godot/core/math/quick_hull.cpp
Rémi Verschelde 1426cd3b3a
One Copyright Update to rule them all
As many open source projects have started doing it, we're removing the
current year from the copyright notice, so that we don't need to bump
it every year.

It seems like only the first year of publication is technically
relevant for copyright notices, and even that seems to be something
that many companies stopped listing altogether (in a version controlled
codebase, the commits are a much better source of date of publication
than a hardcoded copyright statement).

We also now list Godot Engine contributors first as we're collectively
the current maintainers of the project, and we clarify that the
"exclusive" copyright of the co-founders covers the timespan before
opensourcing (their further contributions are included as part of Godot
Engine contributors).

Also fixed "cf." Frenchism - it's meant as "refer to / see".

Backported from #70885.
2023-01-10 15:26:54 +01:00

507 lines
13 KiB
C++

/**************************************************************************/
/* quick_hull.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#include "quick_hull.h"
#include "core/map.h"
uint32_t QuickHull::debug_stop_after = 0xFFFFFFFF;
bool QuickHull::_flag_warnings = true;
Error QuickHull::build(const Vector<Vector3> &p_points, Geometry::MeshData &r_mesh, real_t p_over_tolerance_epsilon) {
/* CREATE AABB VOLUME */
AABB aabb;
aabb.create_from_points(p_points);
if (aabb.size == Vector3()) {
return ERR_CANT_CREATE;
}
Vector<bool> valid_points;
valid_points.resize(p_points.size());
Set<Vector3> valid_cache;
for (int i = 0; i < p_points.size(); i++) {
Vector3 sp = p_points[i].snapped(Vector3(0.0001, 0.0001, 0.0001));
if (valid_cache.has(sp)) {
valid_points.write[i] = false;
} else {
valid_points.write[i] = true;
valid_cache.insert(sp);
}
}
/* CREATE INITIAL SIMPLEX */
int longest_axis = aabb.get_longest_axis_index();
//first two vertices are the most distant
int simplex[4] = { 0 };
{
real_t max = 0, min = 0;
for (int i = 0; i < p_points.size(); i++) {
if (!valid_points[i]) {
continue;
}
real_t d = p_points[i][longest_axis];
if (i == 0 || d < min) {
simplex[0] = i;
min = d;
}
if (i == 0 || d > max) {
simplex[1] = i;
max = d;
}
}
}
//third vertex is one most further away from the line
{
real_t maxd = 0;
Vector3 rel12 = p_points[simplex[0]] - p_points[simplex[1]];
for (int i = 0; i < p_points.size(); i++) {
if (!valid_points[i]) {
continue;
}
Vector3 n = rel12.cross(p_points[simplex[0]] - p_points[i]).cross(rel12).normalized();
real_t d = Math::abs(n.dot(p_points[simplex[0]]) - n.dot(p_points[i]));
if (i == 0 || d > maxd) {
maxd = d;
simplex[2] = i;
}
}
}
//fourth vertex is the one most further away from the plane
{
real_t maxd = 0;
Plane p(p_points[simplex[0]], p_points[simplex[1]], p_points[simplex[2]]);
for (int i = 0; i < p_points.size(); i++) {
if (!valid_points[i]) {
continue;
}
real_t d = Math::abs(p.distance_to(p_points[i]));
if (i == 0 || d > maxd) {
maxd = d;
simplex[3] = i;
}
}
}
//compute center of simplex, this is a point always warranted to be inside
Vector3 center;
for (int i = 0; i < 4; i++) {
center += p_points[simplex[i]];
}
center /= 4.0;
//add faces
List<Face> faces;
for (int i = 0; i < 4; i++) {
static const int face_order[4][3] = {
{ 0, 1, 2 },
{ 0, 1, 3 },
{ 0, 2, 3 },
{ 1, 2, 3 }
};
Face f;
for (int j = 0; j < 3; j++) {
f.vertices[j] = simplex[face_order[i][j]];
}
Plane p(p_points[f.vertices[0]], p_points[f.vertices[1]], p_points[f.vertices[2]]);
if (p.is_point_over(center)) {
//flip face to clockwise if facing inwards
SWAP(f.vertices[0], f.vertices[1]);
p = -p;
}
f.plane = p;
faces.push_back(f);
}
real_t over_tolerance = p_over_tolerance_epsilon * (aabb.size.x + aabb.size.y + aabb.size.z);
/* COMPUTE AVAILABLE VERTICES */
for (int i = 0; i < p_points.size(); i++) {
if (i == simplex[0]) {
continue;
}
if (i == simplex[1]) {
continue;
}
if (i == simplex[2]) {
continue;
}
if (i == simplex[3]) {
continue;
}
if (!valid_points[i]) {
continue;
}
for (List<Face>::Element *E = faces.front(); E; E = E->next()) {
if (E->get().plane.distance_to(p_points[i]) > over_tolerance) {
E->get().points_over.push_back(i);
break;
}
}
}
faces.sort(); // sort them, so the ones with points are in the back
/* BUILD HULL */
//poop face (while still remain)
//find further away point
//find lit faces
//determine horizon edges
//build new faces with horizon edges, them assign points side from all lit faces
//remove lit faces
uint32_t debug_stop = debug_stop_after;
while (debug_stop > 0 && faces.back()->get().points_over.size()) {
debug_stop--;
Face &f = faces.back()->get();
//find vertex most outside
int next = -1;
real_t next_d = 0;
for (int i = 0; i < f.points_over.size(); i++) {
real_t d = f.plane.distance_to(p_points[f.points_over[i]]);
if (d > next_d) {
next_d = d;
next = i;
}
}
ERR_FAIL_COND_V(next == -1, ERR_BUG);
Vector3 v = p_points[f.points_over[next]];
//find lit faces and lit edges
List<List<Face>::Element *> lit_faces; //lit face is a death sentence
Map<Edge, FaceConnect> lit_edges; //create this on the flight, should not be that bad for performance and simplifies code a lot
for (List<Face>::Element *E = faces.front(); E; E = E->next()) {
if (E->get().plane.distance_to(v) > 0) {
lit_faces.push_back(E);
for (int i = 0; i < 3; i++) {
uint32_t a = E->get().vertices[i];
uint32_t b = E->get().vertices[(i + 1) % 3];
Edge e(a, b);
Map<Edge, FaceConnect>::Element *F = lit_edges.find(e);
if (!F) {
F = lit_edges.insert(e, FaceConnect());
}
if (e.vertices[0] == a) {
//left
F->get().left = E;
} else {
F->get().right = E;
}
}
}
}
//create new faces from horizon edges
List<List<Face>::Element *> new_faces; //new faces
for (Map<Edge, FaceConnect>::Element *E = lit_edges.front(); E; E = E->next()) {
FaceConnect &fc = E->get();
if (fc.left && fc.right) {
continue; //edge is uninteresting, not on horizont
}
//create new face!
Face face;
face.vertices[0] = f.points_over[next];
face.vertices[1] = E->key().vertices[0];
face.vertices[2] = E->key().vertices[1];
Plane p(p_points[face.vertices[0]], p_points[face.vertices[1]], p_points[face.vertices[2]]);
if (p.is_point_over(center)) {
//flip face to clockwise if facing inwards
SWAP(face.vertices[0], face.vertices[1]);
p = -p;
}
face.plane = p;
new_faces.push_back(faces.push_back(face));
}
//distribute points into new faces
for (List<List<Face>::Element *>::Element *F = lit_faces.front(); F; F = F->next()) {
Face &lf = F->get()->get();
for (int i = 0; i < lf.points_over.size(); i++) {
if (lf.points_over[i] == f.points_over[next]) { //do not add current one
continue;
}
Vector3 p = p_points[lf.points_over[i]];
for (List<List<Face>::Element *>::Element *E = new_faces.front(); E; E = E->next()) {
Face &f2 = E->get()->get();
if (f2.plane.distance_to(p) > over_tolerance) {
f2.points_over.push_back(lf.points_over[i]);
break;
}
}
}
}
//erase lit faces
while (lit_faces.size()) {
faces.erase(lit_faces.front()->get());
lit_faces.pop_front();
}
//put faces that contain no points on the front
for (List<List<Face>::Element *>::Element *E = new_faces.front(); E; E = E->next()) {
Face &f2 = E->get()->get();
if (f2.points_over.size() == 0) {
faces.move_to_front(E->get());
}
}
//whew, done with iteration, go next
}
/* CREATE MESHDATA */
//make a map of edges again
Map<Edge, RetFaceConnect> ret_edges;
List<Geometry::MeshData::Face> ret_faces;
for (List<Face>::Element *E = faces.front(); E; E = E->next()) {
Geometry::MeshData::Face f;
f.plane = E->get().plane;
for (int i = 0; i < 3; i++) {
f.indices.push_back(E->get().vertices[i]);
}
List<Geometry::MeshData::Face>::Element *F = ret_faces.push_back(f);
for (int i = 0; i < 3; i++) {
uint32_t a = E->get().vertices[i];
uint32_t b = E->get().vertices[(i + 1) % 3];
Edge e(a, b);
Map<Edge, RetFaceConnect>::Element *G = ret_edges.find(e);
if (!G) {
G = ret_edges.insert(e, RetFaceConnect());
}
if (e.vertices[0] == a) {
//left
G->get().left = F;
} else {
G->get().right = F;
}
}
}
//fill faces
bool warning_f = false;
bool warning_o_equal_e = false;
bool warning_o = false;
bool warning_not_f2 = false;
for (List<Geometry::MeshData::Face>::Element *E = ret_faces.front(); E; E = E->next()) {
Geometry::MeshData::Face &f = E->get();
for (int i = 0; i < f.indices.size(); i++) {
int a = E->get().indices[i];
int b = E->get().indices[(i + 1) % f.indices.size()];
Edge e(a, b);
Map<Edge, RetFaceConnect>::Element *F = ret_edges.find(e);
if (unlikely(!F)) {
warning_f = true;
continue;
}
List<Geometry::MeshData::Face>::Element *O = F->get().left == E ? F->get().right : F->get().left;
if (unlikely(O == E)) {
warning_o_equal_e = true;
continue;
}
if (unlikely(!O)) {
warning_o = true;
continue;
}
if (O->get().plane.is_equal_approx(f.plane)) {
//merge and delete edge and contiguous face, while repointing edges (uuugh!)
int ois = O->get().indices.size();
for (int j = 0; j < ois; j++) {
//search a
if (O->get().indices[j] == a) {
//append the rest
for (int k = 0; k < ois; k++) {
int idx = O->get().indices[(k + j) % ois];
int idxn = O->get().indices[(k + j + 1) % ois];
if (idx == b && idxn == a) { //already have b!
break;
}
if (idx != a) {
f.indices.insert(i + 1, idx);
i++;
}
Edge e2(idx, idxn);
Map<Edge, RetFaceConnect>::Element *F2 = ret_edges.find(e2);
if (unlikely(!F2)) {
warning_not_f2 = true;
continue;
}
//change faceconnect, point to this face instead
if (F2->get().left == O) {
F2->get().left = E;
} else if (F2->get().right == O) {
F2->get().right = E;
}
}
break;
}
}
// remove all edge connections to this face
for (Map<Edge, RetFaceConnect>::Element *G = ret_edges.front(); G; G = G->next()) {
if (G->get().left == O) {
G->get().left = nullptr;
}
if (G->get().right == O) {
G->get().right = nullptr;
}
}
ret_edges.erase(F); //remove the edge
ret_faces.erase(O); //remove the face
}
}
}
if (_flag_warnings) {
if (warning_f) {
WARN_PRINT("QuickHull : !F");
}
if (warning_o_equal_e) {
WARN_PRINT("QuickHull : O == E");
}
if (warning_o) {
WARN_PRINT("QuickHull : O == nullptr");
}
if (warning_not_f2) {
WARN_PRINT("QuickHull : !F2");
}
}
//fill mesh
r_mesh.faces.clear();
r_mesh.faces.resize(ret_faces.size());
int idx = 0;
for (List<Geometry::MeshData::Face>::Element *E = ret_faces.front(); E; E = E->next()) {
r_mesh.faces.write[idx++] = E->get();
}
r_mesh.edges.resize(ret_edges.size());
idx = 0;
for (Map<Edge, RetFaceConnect>::Element *E = ret_edges.front(); E; E = E->next()) {
Geometry::MeshData::Edge e;
e.a = E->key().vertices[0];
e.b = E->key().vertices[1];
r_mesh.edges.write[idx++] = e;
}
// we are only interested in outputting the points that are used
Vector<int> out_indices;
for (int n = 0; n < r_mesh.faces.size(); n++) {
Geometry::MeshData::Face face = r_mesh.faces[n];
for (int i = 0; i < face.indices.size(); i++) {
face.indices.set(i, find_or_create_output_index(face.indices[i], out_indices));
}
r_mesh.faces.set(n, face);
}
for (int n = 0; n < r_mesh.edges.size(); n++) {
Geometry::MeshData::Edge e = r_mesh.edges[n];
e.a = find_or_create_output_index(e.a, out_indices);
e.b = find_or_create_output_index(e.b, out_indices);
r_mesh.edges.set(n, e);
}
// rejig the final vertices
r_mesh.vertices.resize(out_indices.size());
for (int n = 0; n < out_indices.size(); n++) {
r_mesh.vertices.set(n, p_points[out_indices[n]]);
}
return OK;
}