godot/thirdparty/embree/kernels/builders/bvh_builder_morton.h

502 lines
18 KiB
C++

// Copyright 2009-2020 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
#pragma once
#include "../common/builder.h"
#include "../../common/algorithms/parallel_reduce.h"
namespace embree
{
namespace isa
{
struct BVHBuilderMorton
{
static const size_t MAX_BRANCHING_FACTOR = 8; //!< maximum supported BVH branching factor
static const size_t MIN_LARGE_LEAF_LEVELS = 8; //!< create balanced tree of we are that many levels before the maximum tree depth
/*! settings for morton builder */
struct Settings
{
/*! default settings */
Settings ()
: branchingFactor(2), maxDepth(32), minLeafSize(1), maxLeafSize(7), singleThreadThreshold(1024) {}
/*! initialize settings from API settings */
Settings (const RTCBuildArguments& settings)
: branchingFactor(2), maxDepth(32), minLeafSize(1), maxLeafSize(7), singleThreadThreshold(1024)
{
if (RTC_BUILD_ARGUMENTS_HAS(settings,maxBranchingFactor)) branchingFactor = settings.maxBranchingFactor;
if (RTC_BUILD_ARGUMENTS_HAS(settings,maxDepth )) maxDepth = settings.maxDepth;
if (RTC_BUILD_ARGUMENTS_HAS(settings,minLeafSize )) minLeafSize = settings.minLeafSize;
if (RTC_BUILD_ARGUMENTS_HAS(settings,maxLeafSize )) maxLeafSize = settings.maxLeafSize;
minLeafSize = min(minLeafSize,maxLeafSize);
}
Settings (size_t branchingFactor, size_t maxDepth, size_t minLeafSize, size_t maxLeafSize, size_t singleThreadThreshold)
: branchingFactor(branchingFactor), maxDepth(maxDepth), minLeafSize(minLeafSize), maxLeafSize(maxLeafSize), singleThreadThreshold(singleThreadThreshold)
{
minLeafSize = min(minLeafSize,maxLeafSize);
}
public:
size_t branchingFactor; //!< branching factor of BVH to build
size_t maxDepth; //!< maximum depth of BVH to build
size_t minLeafSize; //!< minimum size of a leaf
size_t maxLeafSize; //!< maximum size of a leaf
size_t singleThreadThreshold; //!< threshold when we switch to single threaded build
};
/*! Build primitive consisting of morton code and primitive ID. */
struct __aligned(8) BuildPrim
{
union {
struct {
unsigned int code; //!< morton code
unsigned int index; //!< i'th primitive
};
uint64_t t;
};
/*! interface for radix sort */
__forceinline operator unsigned() const { return code; }
/*! interface for standard sort */
__forceinline bool operator<(const BuildPrim &m) const { return code < m.code; }
};
/*! maps bounding box to morton code */
struct MortonCodeMapping
{
static const size_t LATTICE_BITS_PER_DIM = 10;
static const size_t LATTICE_SIZE_PER_DIM = size_t(1) << LATTICE_BITS_PER_DIM;
vfloat4 base;
vfloat4 scale;
__forceinline MortonCodeMapping(const BBox3fa& bounds)
{
base = (vfloat4)bounds.lower;
const vfloat4 diag = (vfloat4)bounds.upper - (vfloat4)bounds.lower;
scale = select(diag > vfloat4(1E-19f), rcp(diag) * vfloat4(LATTICE_SIZE_PER_DIM * 0.99f),vfloat4(0.0f));
}
__forceinline const vint4 bin (const BBox3fa& box) const
{
const vfloat4 lower = (vfloat4)box.lower;
const vfloat4 upper = (vfloat4)box.upper;
const vfloat4 centroid = lower+upper;
return vint4((centroid-base)*scale);
}
__forceinline unsigned int code (const BBox3fa& box) const
{
const vint4 binID = bin(box);
const unsigned int x = extract<0>(binID);
const unsigned int y = extract<1>(binID);
const unsigned int z = extract<2>(binID);
const unsigned int xyz = bitInterleave(x,y,z);
return xyz;
}
};
#if defined (__AVX2__)
/*! for AVX2 there is a fast scalar bitInterleave */
struct MortonCodeGenerator
{
__forceinline MortonCodeGenerator(const MortonCodeMapping& mapping, BuildPrim* dest)
: mapping(mapping), dest(dest) {}
__forceinline void operator() (const BBox3fa& b, const unsigned index)
{
dest->index = index;
dest->code = mapping.code(b);
dest++;
}
public:
const MortonCodeMapping mapping;
BuildPrim* dest;
size_t currentID;
};
#else
/*! before AVX2 is it better to use the SSE version of bitInterleave */
struct MortonCodeGenerator
{
__forceinline MortonCodeGenerator(const MortonCodeMapping& mapping, BuildPrim* dest)
: mapping(mapping), dest(dest), currentID(0), slots(0), ax(0), ay(0), az(0), ai(0) {}
__forceinline ~MortonCodeGenerator()
{
if (slots != 0)
{
const vint4 code = bitInterleave(ax,ay,az);
for (size_t i=0; i<slots; i++) {
dest[currentID-slots+i].index = ai[i];
dest[currentID-slots+i].code = code[i];
}
}
}
__forceinline void operator() (const BBox3fa& b, const unsigned index)
{
const vint4 binID = mapping.bin(b);
ax[slots] = extract<0>(binID);
ay[slots] = extract<1>(binID);
az[slots] = extract<2>(binID);
ai[slots] = index;
slots++;
currentID++;
if (slots == 4)
{
const vint4 code = bitInterleave(ax,ay,az);
vint4::storeu(&dest[currentID-4],unpacklo(code,ai));
vint4::storeu(&dest[currentID-2],unpackhi(code,ai));
slots = 0;
}
}
public:
const MortonCodeMapping mapping;
BuildPrim* dest;
size_t currentID;
size_t slots;
vint4 ax, ay, az, ai;
};
#endif
template<
typename ReductionTy,
typename Allocator,
typename CreateAllocator,
typename CreateNodeFunc,
typename SetNodeBoundsFunc,
typename CreateLeafFunc,
typename CalculateBounds,
typename ProgressMonitor>
class BuilderT : private Settings
{
ALIGNED_CLASS_(16);
public:
BuilderT (CreateAllocator& createAllocator,
CreateNodeFunc& createNode,
SetNodeBoundsFunc& setBounds,
CreateLeafFunc& createLeaf,
CalculateBounds& calculateBounds,
ProgressMonitor& progressMonitor,
const Settings& settings)
: Settings(settings),
createAllocator(createAllocator),
createNode(createNode),
setBounds(setBounds),
createLeaf(createLeaf),
calculateBounds(calculateBounds),
progressMonitor(progressMonitor),
morton(nullptr) {}
ReductionTy createLargeLeaf(size_t depth, const range<unsigned>& current, Allocator alloc)
{
/* this should never occur but is a fatal error */
if (depth > maxDepth)
throw_RTCError(RTC_ERROR_UNKNOWN,"depth limit reached");
/* create leaf for few primitives */
if (current.size() <= maxLeafSize)
return createLeaf(current,alloc);
/* fill all children by always splitting the largest one */
range<unsigned> children[MAX_BRANCHING_FACTOR];
size_t numChildren = 1;
children[0] = current;
do {
/* find best child with largest number of primitives */
size_t bestChild = -1;
size_t bestSize = 0;
for (size_t i=0; i<numChildren; i++)
{
/* ignore leaves as they cannot get split */
if (children[i].size() <= maxLeafSize)
continue;
/* remember child with largest size */
if (children[i].size() > bestSize) {
bestSize = children[i].size();
bestChild = i;
}
}
if (bestChild == size_t(-1)) break;
/*! split best child into left and right child */
auto split = children[bestChild].split();
/* add new children left and right */
children[bestChild] = children[numChildren-1];
children[numChildren-1] = split.first;
children[numChildren+0] = split.second;
numChildren++;
} while (numChildren < branchingFactor);
/* create node */
auto node = createNode(alloc,numChildren);
/* recurse into each child */
ReductionTy bounds[MAX_BRANCHING_FACTOR];
for (size_t i=0; i<numChildren; i++)
bounds[i] = createLargeLeaf(depth+1,children[i],alloc);
return setBounds(node,bounds,numChildren);
}
/*! recreates morton codes when reaching a region where all codes are identical */
__noinline void recreateMortonCodes(const range<unsigned>& current) const
{
/* fast path for small ranges */
if (likely(current.size() < 1024))
{
/*! recalculate centroid bounds */
BBox3fa centBounds(empty);
for (size_t i=current.begin(); i<current.end(); i++)
centBounds.extend(center2(calculateBounds(morton[i])));
/* recalculate morton codes */
MortonCodeMapping mapping(centBounds);
for (size_t i=current.begin(); i<current.end(); i++)
morton[i].code = mapping.code(calculateBounds(morton[i]));
/* sort morton codes */
std::sort(morton+current.begin(),morton+current.end());
}
else
{
/*! recalculate centroid bounds */
auto calculateCentBounds = [&] ( const range<unsigned>& r ) {
BBox3fa centBounds = empty;
for (size_t i=r.begin(); i<r.end(); i++)
centBounds.extend(center2(calculateBounds(morton[i])));
return centBounds;
};
const BBox3fa centBounds = parallel_reduce(current.begin(), current.end(), unsigned(1024),
BBox3fa(empty), calculateCentBounds, BBox3fa::merge);
/* recalculate morton codes */
MortonCodeMapping mapping(centBounds);
parallel_for(current.begin(), current.end(), unsigned(1024), [&] ( const range<unsigned>& r ) {
for (size_t i=r.begin(); i<r.end(); i++) {
morton[i].code = mapping.code(calculateBounds(morton[i]));
}
});
/*! sort morton codes */
#if defined(TASKING_TBB)
tbb::parallel_sort(morton+current.begin(),morton+current.end());
#else
radixsort32(morton+current.begin(),current.size());
#endif
}
}
__forceinline void split(const range<unsigned>& current, range<unsigned>& left, range<unsigned>& right) const
{
const unsigned int code_start = morton[current.begin()].code;
const unsigned int code_end = morton[current.end()-1].code;
unsigned int bitpos = lzcnt(code_start^code_end);
/* if all items mapped to same morton code, then re-create new morton codes for the items */
if (unlikely(bitpos == 32))
{
recreateMortonCodes(current);
const unsigned int code_start = morton[current.begin()].code;
const unsigned int code_end = morton[current.end()-1].code;
bitpos = lzcnt(code_start^code_end);
/* if the morton code is still the same, goto fall back split */
if (unlikely(bitpos == 32)) {
current.split(left,right);
return;
}
}
/* split the items at the topmost different morton code bit */
const unsigned int bitpos_diff = 31-bitpos;
const unsigned int bitmask = 1 << bitpos_diff;
/* find location where bit differs using binary search */
unsigned begin = current.begin();
unsigned end = current.end();
while (begin + 1 != end) {
const unsigned mid = (begin+end)/2;
const unsigned bit = morton[mid].code & bitmask;
if (bit == 0) begin = mid; else end = mid;
}
unsigned center = end;
#if defined(DEBUG)
for (unsigned int i=begin; i<center; i++) assert((morton[i].code & bitmask) == 0);
for (unsigned int i=center; i<end; i++) assert((morton[i].code & bitmask) == bitmask);
#endif
left = make_range(current.begin(),center);
right = make_range(center,current.end());
}
ReductionTy recurse(size_t depth, const range<unsigned>& current, Allocator alloc, bool toplevel)
{
/* get thread local allocator */
if (!alloc)
alloc = createAllocator();
/* call memory monitor function to signal progress */
if (toplevel && current.size() <= singleThreadThreshold)
progressMonitor(current.size());
/* create leaf node */
if (unlikely(depth+MIN_LARGE_LEAF_LEVELS >= maxDepth || current.size() <= minLeafSize))
return createLargeLeaf(depth,current,alloc);
/* fill all children by always splitting the one with the largest surface area */
range<unsigned> children[MAX_BRANCHING_FACTOR];
split(current,children[0],children[1]);
size_t numChildren = 2;
while (numChildren < branchingFactor)
{
/* find best child with largest number of primitives */
int bestChild = -1;
unsigned bestItems = 0;
for (unsigned int i=0; i<numChildren; i++)
{
/* ignore leaves as they cannot get split */
if (children[i].size() <= minLeafSize)
continue;
/* remember child with largest area */
if (children[i].size() > bestItems) {
bestItems = children[i].size();
bestChild = i;
}
}
if (bestChild == -1) break;
/*! split best child into left and right child */
range<unsigned> left, right;
split(children[bestChild],left,right);
/* add new children left and right */
children[bestChild] = children[numChildren-1];
children[numChildren-1] = left;
children[numChildren+0] = right;
numChildren++;
}
/* create leaf node if no split is possible */
if (unlikely(numChildren == 1))
return createLeaf(current,alloc);
/* allocate node */
auto node = createNode(alloc,numChildren);
/* process top parts of tree parallel */
ReductionTy bounds[MAX_BRANCHING_FACTOR];
if (current.size() > singleThreadThreshold)
{
/*! parallel_for is faster than spawing sub-tasks */
parallel_for(size_t(0), numChildren, [&] (const range<size_t>& r) {
for (size_t i=r.begin(); i<r.end(); i++) {
bounds[i] = recurse(depth+1,children[i],nullptr,true);
_mm_mfence(); // to allow non-temporal stores during build
}
});
}
/* finish tree sequentially */
else
{
for (size_t i=0; i<numChildren; i++)
bounds[i] = recurse(depth+1,children[i],alloc,false);
}
return setBounds(node,bounds,numChildren);
}
/* build function */
ReductionTy build(BuildPrim* src, BuildPrim* tmp, size_t numPrimitives)
{
/* sort morton codes */
morton = src;
radix_sort_u32(src,tmp,numPrimitives,singleThreadThreshold);
/* build BVH */
const ReductionTy root = recurse(1, range<unsigned>(0,(unsigned)numPrimitives), nullptr, true);
_mm_mfence(); // to allow non-temporal stores during build
return root;
}
public:
CreateAllocator& createAllocator;
CreateNodeFunc& createNode;
SetNodeBoundsFunc& setBounds;
CreateLeafFunc& createLeaf;
CalculateBounds& calculateBounds;
ProgressMonitor& progressMonitor;
public:
BuildPrim* morton;
};
template<
typename ReductionTy,
typename CreateAllocFunc,
typename CreateNodeFunc,
typename SetBoundsFunc,
typename CreateLeafFunc,
typename CalculateBoundsFunc,
typename ProgressMonitor>
static ReductionTy build(CreateAllocFunc createAllocator,
CreateNodeFunc createNode,
SetBoundsFunc setBounds,
CreateLeafFunc createLeaf,
CalculateBoundsFunc calculateBounds,
ProgressMonitor progressMonitor,
BuildPrim* src,
BuildPrim* tmp,
size_t numPrimitives,
const Settings& settings)
{
typedef BuilderT<
ReductionTy,
decltype(createAllocator()),
CreateAllocFunc,
CreateNodeFunc,
SetBoundsFunc,
CreateLeafFunc,
CalculateBoundsFunc,
ProgressMonitor> Builder;
Builder builder(createAllocator,
createNode,
setBounds,
createLeaf,
calculateBounds,
progressMonitor,
settings);
return builder.build(src,tmp,numPrimitives);
}
};
}
}