1426cd3b3a
As many open source projects have started doing it, we're removing the current year from the copyright notice, so that we don't need to bump it every year. It seems like only the first year of publication is technically relevant for copyright notices, and even that seems to be something that many companies stopped listing altogether (in a version controlled codebase, the commits are a much better source of date of publication than a hardcoded copyright statement). We also now list Godot Engine contributors first as we're collectively the current maintainers of the project, and we clarify that the "exclusive" copyright of the co-founders covers the timespan before opensourcing (their further contributions are included as part of Godot Engine contributors). Also fixed "cf." Frenchism - it's meant as "refer to / see". Backported from #70885.
355 lines
13 KiB
C++
355 lines
13 KiB
C++
/**************************************************************************/
|
|
/* basis.h */
|
|
/**************************************************************************/
|
|
/* This file is part of: */
|
|
/* GODOT ENGINE */
|
|
/* https://godotengine.org */
|
|
/**************************************************************************/
|
|
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
|
|
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/**************************************************************************/
|
|
|
|
#ifndef BASIS_H
|
|
#define BASIS_H
|
|
|
|
#include "core/math/quat.h"
|
|
#include "core/math/vector3.h"
|
|
|
|
class _NO_DISCARD_CLASS_ Basis {
|
|
public:
|
|
Vector3 elements[3] = {
|
|
Vector3(1, 0, 0),
|
|
Vector3(0, 1, 0),
|
|
Vector3(0, 0, 1)
|
|
};
|
|
|
|
_FORCE_INLINE_ const Vector3 &operator[](int axis) const {
|
|
return elements[axis];
|
|
}
|
|
_FORCE_INLINE_ Vector3 &operator[](int axis) {
|
|
return elements[axis];
|
|
}
|
|
|
|
void invert();
|
|
void transpose();
|
|
|
|
Basis inverse() const;
|
|
Basis transposed() const;
|
|
|
|
_FORCE_INLINE_ real_t determinant() const;
|
|
|
|
void from_z(const Vector3 &p_z);
|
|
|
|
_FORCE_INLINE_ Vector3 get_axis(int p_axis) const {
|
|
// get actual basis axis (elements is transposed for performance)
|
|
return Vector3(elements[0][p_axis], elements[1][p_axis], elements[2][p_axis]);
|
|
}
|
|
_FORCE_INLINE_ void set_axis(int p_axis, const Vector3 &p_value) {
|
|
// get actual basis axis (elements is transposed for performance)
|
|
elements[0][p_axis] = p_value.x;
|
|
elements[1][p_axis] = p_value.y;
|
|
elements[2][p_axis] = p_value.z;
|
|
}
|
|
|
|
void rotate(const Vector3 &p_axis, real_t p_angle);
|
|
Basis rotated(const Vector3 &p_axis, real_t p_angle) const;
|
|
|
|
void rotate_local(const Vector3 &p_axis, real_t p_angle);
|
|
Basis rotated_local(const Vector3 &p_axis, real_t p_angle) const;
|
|
|
|
void rotate(const Vector3 &p_euler);
|
|
Basis rotated(const Vector3 &p_euler) const;
|
|
|
|
void rotate(const Quat &p_quat);
|
|
Basis rotated(const Quat &p_quat) const;
|
|
|
|
Vector3 get_rotation_euler() const;
|
|
void get_rotation_axis_angle(Vector3 &p_axis, real_t &p_angle) const;
|
|
void get_rotation_axis_angle_local(Vector3 &p_axis, real_t &p_angle) const;
|
|
Quat get_rotation_quat() const;
|
|
Vector3 get_rotation() const { return get_rotation_euler(); };
|
|
|
|
Vector3 rotref_posscale_decomposition(Basis &rotref) const;
|
|
|
|
Vector3 get_euler_xyz() const;
|
|
void set_euler_xyz(const Vector3 &p_euler);
|
|
|
|
Vector3 get_euler_xzy() const;
|
|
void set_euler_xzy(const Vector3 &p_euler);
|
|
|
|
Vector3 get_euler_yzx() const;
|
|
void set_euler_yzx(const Vector3 &p_euler);
|
|
|
|
Vector3 get_euler_yxz() const;
|
|
void set_euler_yxz(const Vector3 &p_euler);
|
|
|
|
Vector3 get_euler_zxy() const;
|
|
void set_euler_zxy(const Vector3 &p_euler);
|
|
|
|
Vector3 get_euler_zyx() const;
|
|
void set_euler_zyx(const Vector3 &p_euler);
|
|
|
|
Quat get_quat() const;
|
|
void set_quat(const Quat &p_quat);
|
|
|
|
Vector3 get_euler() const { return get_euler_yxz(); }
|
|
void set_euler(const Vector3 &p_euler) { set_euler_yxz(p_euler); }
|
|
|
|
void get_axis_angle(Vector3 &r_axis, real_t &r_angle) const;
|
|
void set_axis_angle(const Vector3 &p_axis, real_t p_angle);
|
|
|
|
void scale(const Vector3 &p_scale);
|
|
Basis scaled(const Vector3 &p_scale) const;
|
|
|
|
void scale_local(const Vector3 &p_scale);
|
|
Basis scaled_local(const Vector3 &p_scale) const;
|
|
|
|
Vector3 get_scale() const;
|
|
Vector3 get_scale_abs() const;
|
|
Vector3 get_scale_local() const;
|
|
|
|
void set_axis_angle_scale(const Vector3 &p_axis, real_t p_angle, const Vector3 &p_scale);
|
|
void set_euler_scale(const Vector3 &p_euler, const Vector3 &p_scale);
|
|
void set_quat_scale(const Quat &p_quat, const Vector3 &p_scale);
|
|
|
|
// transposed dot products
|
|
_FORCE_INLINE_ real_t tdotx(const Vector3 &v) const {
|
|
return elements[0][0] * v[0] + elements[1][0] * v[1] + elements[2][0] * v[2];
|
|
}
|
|
_FORCE_INLINE_ real_t tdoty(const Vector3 &v) const {
|
|
return elements[0][1] * v[0] + elements[1][1] * v[1] + elements[2][1] * v[2];
|
|
}
|
|
_FORCE_INLINE_ real_t tdotz(const Vector3 &v) const {
|
|
return elements[0][2] * v[0] + elements[1][2] * v[1] + elements[2][2] * v[2];
|
|
}
|
|
|
|
bool is_equal_approx(const Basis &p_basis) const;
|
|
// For complicated reasons, the second argument is always discarded. See #45062.
|
|
bool is_equal_approx(const Basis &a, const Basis &b) const { return is_equal_approx(a); }
|
|
bool is_equal_approx_ratio(const Basis &a, const Basis &b, real_t p_epsilon = UNIT_EPSILON) const;
|
|
|
|
bool operator==(const Basis &p_matrix) const;
|
|
bool operator!=(const Basis &p_matrix) const;
|
|
|
|
_FORCE_INLINE_ Vector3 xform(const Vector3 &p_vector) const;
|
|
_FORCE_INLINE_ Vector3 xform_inv(const Vector3 &p_vector) const;
|
|
_FORCE_INLINE_ void operator*=(const Basis &p_matrix);
|
|
_FORCE_INLINE_ Basis operator*(const Basis &p_matrix) const;
|
|
_FORCE_INLINE_ void operator+=(const Basis &p_matrix);
|
|
_FORCE_INLINE_ Basis operator+(const Basis &p_matrix) const;
|
|
_FORCE_INLINE_ void operator-=(const Basis &p_matrix);
|
|
_FORCE_INLINE_ Basis operator-(const Basis &p_matrix) const;
|
|
_FORCE_INLINE_ void operator*=(real_t p_val);
|
|
_FORCE_INLINE_ Basis operator*(real_t p_val) const;
|
|
|
|
int get_orthogonal_index() const;
|
|
void set_orthogonal_index(int p_index);
|
|
|
|
void set_diagonal(const Vector3 &p_diag);
|
|
|
|
bool is_orthogonal() const;
|
|
bool is_diagonal() const;
|
|
bool is_rotation() const;
|
|
|
|
Basis slerp(const Basis &p_to, const real_t &p_weight) const;
|
|
_FORCE_INLINE_ Basis lerp(const Basis &p_to, const real_t &p_weight) const;
|
|
|
|
operator String() const;
|
|
|
|
/* create / set */
|
|
|
|
_FORCE_INLINE_ void set(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz) {
|
|
elements[0][0] = xx;
|
|
elements[0][1] = xy;
|
|
elements[0][2] = xz;
|
|
elements[1][0] = yx;
|
|
elements[1][1] = yy;
|
|
elements[1][2] = yz;
|
|
elements[2][0] = zx;
|
|
elements[2][1] = zy;
|
|
elements[2][2] = zz;
|
|
}
|
|
_FORCE_INLINE_ void set(const Vector3 &p_x, const Vector3 &p_y, const Vector3 &p_z) {
|
|
set_axis(0, p_x);
|
|
set_axis(1, p_y);
|
|
set_axis(2, p_z);
|
|
}
|
|
_FORCE_INLINE_ Vector3 get_column(int i) const {
|
|
return Vector3(elements[0][i], elements[1][i], elements[2][i]);
|
|
}
|
|
|
|
_FORCE_INLINE_ Vector3 get_row(int i) const {
|
|
return Vector3(elements[i][0], elements[i][1], elements[i][2]);
|
|
}
|
|
_FORCE_INLINE_ Vector3 get_main_diagonal() const {
|
|
return Vector3(elements[0][0], elements[1][1], elements[2][2]);
|
|
}
|
|
|
|
_FORCE_INLINE_ void set_row(int i, const Vector3 &p_row) {
|
|
elements[i][0] = p_row.x;
|
|
elements[i][1] = p_row.y;
|
|
elements[i][2] = p_row.z;
|
|
}
|
|
|
|
_FORCE_INLINE_ void set_zero() {
|
|
elements[0].zero();
|
|
elements[1].zero();
|
|
elements[2].zero();
|
|
}
|
|
|
|
_FORCE_INLINE_ Basis transpose_xform(const Basis &m) const {
|
|
return Basis(
|
|
elements[0].x * m[0].x + elements[1].x * m[1].x + elements[2].x * m[2].x,
|
|
elements[0].x * m[0].y + elements[1].x * m[1].y + elements[2].x * m[2].y,
|
|
elements[0].x * m[0].z + elements[1].x * m[1].z + elements[2].x * m[2].z,
|
|
elements[0].y * m[0].x + elements[1].y * m[1].x + elements[2].y * m[2].x,
|
|
elements[0].y * m[0].y + elements[1].y * m[1].y + elements[2].y * m[2].y,
|
|
elements[0].y * m[0].z + elements[1].y * m[1].z + elements[2].y * m[2].z,
|
|
elements[0].z * m[0].x + elements[1].z * m[1].x + elements[2].z * m[2].x,
|
|
elements[0].z * m[0].y + elements[1].z * m[1].y + elements[2].z * m[2].y,
|
|
elements[0].z * m[0].z + elements[1].z * m[1].z + elements[2].z * m[2].z);
|
|
}
|
|
Basis(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz) {
|
|
set(xx, xy, xz, yx, yy, yz, zx, zy, zz);
|
|
}
|
|
|
|
void orthonormalize();
|
|
Basis orthonormalized() const;
|
|
|
|
bool is_symmetric() const;
|
|
Basis diagonalize();
|
|
|
|
// The following normal xform functions are correct for non-uniform scales.
|
|
// Use these two functions in combination to xform a series of normals.
|
|
// First use get_normal_xform_basis() to precalculate the inverse transpose.
|
|
// Then apply xform_normal_fast() multiple times using the inverse transpose basis.
|
|
Basis get_normal_xform_basis() const { return inverse().transposed(); }
|
|
|
|
// N.B. This only does a normal transform if the basis used is the inverse transpose!
|
|
// Otherwise use xform_normal().
|
|
Vector3 xform_normal_fast(const Vector3 &p_vector) const { return xform(p_vector).normalized(); }
|
|
|
|
// This function does the above but for a single normal vector. It is considerably slower, so should usually
|
|
// only be used in cases of single normals, or when the basis changes each time.
|
|
Vector3 xform_normal(const Vector3 &p_vector) const { return get_normal_xform_basis().xform_normal_fast(p_vector); }
|
|
|
|
operator Quat() const { return get_quat(); }
|
|
|
|
Basis(const Quat &p_quat) { set_quat(p_quat); }
|
|
Basis(const Quat &p_quat, const Vector3 &p_scale) { set_quat_scale(p_quat, p_scale); }
|
|
|
|
Basis(const Vector3 &p_euler) { set_euler(p_euler); }
|
|
Basis(const Vector3 &p_euler, const Vector3 &p_scale) { set_euler_scale(p_euler, p_scale); }
|
|
|
|
Basis(const Vector3 &p_axis, real_t p_angle) { set_axis_angle(p_axis, p_angle); }
|
|
Basis(const Vector3 &p_axis, real_t p_angle, const Vector3 &p_scale) { set_axis_angle_scale(p_axis, p_angle, p_scale); }
|
|
|
|
_FORCE_INLINE_ Basis(const Vector3 &row0, const Vector3 &row1, const Vector3 &row2) {
|
|
elements[0] = row0;
|
|
elements[1] = row1;
|
|
elements[2] = row2;
|
|
}
|
|
|
|
_FORCE_INLINE_ Basis() {}
|
|
};
|
|
|
|
_FORCE_INLINE_ void Basis::operator*=(const Basis &p_matrix) {
|
|
set(
|
|
p_matrix.tdotx(elements[0]), p_matrix.tdoty(elements[0]), p_matrix.tdotz(elements[0]),
|
|
p_matrix.tdotx(elements[1]), p_matrix.tdoty(elements[1]), p_matrix.tdotz(elements[1]),
|
|
p_matrix.tdotx(elements[2]), p_matrix.tdoty(elements[2]), p_matrix.tdotz(elements[2]));
|
|
}
|
|
|
|
_FORCE_INLINE_ Basis Basis::operator*(const Basis &p_matrix) const {
|
|
return Basis(
|
|
p_matrix.tdotx(elements[0]), p_matrix.tdoty(elements[0]), p_matrix.tdotz(elements[0]),
|
|
p_matrix.tdotx(elements[1]), p_matrix.tdoty(elements[1]), p_matrix.tdotz(elements[1]),
|
|
p_matrix.tdotx(elements[2]), p_matrix.tdoty(elements[2]), p_matrix.tdotz(elements[2]));
|
|
}
|
|
|
|
_FORCE_INLINE_ void Basis::operator+=(const Basis &p_matrix) {
|
|
elements[0] += p_matrix.elements[0];
|
|
elements[1] += p_matrix.elements[1];
|
|
elements[2] += p_matrix.elements[2];
|
|
}
|
|
|
|
_FORCE_INLINE_ Basis Basis::operator+(const Basis &p_matrix) const {
|
|
Basis ret(*this);
|
|
ret += p_matrix;
|
|
return ret;
|
|
}
|
|
|
|
_FORCE_INLINE_ void Basis::operator-=(const Basis &p_matrix) {
|
|
elements[0] -= p_matrix.elements[0];
|
|
elements[1] -= p_matrix.elements[1];
|
|
elements[2] -= p_matrix.elements[2];
|
|
}
|
|
|
|
_FORCE_INLINE_ Basis Basis::operator-(const Basis &p_matrix) const {
|
|
Basis ret(*this);
|
|
ret -= p_matrix;
|
|
return ret;
|
|
}
|
|
|
|
_FORCE_INLINE_ void Basis::operator*=(real_t p_val) {
|
|
elements[0] *= p_val;
|
|
elements[1] *= p_val;
|
|
elements[2] *= p_val;
|
|
}
|
|
|
|
_FORCE_INLINE_ Basis Basis::operator*(real_t p_val) const {
|
|
Basis ret(*this);
|
|
ret *= p_val;
|
|
return ret;
|
|
}
|
|
|
|
Vector3 Basis::xform(const Vector3 &p_vector) const {
|
|
return Vector3(
|
|
elements[0].dot(p_vector),
|
|
elements[1].dot(p_vector),
|
|
elements[2].dot(p_vector));
|
|
}
|
|
|
|
Vector3 Basis::xform_inv(const Vector3 &p_vector) const {
|
|
return Vector3(
|
|
(elements[0][0] * p_vector.x) + (elements[1][0] * p_vector.y) + (elements[2][0] * p_vector.z),
|
|
(elements[0][1] * p_vector.x) + (elements[1][1] * p_vector.y) + (elements[2][1] * p_vector.z),
|
|
(elements[0][2] * p_vector.x) + (elements[1][2] * p_vector.y) + (elements[2][2] * p_vector.z));
|
|
}
|
|
|
|
real_t Basis::determinant() const {
|
|
return elements[0][0] * (elements[1][1] * elements[2][2] - elements[2][1] * elements[1][2]) -
|
|
elements[1][0] * (elements[0][1] * elements[2][2] - elements[2][1] * elements[0][2]) +
|
|
elements[2][0] * (elements[0][1] * elements[1][2] - elements[1][1] * elements[0][2]);
|
|
}
|
|
|
|
Basis Basis::lerp(const Basis &p_to, const real_t &p_weight) const {
|
|
Basis b;
|
|
b.elements[0] = elements[0].linear_interpolate(p_to.elements[0], p_weight);
|
|
b.elements[1] = elements[1].linear_interpolate(p_to.elements[1], p_weight);
|
|
b.elements[2] = elements[2].linear_interpolate(p_to.elements[2], p_weight);
|
|
|
|
return b;
|
|
}
|
|
|
|
#endif // BASIS_H
|