FLT_MAX, FLT_MAX, FLT_MAX, FLT_MAX};
float minRambdaDt[4] = {0.f, 0.f, 0.f, 0.f};
solveContact(contactConstraints[i], (b3Vector3&)bodyA.m_pos, (b3Vector3&)bodyA.m_linVel, (b3Vector3&)bodyA.m_angVel, bodyA.m_invMass, inertias[aIdx].m_invInertiaWorld,
(b3Vector3&)bodyB.m_pos, (b3Vector3&)bodyB.m_linVel, (b3Vector3&)bodyB.m_angVel, bodyB.m_invMass, inertias[bIdx].m_invInertiaWorld,
maxRambdaDt, minRambdaDt, *dlvAPtr, *davAPtr, *dlvBPtr, *davBPtr);
}
}
//easy
for (int i = 0; i < numBodies; i++)
{
if (bodies[i].m_invMass)
{
int bodyOffset = offsetSplitBodies[i];
int count = bodyCount[i];
float factor = 1.f / float(count);
b3Vector3 averageLinVel;
averageLinVel.setZero();
b3Vector3 averageAngVel;
averageAngVel.setZero();
for (int j = 0; j < count; j++)
{
averageLinVel += deltaLinearVelocities[bodyOffset + j] * factor;
averageAngVel += deltaAngularVelocities[bodyOffset + j] * factor;
}
for (int j = 0; j < count; j++)
{
deltaLinearVelocities[bodyOffset + j] = averageLinVel;
deltaAngularVelocities[bodyOffset + j] = averageAngVel;
}
}
}
}
for (int iter = 0; iter < maxIter; iter++)
{
//int i=0;
//solve friction
for (int i = 0; i < numManifolds; i++)
{
float maxRambdaDt[4] = {FLT_MAX, FLT_MAX, FLT_MAX, FLT_MAX};
float minRambdaDt[4] = {0.f, 0.f, 0.f, 0.f};
float sum = 0;
for (int j = 0; j < 4; j++)
{
sum += contactConstraints[i].m_appliedRambdaDt[j];
}
float frictionCoeff = contactConstraints[i].getFrictionCoeff();
int aIdx = (int)contactConstraints[i].m_bodyA;
int bIdx = (int)contactConstraints[i].m_bodyB;
b3RigidBodyData& bodyA = bodies[aIdx];
b3RigidBodyData& bodyB = bodies[bIdx];
b3Vector3 zero = b3MakeVector3(0, 0, 0);
b3Vector3* dlvAPtr = &zero;
b3Vector3* davAPtr = &zero;
b3Vector3* dlvBPtr = &zero;
b3Vector3* davBPtr = &zero;
if (bodyA.m_invMass)
{
int bodyOffsetA = offsetSplitBodies[aIdx];
int constraintOffsetA = contactConstraintOffsets[i].x;
int splitIndexA = bodyOffsetA + constraintOffsetA;
dlvAPtr = &deltaLinearVelocities[splitIndexA];
davAPtr = &deltaAngularVelocities[splitIndexA];
}
if (bodyB.m_invMass)
{
int bodyOffsetB = offsetSplitBodies[bIdx];
int constraintOffsetB = contactConstraintOffsets[i].y;
int splitIndexB = bodyOffsetB + constraintOffsetB;
dlvBPtr = &deltaLinearVelocities[splitIndexB];
davBPtr = &deltaAngularVelocities[splitIndexB];
}
for (int j = 0; j < 4; j++)
{
maxRambdaDt[j] = frictionCoeff * sum;
minRambdaDt[j] = -maxRambdaDt[j];
}
solveFriction(contactConstraints[i], (b3Vector3&)bodyA.m_pos, (b3Vector3&)bodyA.m_linVel, (b3Vector3&)bodyA.m_angVel, bodyA.m_invMass, inertias[aIdx].m_invInertiaWorld,
(b3Vector3&)bodyB.m_pos, (b3Vector3&)bodyB.m_linVel, (b3Vector3&)bodyB.m_angVel, bodyB.m_invMass, inertias[bIdx].m_invInertiaWorld,
maxRambdaDt, minRambdaDt, *dlvAPtr, *davAPtr, *dlvBPtr, *davBPtr);
}
//easy
for (int i = 0; i < numBodies; i++)
{
if (bodies[i].m_invMass)
{
int bodyOffset = offsetSplitBodies[i];
int count = bodyCount[i];
float factor = 1.f / float(count);
b3Vector3 averageLinVel;
averageLinVel.setZero();
b3Vector3 averageAngVel;
averageAngVel.setZero();
for (int j = 0; j < count; j++)
{
averageLinVel += deltaLinearVelocities[bodyOffset + j] * factor;
averageAngVel += deltaAngularVelocities[bodyOffset + j] * factor;
}
for (int j = 0; j < count; j++)
{
deltaLinearVelocities[bodyOffset + j] = averageLinVel;
deltaAngularVelocities[bodyOffset + j] = averageAngVel;
}
}
}
}
//easy
for (int i = 0; i < numBodies; i++)
{
if (bodies[i].m_invMass)
{
int bodyOffset = offsetSplitBodies[i];
int count = bodyCount[i];
if (count)
{
bodies[i].m_linVel += deltaLinearVelocities[bodyOffset];
bodies[i].m_angVel += deltaAngularVelocities[bodyOffset];
}
}
}
}
void b3GpuJacobiContactSolver::solveContacts(int numBodies, cl_mem bodyBuf, cl_mem inertiaBuf, int numContacts, cl_mem contactBuf, const struct b3Config& config, int static0Index)
//
//
//void b3GpuJacobiContactSolver::solveGroup(b3OpenCLArray<b3RigidBodyData>* bodies,b3OpenCLArray<b3InertiaData>* inertias,b3OpenCLArray<b3Contact4>* manifoldPtr,const btJacobiSolverInfo& solverInfo)
{
b3JacobiSolverInfo solverInfo;
solverInfo.m_fixedBodyIndex = static0Index;
B3_PROFILE("b3GpuJacobiContactSolver::solveGroup");
//int numBodies = bodies->size();
int numManifolds = numContacts; //manifoldPtr->size();
{
B3_PROFILE("resize");
m_data->m_bodyCount->resize(numBodies);
}
unsigned int val = 0;
b3Int2 val2;
val2.x = 0;
val2.y = 0;
{
B3_PROFILE("m_filler");
m_data->m_contactConstraintOffsets->resize(numManifolds);
m_data->m_filler->execute(*m_data->m_bodyCount, val, numBodies);
m_data->m_filler->execute(*m_data->m_contactConstraintOffsets, val2, numManifolds);
}
{
B3_PROFILE("m_countBodiesKernel");
b3LauncherCL launcher(this->m_queue, m_data->m_countBodiesKernel, "m_countBodiesKernel");
launcher.setBuffer(contactBuf); //manifoldPtr->getBufferCL());
launcher.setBuffer(m_data->m_bodyCount->getBufferCL());
launcher.setBuffer(m_data->m_contactConstraintOffsets->getBufferCL());
launcher.setConst(numManifolds);
launcher.setConst(solverInfo.m_fixedBodyIndex);
launcher.launch1D(numManifolds);
}
unsigned int totalNumSplitBodies = 0;
{
B3_PROFILE("m_scan->execute");
m_data->m_offsetSplitBodies->resize(numBodies);
m_data->m_scan->execute(*m_data->m_bodyCount, *m_data->m_offsetSplitBodies, numBodies, &totalNumSplitBodies);
totalNumSplitBodies += m_data->m_bodyCount->at(numBodies - 1);
}
{
B3_PROFILE("m_data->m_contactConstraints->resize");
//int numContacts = manifoldPtr->size();
m_data->m_contactConstraints->resize(numContacts);
}
{
B3_PROFILE("contactToConstraintSplitKernel");
b3LauncherCL launcher(m_queue, m_data->m_contactToConstraintSplitKernel, "m_contactToConstraintSplitKernel");
launcher.setBuffer(contactBuf);
launcher.setBuffer(bodyBuf);
launcher.setBuffer(inertiaBuf);
launcher.setBuffer(m_data->m_contactConstraints->getBufferCL());
launcher.setBuffer(m_data->m_bodyCount->getBufferCL());
launcher.setConst(numContacts);
launcher.setConst(solverInfo.m_deltaTime);
launcher.setConst(solverInfo.m_positionDrift);
launcher.setConst(solverInfo.m_positionConstraintCoeff);
launcher.launch1D(numContacts, 64);
}
{
B3_PROFILE("m_data->m_deltaLinearVelocities->resize");
m_data->m_deltaLinearVelocities->resize(totalNumSplitBodies);
m_data->m_deltaAngularVelocities->resize(totalNumSplitBodies);
}
{
B3_PROFILE("m_clearVelocitiesKernel");
b3LauncherCL launch(m_queue, m_data->m_clearVelocitiesKernel, "m_clearVelocitiesKernel");
launch.setBuffer(m_data->m_deltaAngularVelocities->getBufferCL());
launch.setBuffer(m_data->m_deltaLinearVelocities->getBufferCL());
launch.setConst(totalNumSplitBodies);
launch.launch1D(totalNumSplitBodies);
clFinish(m_queue);
}
int maxIter = solverInfo.m_numIterations;
for (int iter = 0; iter < maxIter; iter++)
{
{
B3_PROFILE("m_solveContactKernel");
b3LauncherCL launcher(m_queue, m_data->m_solveContactKernel, "m_solveContactKernel");
launcher.setBuffer(m_data->m_contactConstraints->getBufferCL());
launcher.setBuffer(bodyBuf);
launcher.setBuffer(inertiaBuf);
launcher.setBuffer(m_data->m_contactConstraintOffsets->getBufferCL());
launcher.setBuffer(m_data->m_offsetSplitBodies->getBufferCL());
launcher.setBuffer(m_data->m_deltaLinearVelocities->getBufferCL());
launcher.setBuffer(m_data->m_deltaAngularVelocities->getBufferCL());
launcher.setConst(solverInfo.m_deltaTime);
launcher.setConst(solverInfo.m_positionDrift);
launcher.setConst(solverInfo.m_positionConstraintCoeff);
launcher.setConst(solverInfo.m_fixedBodyIndex);
launcher.setConst(numManifolds);
launcher.launch1D(numManifolds);
clFinish(m_queue);
}
{
B3_PROFILE("average velocities");
b3LauncherCL launcher(m_queue, m_data->m_averageVelocitiesKernel, "m_averageVelocitiesKernel");
launcher.setBuffer(bodyBuf);
launcher.setBuffer(m_data->m_offsetSplitBodies->getBufferCL());
launcher.setBuffer(m_data->m_bodyCount->getBufferCL());
launcher.setBuffer(m_data->m_deltaLinearVelocities->getBufferCL());
launcher.setBuffer(m_data->m_deltaAngularVelocities->getBufferCL());
launcher.setConst(numBodies);
launcher.launch1D(numBodies);
clFinish(m_queue);
}
{
B3_PROFILE("m_solveFrictionKernel");
b3LauncherCL launcher(m_queue, m_data->m_solveFrictionKernel, "m_solveFrictionKernel");
launcher.setBuffer(m_data->m_contactConstraints->getBufferCL());
launcher.setBuffer(bodyBuf);
launcher.setBuffer(inertiaBuf);
launcher.setBuffer(m_data->m_contactConstraintOffsets->getBufferCL());
launcher.setBuffer(m_data->m_offsetSplitBodies->getBufferCL());
launcher.setBuffer(m_data->m_deltaLinearVelocities->getBufferCL());
launcher.setBuffer(m_data->m_deltaAngularVelocities->getBufferCL());
launcher.setConst(solverInfo.m_deltaTime);
launcher.setConst(solverInfo.m_positionDrift);
launcher.setConst(solverInfo.m_positionConstraintCoeff);
launcher.setConst(solverInfo.m_fixedBodyIndex);
launcher.setConst(numManifolds);
launcher.launch1D(numManifolds);
clFinish(m_queue);
}
{
B3_PROFILE("average velocities");
b3LauncherCL launcher(m_queue, m_data->m_averageVelocitiesKernel, "m_averageVelocitiesKernel");
launcher.setBuffer(bodyBuf);
launcher.setBuffer(m_data->m_offsetSplitBodies->getBufferCL());
launcher.setBuffer(m_data->m_bodyCount->getBufferCL());
launcher.setBuffer(m_data->m_deltaLinearVelocities->getBufferCL());
launcher.setBuffer(m_data->m_deltaAngularVelocities->getBufferCL());
launcher.setConst(numBodies);
launcher.launch1D(numBodies);
clFinish(m_queue);
}
}
{
B3_PROFILE("update body velocities");
b3LauncherCL launcher(m_queue, m_data->m_updateBodyVelocitiesKernel, "m_updateBodyVelocitiesKernel");
launcher.setBuffer(bodyBuf);
launcher.setBuffer(m_data->m_offsetSplitBodies->getBufferCL());
launcher.setBuffer(m_data->m_bodyCount->getBufferCL());
launcher.setBuffer(m_data->m_deltaLinearVelocities->getBufferCL());
launcher.setBuffer(m_data->m_deltaAngularVelocities->getBufferCL());
launcher.setConst(numBodies);
launcher.launch1D(numBodies);
clFinish(m_queue);
}
}
#if 0
void b3GpuJacobiContactSolver::solveGroupMixed(b3OpenCLArray<b3RigidBodyData>* bodiesGPU,b3OpenCLArray<b3InertiaData>* inertiasGPU,b3OpenCLArray<b3Contact4>* manifoldPtrGPU,const btJacobiSolverInfo& solverInfo)
{
b3AlignedObjectArray<b3RigidBodyData> bodiesCPU;
bodiesGPU->copyToHost(bodiesCPU);
b3AlignedObjectArray<b3InertiaData> inertiasCPU;
inertiasGPU->copyToHost(inertiasCPU);
b3AlignedObjectArray<b3Contact4> manifoldPtrCPU;
manifoldPtrGPU->copyToHost(manifoldPtrCPU);
int numBodiesCPU = bodiesGPU->size();
int numManifoldsCPU = manifoldPtrGPU->size();
B3_PROFILE("b3GpuJacobiContactSolver::solveGroupMixed");
b3AlignedObjectArray<unsigned int> bodyCount;
bodyCount.resize(numBodiesCPU);
for (int i=0;i<numBodiesCPU;i++)
bodyCount[i] = 0;
b3AlignedObjectArray<b3Int2> contactConstraintOffsets;
contactConstraintOffsets.resize(numManifoldsCPU);
for (int i=0;i<numManifoldsCPU;i++)
{
int pa = manifoldPtrCPU[i].m_bodyAPtrAndSignBit;
int pb = manifoldPtrCPU[i].m_bodyBPtrAndSignBit;
bool isFixedA = (pa <0) || (pa == solverInfo.m_fixedBodyIndex);
bool isFixedB = (pb <0) || (pb == solverInfo.m_fixedBodyIndex);
int bodyIndexA = manifoldPtrCPU[i].getBodyA();
int bodyIndexB = manifoldPtrCPU[i].getBodyB();
if (!isFixedA)
{
contactConstraintOffsets[i].x = bodyCount[bodyIndexA];
bodyCount[bodyIndexA]++;
}
if (!isFixedB)
{
contactConstraintOffsets[i].y = bodyCount[bodyIndexB];
bodyCount[bodyIndexB]++;
}
}
b3AlignedObjectArray<unsigned int> offsetSplitBodies;
offsetSplitBodies.resize(numBodiesCPU);
unsigned int totalNumSplitBodiesCPU;
m_data->m_scan->executeHost(bodyCount,offsetSplitBodies,numBodiesCPU,&totalNumSplitBodiesCPU);
int numlastBody = bodyCount[numBodiesCPU-1];
totalNumSplitBodiesCPU += numlastBody;
int numBodies = bodiesGPU->size();
int numManifolds = manifoldPtrGPU->size();
m_data->m_bodyCount->resize(numBodies);
unsigned int val=0;
b3Int2 val2;
val2.x=0;
val2.y=0;
{
B3_PROFILE("m_filler");
m_data->m_contactConstraintOffsets->resize(numManifolds);
m_data->m_filler->execute(*m_data->m_bodyCount,val,numBodies);
m_data->m_filler->execute(*m_data->m_contactConstraintOffsets,val2,numManifolds);
}
{
B3_PROFILE("m_countBodiesKernel");
b3LauncherCL launcher(this->m_queue,m_data->m_countBodiesKernel);
launcher.setBuffer(manifoldPtrGPU->getBufferCL());
launcher.setBuffer(m_data->m_bodyCount->getBufferCL());
launcher.setBuffer(m_data->m_contactConstraintOffsets->getBufferCL());
launcher.setConst(numManifolds);
launcher.setConst(solverInfo.m_fixedBodyIndex);
launcher.launch1D(numManifolds);
}
unsigned int totalNumSplitBodies=0;
m_data->m_offsetSplitBodies->resize(numBodies);
m_data->m_scan->execute(*m_data->m_bodyCount,*m_data->m_offsetSplitBodies,numBodies,&totalNumSplitBodies);
totalNumSplitBodies+=m_data->m_bodyCount->at(numBodies-1);
if (totalNumSplitBodies != totalNumSplitBodiesCPU)
{
printf("error in totalNumSplitBodies!\n");
}
int numContacts = manifoldPtrGPU->size();
m_data->m_contactConstraints->resize(numContacts);
{
B3_PROFILE("contactToConstraintSplitKernel");
b3LauncherCL launcher( m_queue, m_data->m_contactToConstraintSplitKernel);
launcher.setBuffer(manifoldPtrGPU->getBufferCL());
launcher.setBuffer(bodiesGPU->getBufferCL());
launcher.setBuffer(inertiasGPU->getBufferCL());
launcher.setBuffer(m_data->m_contactConstraints->getBufferCL());
launcher.setBuffer(m_data->m_bodyCount->getBufferCL());
launcher.setConst(numContacts);
launcher.setConst(solverInfo.m_deltaTime);
launcher.setConst(solverInfo.m_positionDrift);
launcher.setConst(solverInfo.m_positionConstraintCoeff);
launcher.launch1D( numContacts, 64 );
clFinish(m_queue);
}
b3AlignedObjectArray<b3GpuConstraint4> contactConstraints;
contactConstraints.resize(numManifoldsCPU);
for (int i=0;i<numManifoldsCPU;i++)
{
ContactToConstraintKernel(&manifoldPtrCPU[0],&bodiesCPU[0],&inertiasCPU[0],&contactConstraints[0],numManifoldsCPU,
solverInfo.m_deltaTime,
solverInfo.m_positionDrift,
solverInfo.m_positionConstraintCoeff,
i, bodyCount);
}
int maxIter = solverInfo.m_numIterations;
b3AlignedObjectArray<b3Vector3> deltaLinearVelocities;
b3AlignedObjectArray<b3Vector3> deltaAngularVelocities;
deltaLinearVelocities.resize(totalNumSplitBodiesCPU);
deltaAngularVelocities.resize(totalNumSplitBodiesCPU);
for (int i=0;i<totalNumSplitBodiesCPU;i++)
{
deltaLinearVelocities[i].setZero();
deltaAngularVelocities[i].setZero();
}
m_data->m_deltaLinearVelocities->resize(totalNumSplitBodies);
m_data->m_deltaAngularVelocities->resize(totalNumSplitBodies);
{
B3_PROFILE("m_clearVelocitiesKernel");
b3LauncherCL launch(m_queue,m_data->m_clearVelocitiesKernel);
launch.setBuffer(m_data->m_deltaAngularVelocities->getBufferCL());
launch.setBuffer(m_data->m_deltaLinearVelocities->getBufferCL());
launch.setConst(totalNumSplitBodies);
launch.launch1D(totalNumSplitBodies);
}
///!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
m_data->m_contactConstraints->copyToHost(contactConstraints);
m_data->m_offsetSplitBodies->copyToHost(offsetSplitBodies);
m_data->m_contactConstraintOffsets->copyToHost(contactConstraintOffsets);
m_data->m_deltaLinearVelocities->copyToHost(deltaLinearVelocities);
m_data->m_deltaAngularVelocities->copyToHost(deltaAngularVelocities);
for (int iter = 0;iter<maxIter;iter++)
{
{
B3_PROFILE("m_solveContactKernel");
b3LauncherCL launcher( m_queue, m_data->m_solveContactKernel );
launcher.setBuffer(m_data->m_contactConstraints->getBufferCL());
launcher.setBuffer(bodiesGPU->getBufferCL());
launcher.setBuffer(inertiasGPU->getBufferCL());
launcher.setBuffer(m_data->m_contactConstraintOffsets->getBufferCL());
launcher.setBuffer(m_data->m_offsetSplitBodies->getBufferCL());
launcher.setBuffer(m_data->m_deltaLinearVelocities->getBufferCL());
launcher.setBuffer(m_data->m_deltaAngularVelocities->getBufferCL());
launcher.setConst(solverInfo.m_deltaTime);
launcher.setConst(solverInfo.m_positionDrift);
launcher.setConst(solverInfo.m_positionConstraintCoeff);
launcher.setConst(solverInfo.m_fixedBodyIndex);
launcher.setConst(numManifolds);
launcher.launch1D(numManifolds);
clFinish(m_queue);
}
int i=0;
for( i=0; i<numManifoldsCPU; i++)
{
float frictionCoeff = contactConstraints[i].getFrictionCoeff();
int aIdx = (int)contactConstraints[i].m_bodyA;
int bIdx = (int)contactConstraints[i].m_bodyB;
b3RigidBodyData& bodyA = bodiesCPU[aIdx];
b3RigidBodyData& bodyB = bodiesCPU[bIdx];
b3Vector3 zero(0,0,0);
b3Vector3* dlvAPtr=&zero;
b3Vector3* davAPtr=&zero;
b3Vector3* dlvBPtr=&zero;
b3Vector3* davBPtr=&zero;
if (bodyA.m_invMass)
{
int bodyOffsetA = offsetSplitBodies[aIdx];
int constraintOffsetA = contactConstraintOffsets[i].x;
int splitIndexA = bodyOffsetA+constraintOffsetA;
dlvAPtr = &deltaLinearVelocities[splitIndexA];
davAPtr = &deltaAngularVelocities[splitIndexA];
}
if (bodyB.m_invMass)
{
int bodyOffsetB = offsetSplitBodies[bIdx];
int constraintOffsetB = contactConstraintOffsets[i].y;
int splitIndexB= bodyOffsetB+constraintOffsetB;
dlvBPtr =&deltaLinearVelocities[splitIndexB];
davBPtr = &deltaAngularVelocities[splitIndexB];
}
{
float maxRambdaDt[4] = {FLT_MAX,FLT_MAX,FLT_MAX,FLT_MAX};
float minRambdaDt[4] = {0.f,0.f,0.f,0.f};
solveContact( contactConstraints[i], (b3Vector3&)bodyA.m_pos, (b3Vector3&)bodyA.m_linVel, (b3Vector3&)bodyA.m_angVel, bodyA.m_invMass, inertiasCPU[aIdx].m_invInertiaWorld,
(b3Vector3&)bodyB.m_pos, (b3Vector3&)bodyB.m_linVel, (b3Vector3&)bodyB.m_angVel, bodyB.m_invMass, inertiasCPU[bIdx].m_invInertiaWorld,
maxRambdaDt, minRambdaDt , *dlvAPtr,*davAPtr,*dlvBPtr,*davBPtr );
}
}
{
B3_PROFILE("average velocities");
b3LauncherCL launcher( m_queue, m_data->m_averageVelocitiesKernel);
launcher.setBuffer(bodiesGPU->getBufferCL());
launcher.setBuffer(m_data->m_offsetSplitBodies->getBufferCL());
launcher.setBuffer(m_data->m_bodyCount->getBufferCL());
launcher.setBuffer(m_data->m_deltaLinearVelocities->getBufferCL());
launcher.setBuffer(m_data->m_deltaAngularVelocities->getBufferCL());
launcher.setConst(numBodies);
launcher.launch1D(numBodies);
clFinish(m_queue);
}
//easy
for (int i=0;i<numBodiesCPU;i++)
{
if (bodiesCPU[i].m_invMass)
{
int bodyOffset = offsetSplitBodies[i];
int count = bodyCount[i];
float factor = 1.f/float(count);
b3Vector3 averageLinVel;
averageLinVel.setZero();
b3Vector3 averageAngVel;
averageAngVel.setZero();
for (int j=0;j<count;j++)
{
averageLinVel += deltaLinearVelocities[bodyOffset+j]*factor;
averageAngVel += deltaAngularVelocities[bodyOffset+j]*factor;
}
for (int j=0;j<count;j++)
{
deltaLinearVelocities[bodyOffset+j] = averageLinVel;
deltaAngularVelocities[bodyOffset+j] = averageAngVel;
}
}
}
// m_data->m_deltaAngularVelocities->copyFromHost(deltaAngularVelocities);
//m_data->m_deltaLinearVelocities->copyFromHost(deltaLinearVelocities);
m_data->m_deltaAngularVelocities->copyToHost(deltaAngularVelocities);
m_data->m_deltaLinearVelocities->copyToHost(deltaLinearVelocities);
#if 0
{
B3_PROFILE("m_solveFrictionKernel");
b3LauncherCL launcher( m_queue, m_data->m_solveFrictionKernel);
launcher.setBuffer(m_data->m_contactConstraints->getBufferCL());
launcher.setBuffer(bodiesGPU->getBufferCL());
launcher.setBuffer(inertiasGPU->getBufferCL());
launcher.setBuffer(m_data->m_contactConstraintOffsets->getBufferCL());
launcher.setBuffer(m_data->m_offsetSplitBodies->getBufferCL());
launcher.setBuffer(m_data->m_deltaLinearVelocities->getBufferCL());
launcher.setBuffer(m_data->m_deltaAngularVelocities->getBufferCL());
launcher.setConst(solverInfo.m_deltaTime);
launcher.setConst(solverInfo.m_positionDrift);
launcher.setConst(solverInfo.m_positionConstraintCoeff);
launcher.setConst(solverInfo.m_fixedBodyIndex);
launcher.setConst(numManifolds);
launcher.launch1D(numManifolds);
clFinish(m_queue);
}
//solve friction
for(int i=0; i<numManifoldsCPU; i++)
{
float maxRambdaDt[4] = {FLT_MAX,FLT_MAX,FLT_MAX,FLT_MAX};
float minRambdaDt[4] = {0.f,0.f,0.f,0.f};
float sum = 0;
for(int j=0; j<4; j++)
{
sum +=contactConstraints[i].m_appliedRambdaDt[j];
}
float frictionCoeff = contactConstraints[i].getFrictionCoeff();
int aIdx = (int)contactConstraints[i].m_bodyA;
int bIdx = (int)contactConstraints[i].m_bodyB;
b3RigidBodyData& bodyA = bodiesCPU[aIdx];
b3RigidBodyData& bodyB = bodiesCPU[bIdx];
b3Vector3 zero(0,0,0);
b3Vector3* dlvAPtr=&zero;
b3Vector3* davAPtr=&zero;
b3Vector3* dlvBPtr=&zero;
b3Vector3* davBPtr=&zero;
if (bodyA.m_invMass)
{
int bodyOffsetA = offsetSplitBodies[aIdx];
int constraintOffsetA = contactConstraintOffsets[i].x;
int splitIndexA = bodyOffsetA+constraintOffsetA;
dlvAPtr = &deltaLinearVelocities[splitIndexA];
davAPtr = &deltaAngularVelocities[splitIndexA];
}
if (bodyB.m_invMass)
{
int bodyOffsetB = offsetSplitBodies[bIdx];
int constraintOffsetB = contactConstraintOffsets[i].y;
int splitIndexB= bodyOffsetB+constraintOffsetB;
dlvBPtr =&deltaLinearVelocities[splitIndexB];
davBPtr = &deltaAngularVelocities[splitIndexB];
}
for(int j=0; j<4; j++)
{
maxRambdaDt[j] = frictionCoeff*sum;
minRambdaDt[j] = -maxRambdaDt[j];
}
solveFriction( contactConstraints[i], (b3Vector3&)bodyA.m_pos, (b3Vector3&)bodyA.m_linVel, (b3Vector3&)bodyA.m_angVel, bodyA.m_invMass,inertiasCPU[aIdx].m_invInertiaWorld,
(b3Vector3&)bodyB.m_pos, (b3Vector3&)bodyB.m_linVel, (b3Vector3&)bodyB.m_angVel, bodyB.m_invMass, inertiasCPU[bIdx].m_invInertiaWorld,
maxRambdaDt, minRambdaDt , *dlvAPtr,*davAPtr,*dlvBPtr,*davBPtr);
}
{
B3_PROFILE("average velocities");
b3LauncherCL launcher( m_queue, m_data->m_averageVelocitiesKernel);
launcher.setBuffer(bodiesGPU->getBufferCL());
launcher.setBuffer(m_data->m_offsetSplitBodies->getBufferCL());
launcher.setBuffer(m_data->m_bodyCount->getBufferCL());
launcher.setBuffer(m_data->m_deltaLinearVelocities->getBufferCL());
launcher.setBuffer(m_data->m_deltaAngularVelocities->getBufferCL());
launcher.setConst(numBodies);
launcher.launch1D(numBodies);
clFinish(m_queue);
}
//easy
for (int i=0;i<numBodiesCPU;i++)
{
if (bodiesCPU[i].m_invMass)
{
int bodyOffset = offsetSplitBodies[i];
int count = bodyCount[i];
float factor = 1.f/float(count);
b3Vector3 averageLinVel;
averageLinVel.setZero();
b3Vector3 averageAngVel;
averageAngVel.setZero();
for (int j=0;j<count;j++)
{
averageLinVel += deltaLinearVelocities[bodyOffset+j]*factor;
averageAngVel += deltaAngularVelocities[bodyOffset+j]*factor;
}
for (int j=0;j<count;j++)
{
deltaLinearVelocities[bodyOffset+j] = averageLinVel;
deltaAngularVelocities[bodyOffset+j] = averageAngVel;
}
}
}
#endif
}
{
B3_PROFILE("update body velocities");
b3LauncherCL launcher( m_queue, m_data->m_updateBodyVelocitiesKernel);
launcher.setBuffer(bodiesGPU->getBufferCL());
launcher.setBuffer(m_data->m_offsetSplitBodies->getBufferCL());
launcher.setBuffer(m_data->m_bodyCount->getBufferCL());
launcher.setBuffer(m_data->m_deltaLinearVelocities->getBufferCL());
launcher.setBuffer(m_data->m_deltaAngularVelocities->getBufferCL());
launcher.setConst(numBodies);
launcher.launch1D(numBodies);
clFinish(m_queue);
}
//easy
for (int i=0;i<numBodiesCPU;i++)
{
if (bodiesCPU[i].m_invMass)
{
int bodyOffset = offsetSplitBodies[i];
int count = bodyCount[i];
if (count)
{
bodiesCPU[i].m_linVel += deltaLinearVelocities[bodyOffset];
bodiesCPU[i].m_angVel += deltaAngularVelocities[bodyOffset];
}
}
}
// bodiesGPU->copyFromHost(bodiesCPU);
}
#endif