833 lines
24 KiB
C++
833 lines
24 KiB
C++
/*
|
|
Copyright (c) 2003-2009 Erwin Coumans http://bullet.googlecode.com
|
|
|
|
This software is provided 'as-is', without any express or implied warranty.
|
|
In no event will the authors be held liable for any damages arising from the use of this software.
|
|
Permission is granted to anyone to use this software for any purpose,
|
|
including commercial applications, and to alter it and redistribute it freely,
|
|
subject to the following restrictions:
|
|
|
|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
|
3. This notice may not be removed or altered from any source distribution.
|
|
*/
|
|
|
|
#ifndef BT_SCALAR_H
|
|
#define BT_SCALAR_H
|
|
|
|
#ifdef BT_MANAGED_CODE
|
|
//Aligned data types not supported in managed code
|
|
#pragma unmanaged
|
|
#endif
|
|
|
|
#include <math.h>
|
|
#include <stdlib.h> //size_t for MSVC 6.0
|
|
#include <float.h>
|
|
|
|
/* SVN $Revision$ on $Date$ from http://bullet.googlecode.com*/
|
|
#define BT_BULLET_VERSION 325
|
|
|
|
inline int btGetVersion()
|
|
{
|
|
return BT_BULLET_VERSION;
|
|
}
|
|
|
|
inline int btIsDoublePrecision()
|
|
{
|
|
#ifdef BT_USE_DOUBLE_PRECISION
|
|
return true;
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
|
|
// The following macro "BT_NOT_EMPTY_FILE" can be put into a file
|
|
// in order suppress the MS Visual C++ Linker warning 4221
|
|
//
|
|
// warning LNK4221: no public symbols found; archive member will be inaccessible
|
|
//
|
|
// This warning occurs on PC and XBOX when a file compiles out completely
|
|
// has no externally visible symbols which may be dependant on configuration
|
|
// #defines and options.
|
|
//
|
|
// see more https://stackoverflow.com/questions/1822887/what-is-the-best-way-to-eliminate-ms-visual-c-linker-warning-warning-lnk422
|
|
|
|
#if defined(_MSC_VER)
|
|
#define BT_NOT_EMPTY_FILE_CAT_II(p, res) res
|
|
#define BT_NOT_EMPTY_FILE_CAT_I(a, b) BT_NOT_EMPTY_FILE_CAT_II(~, a##b)
|
|
#define BT_NOT_EMPTY_FILE_CAT(a, b) BT_NOT_EMPTY_FILE_CAT_I(a, b)
|
|
#define BT_NOT_EMPTY_FILE \
|
|
namespace \
|
|
{ \
|
|
char BT_NOT_EMPTY_FILE_CAT(NoEmptyFileDummy, __COUNTER__); \
|
|
}
|
|
#else
|
|
#define BT_NOT_EMPTY_FILE
|
|
#endif
|
|
|
|
// clang and most formatting tools don't support indentation of preprocessor guards, so turn it off
|
|
// clang-format off
|
|
#if defined(DEBUG) || defined (_DEBUG)
|
|
#define BT_DEBUG
|
|
#endif
|
|
|
|
#ifdef _WIN32
|
|
#if defined(__GNUC__) // it should handle both MINGW and CYGWIN
|
|
#define SIMD_FORCE_INLINE __inline__ __attribute__((always_inline))
|
|
#define ATTRIBUTE_ALIGNED16(a) a __attribute__((aligned(16)))
|
|
#define ATTRIBUTE_ALIGNED64(a) a __attribute__((aligned(64)))
|
|
#define ATTRIBUTE_ALIGNED128(a) a __attribute__((aligned(128)))
|
|
#elif ( defined(_MSC_VER) && _MSC_VER < 1300 )
|
|
#define SIMD_FORCE_INLINE inline
|
|
#define ATTRIBUTE_ALIGNED16(a) a
|
|
#define ATTRIBUTE_ALIGNED64(a) a
|
|
#define ATTRIBUTE_ALIGNED128(a) a
|
|
#elif defined(_M_ARM)
|
|
#define SIMD_FORCE_INLINE __forceinline
|
|
#define ATTRIBUTE_ALIGNED16(a) __declspec() a
|
|
#define ATTRIBUTE_ALIGNED64(a) __declspec() a
|
|
#define ATTRIBUTE_ALIGNED128(a) __declspec () a
|
|
#else//__MINGW32__
|
|
//#define BT_HAS_ALIGNED_ALLOCATOR
|
|
#pragma warning(disable : 4324) // disable padding warning
|
|
// #pragma warning(disable:4530) // Disable the exception disable but used in MSCV Stl warning.
|
|
#pragma warning(disable:4996) //Turn off warnings about deprecated C routines
|
|
// #pragma warning(disable:4786) // Disable the "debug name too long" warning
|
|
|
|
#define SIMD_FORCE_INLINE __forceinline
|
|
#define ATTRIBUTE_ALIGNED16(a) __declspec(align(16)) a
|
|
#define ATTRIBUTE_ALIGNED64(a) __declspec(align(64)) a
|
|
#define ATTRIBUTE_ALIGNED128(a) __declspec (align(128)) a
|
|
#ifdef _XBOX
|
|
#define BT_USE_VMX128
|
|
|
|
#include <ppcintrinsics.h>
|
|
#define BT_HAVE_NATIVE_FSEL
|
|
#define btFsel(a,b,c) __fsel((a),(b),(c))
|
|
#else
|
|
|
|
#if defined (_M_ARM) || defined (_M_ARM64)
|
|
//Do not turn SSE on for ARM (may want to turn on BT_USE_NEON however)
|
|
#elif (defined (_WIN32) && (_MSC_VER) && _MSC_VER >= 1400) && (!defined (BT_USE_DOUBLE_PRECISION))
|
|
|
|
#ifdef __clang__
|
|
#define __BT_DISABLE_SSE__
|
|
#endif
|
|
#ifndef __BT_DISABLE_SSE__
|
|
#if _MSC_VER>1400
|
|
#define BT_USE_SIMD_VECTOR3
|
|
#endif
|
|
#define BT_USE_SSE
|
|
#endif//__BT_DISABLE_SSE__
|
|
#ifdef BT_USE_SSE
|
|
|
|
#if (_MSC_FULL_VER >= 170050727)//Visual Studio 2012 can compile SSE4/FMA3 (but SSE4/FMA3 is not enabled by default)
|
|
#define BT_ALLOW_SSE4
|
|
#endif //(_MSC_FULL_VER >= 160040219)
|
|
|
|
//BT_USE_SSE_IN_API is disabled under Windows by default, because
|
|
//it makes it harder to integrate Bullet into your application under Windows
|
|
//(structured embedding Bullet structs/classes need to be 16-byte aligned)
|
|
//with relatively little performance gain
|
|
//If you are not embedded Bullet data in your classes, or make sure that you align those classes on 16-byte boundaries
|
|
//you can manually enable this line or set it in the build system for a bit of performance gain (a few percent, dependent on usage)
|
|
//#define BT_USE_SSE_IN_API
|
|
#endif //BT_USE_SSE
|
|
#include <emmintrin.h>
|
|
#endif
|
|
|
|
#endif//_XBOX
|
|
|
|
#endif //__MINGW32__
|
|
|
|
#ifdef BT_DEBUG
|
|
#ifdef _MSC_VER
|
|
#include <stdio.h>
|
|
#define btAssert(x) { if(!(x)){printf("Assert " __FILE__ ":%u (%s)\n", __LINE__, #x);__debugbreak(); }}
|
|
#else//_MSC_VER
|
|
#include <assert.h>
|
|
#define btAssert assert
|
|
#endif//_MSC_VER
|
|
#else
|
|
#define btAssert(x)
|
|
#endif
|
|
//btFullAssert is optional, slows down a lot
|
|
#define btFullAssert(x)
|
|
|
|
#define btLikely(_c) _c
|
|
#define btUnlikely(_c) _c
|
|
|
|
#else//_WIN32
|
|
|
|
#if defined (__CELLOS_LV2__)
|
|
#define SIMD_FORCE_INLINE inline __attribute__((always_inline))
|
|
#define ATTRIBUTE_ALIGNED16(a) a __attribute__ ((aligned (16)))
|
|
#define ATTRIBUTE_ALIGNED64(a) a __attribute__ ((aligned (64)))
|
|
#define ATTRIBUTE_ALIGNED128(a) a __attribute__ ((aligned (128)))
|
|
#ifndef assert
|
|
#include <assert.h>
|
|
#endif
|
|
#ifdef BT_DEBUG
|
|
#ifdef __SPU__
|
|
#include <spu_printf.h>
|
|
#define printf spu_printf
|
|
#define btAssert(x) {if(!(x)){printf("Assert " __FILE__ ":%u ("#x")\n", __LINE__);spu_hcmpeq(0,0);}}
|
|
#else
|
|
#define btAssert assert
|
|
#endif
|
|
|
|
#else//BT_DEBUG
|
|
#define btAssert(x)
|
|
#endif//BT_DEBUG
|
|
//btFullAssert is optional, slows down a lot
|
|
#define btFullAssert(x)
|
|
|
|
#define btLikely(_c) _c
|
|
#define btUnlikely(_c) _c
|
|
|
|
#else//defined (__CELLOS_LV2__)
|
|
|
|
#ifdef USE_LIBSPE2
|
|
|
|
#define SIMD_FORCE_INLINE __inline
|
|
#define ATTRIBUTE_ALIGNED16(a) a __attribute__ ((aligned (16)))
|
|
#define ATTRIBUTE_ALIGNED64(a) a __attribute__ ((aligned (64)))
|
|
#define ATTRIBUTE_ALIGNED128(a) a __attribute__ ((aligned (128)))
|
|
#ifndef assert
|
|
#include <assert.h>
|
|
#endif
|
|
#ifdef BT_DEBUG
|
|
#define btAssert assert
|
|
#else
|
|
#define btAssert(x)
|
|
#endif
|
|
//btFullAssert is optional, slows down a lot
|
|
#define btFullAssert(x)
|
|
|
|
|
|
#define btLikely(_c) __builtin_expect((_c), 1)
|
|
#define btUnlikely(_c) __builtin_expect((_c), 0)
|
|
|
|
|
|
#else//USE_LIBSPE2
|
|
//non-windows systems
|
|
|
|
#if (defined (__APPLE__) && (!defined (BT_USE_DOUBLE_PRECISION)))
|
|
#if defined (__i386__) || defined (__x86_64__)
|
|
#define BT_USE_SIMD_VECTOR3
|
|
#define BT_USE_SSE
|
|
//BT_USE_SSE_IN_API is enabled on Mac OSX by default, because memory is automatically aligned on 16-byte boundaries
|
|
//if apps run into issues, we will disable the next line
|
|
#define BT_USE_SSE_IN_API
|
|
#ifdef BT_USE_SSE
|
|
// include appropriate SSE level
|
|
#if defined (__SSE4_1__)
|
|
#include <smmintrin.h>
|
|
#elif defined (__SSSE3__)
|
|
#include <tmmintrin.h>
|
|
#elif defined (__SSE3__)
|
|
#include <pmmintrin.h>
|
|
#else
|
|
#include <emmintrin.h>
|
|
#endif
|
|
#endif //BT_USE_SSE
|
|
#elif defined( __ARM_NEON__ )
|
|
#ifdef __clang__
|
|
#define BT_USE_NEON 1
|
|
#define BT_USE_SIMD_VECTOR3
|
|
|
|
#if defined BT_USE_NEON && defined (__clang__)
|
|
#include <arm_neon.h>
|
|
#endif//BT_USE_NEON
|
|
#endif //__clang__
|
|
#endif//__arm__
|
|
|
|
#define SIMD_FORCE_INLINE inline __attribute__ ((always_inline))
|
|
///@todo: check out alignment methods for other platforms/compilers
|
|
#define ATTRIBUTE_ALIGNED16(a) a __attribute__ ((aligned (16)))
|
|
#define ATTRIBUTE_ALIGNED64(a) a __attribute__ ((aligned (64)))
|
|
#define ATTRIBUTE_ALIGNED128(a) a __attribute__ ((aligned (128)))
|
|
#ifndef assert
|
|
#include <assert.h>
|
|
#endif
|
|
|
|
#if defined(DEBUG) || defined (_DEBUG)
|
|
#if defined (__i386__) || defined (__x86_64__)
|
|
#include <stdio.h>
|
|
#define btAssert(x)\
|
|
{\
|
|
if(!(x))\
|
|
{\
|
|
printf("Assert %s in line %d, file %s\n",#x, __LINE__, __FILE__);\
|
|
asm volatile ("int3");\
|
|
}\
|
|
}
|
|
#else//defined (__i386__) || defined (__x86_64__)
|
|
#define btAssert assert
|
|
#endif//defined (__i386__) || defined (__x86_64__)
|
|
#else//defined(DEBUG) || defined (_DEBUG)
|
|
#define btAssert(x)
|
|
#endif//defined(DEBUG) || defined (_DEBUG)
|
|
|
|
//btFullAssert is optional, slows down a lot
|
|
#define btFullAssert(x)
|
|
#define btLikely(_c) _c
|
|
#define btUnlikely(_c) _c
|
|
|
|
#else//__APPLE__
|
|
|
|
#define SIMD_FORCE_INLINE inline
|
|
///@todo: check out alignment methods for other platforms/compilers
|
|
///#define ATTRIBUTE_ALIGNED16(a) a __attribute__ ((aligned (16)))
|
|
///#define ATTRIBUTE_ALIGNED64(a) a __attribute__ ((aligned (64)))
|
|
///#define ATTRIBUTE_ALIGNED128(a) a __attribute__ ((aligned (128)))
|
|
#define ATTRIBUTE_ALIGNED16(a) a
|
|
#define ATTRIBUTE_ALIGNED64(a) a
|
|
#define ATTRIBUTE_ALIGNED128(a) a
|
|
#ifndef assert
|
|
#include <assert.h>
|
|
#endif
|
|
|
|
#if defined(DEBUG) || defined (_DEBUG)
|
|
#define btAssert assert
|
|
#else
|
|
#define btAssert(x)
|
|
#endif
|
|
|
|
//btFullAssert is optional, slows down a lot
|
|
#define btFullAssert(x)
|
|
#define btLikely(_c) _c
|
|
#define btUnlikely(_c) _c
|
|
#endif //__APPLE__
|
|
#endif // LIBSPE2
|
|
#endif //__CELLOS_LV2__
|
|
#endif//_WIN32
|
|
|
|
|
|
///The btScalar type abstracts floating point numbers, to easily switch between double and single floating point precision.
|
|
#if defined(BT_USE_DOUBLE_PRECISION)
|
|
typedef double btScalar;
|
|
//this number could be bigger in double precision
|
|
#define BT_LARGE_FLOAT 1e30
|
|
#else
|
|
typedef float btScalar;
|
|
//keep BT_LARGE_FLOAT*BT_LARGE_FLOAT < FLT_MAX
|
|
#define BT_LARGE_FLOAT 1e18f
|
|
#endif
|
|
|
|
#ifdef BT_USE_SSE
|
|
typedef __m128 btSimdFloat4;
|
|
#endif //BT_USE_SSE
|
|
|
|
#if defined(BT_USE_SSE)
|
|
//#if defined BT_USE_SSE_IN_API && defined (BT_USE_SSE)
|
|
#ifdef _WIN32
|
|
|
|
#ifndef BT_NAN
|
|
static int btNanMask = 0x7F800001;
|
|
#define BT_NAN (*(float *)&btNanMask)
|
|
#endif
|
|
|
|
#ifndef BT_INFINITY
|
|
static int btInfinityMask = 0x7F800000;
|
|
#define BT_INFINITY (*(float *)&btInfinityMask)
|
|
inline int btGetInfinityMask() //suppress stupid compiler warning
|
|
{
|
|
return btInfinityMask;
|
|
}
|
|
#endif
|
|
|
|
|
|
|
|
//use this, in case there are clashes (such as xnamath.h)
|
|
#ifndef BT_NO_SIMD_OPERATOR_OVERLOADS
|
|
inline __m128 operator+(const __m128 A, const __m128 B)
|
|
{
|
|
return _mm_add_ps(A, B);
|
|
}
|
|
|
|
inline __m128 operator-(const __m128 A, const __m128 B)
|
|
{
|
|
return _mm_sub_ps(A, B);
|
|
}
|
|
|
|
inline __m128 operator*(const __m128 A, const __m128 B)
|
|
{
|
|
return _mm_mul_ps(A, B);
|
|
}
|
|
#endif //BT_NO_SIMD_OPERATOR_OVERLOADS
|
|
|
|
#define btCastfTo128i(a) (_mm_castps_si128(a))
|
|
#define btCastfTo128d(a) (_mm_castps_pd(a))
|
|
#define btCastiTo128f(a) (_mm_castsi128_ps(a))
|
|
#define btCastdTo128f(a) (_mm_castpd_ps(a))
|
|
#define btCastdTo128i(a) (_mm_castpd_si128(a))
|
|
#define btAssign128(r0, r1, r2, r3) _mm_setr_ps(r0, r1, r2, r3)
|
|
|
|
#else //_WIN32
|
|
|
|
#define btCastfTo128i(a) ((__m128i)(a))
|
|
#define btCastfTo128d(a) ((__m128d)(a))
|
|
#define btCastiTo128f(a) ((__m128)(a))
|
|
#define btCastdTo128f(a) ((__m128)(a))
|
|
#define btCastdTo128i(a) ((__m128i)(a))
|
|
#define btAssign128(r0, r1, r2, r3) \
|
|
(__m128) { r0, r1, r2, r3 }
|
|
#define BT_INFINITY INFINITY
|
|
#define BT_NAN NAN
|
|
#endif //_WIN32
|
|
#else//BT_USE_SSE
|
|
|
|
#ifdef BT_USE_NEON
|
|
#include <arm_neon.h>
|
|
|
|
typedef float32x4_t btSimdFloat4;
|
|
#define BT_INFINITY INFINITY
|
|
#define BT_NAN NAN
|
|
#define btAssign128(r0, r1, r2, r3) \
|
|
(float32x4_t) { r0, r1, r2, r3 }
|
|
#else //BT_USE_NEON
|
|
|
|
#ifndef BT_INFINITY
|
|
struct btInfMaskConverter
|
|
{
|
|
union {
|
|
float mask;
|
|
int intmask;
|
|
};
|
|
btInfMaskConverter(int _mask = 0x7F800000)
|
|
: intmask(_mask)
|
|
{
|
|
}
|
|
};
|
|
static btInfMaskConverter btInfinityMask = 0x7F800000;
|
|
#define BT_INFINITY (btInfinityMask.mask)
|
|
inline int btGetInfinityMask() //suppress stupid compiler warning
|
|
{
|
|
return btInfinityMask.intmask;
|
|
}
|
|
#endif
|
|
#endif //BT_USE_NEON
|
|
|
|
#endif //BT_USE_SSE
|
|
|
|
#ifdef BT_USE_NEON
|
|
#include <arm_neon.h>
|
|
|
|
typedef float32x4_t btSimdFloat4;
|
|
#define BT_INFINITY INFINITY
|
|
#define BT_NAN NAN
|
|
#define btAssign128(r0, r1, r2, r3) \
|
|
(float32x4_t) { r0, r1, r2, r3 }
|
|
#endif//BT_USE_NEON
|
|
|
|
#define BT_DECLARE_ALIGNED_ALLOCATOR() \
|
|
SIMD_FORCE_INLINE void *operator new(size_t sizeInBytes) { return btAlignedAlloc(sizeInBytes, 16); } \
|
|
SIMD_FORCE_INLINE void operator delete(void *ptr) { btAlignedFree(ptr); } \
|
|
SIMD_FORCE_INLINE void *operator new(size_t, void *ptr) { return ptr; } \
|
|
SIMD_FORCE_INLINE void operator delete(void *, void *) {} \
|
|
SIMD_FORCE_INLINE void *operator new[](size_t sizeInBytes) { return btAlignedAlloc(sizeInBytes, 16); } \
|
|
SIMD_FORCE_INLINE void operator delete[](void *ptr) { btAlignedFree(ptr); } \
|
|
SIMD_FORCE_INLINE void *operator new[](size_t, void *ptr) { return ptr; } \
|
|
SIMD_FORCE_INLINE void operator delete[](void *, void *) {}
|
|
|
|
#if defined(BT_USE_DOUBLE_PRECISION) || defined(BT_FORCE_DOUBLE_FUNCTIONS)
|
|
|
|
SIMD_FORCE_INLINE btScalar btSqrt(btScalar x)
|
|
{
|
|
return sqrt(x);
|
|
}
|
|
SIMD_FORCE_INLINE btScalar btFabs(btScalar x) { return fabs(x); }
|
|
SIMD_FORCE_INLINE btScalar btCos(btScalar x) { return cos(x); }
|
|
SIMD_FORCE_INLINE btScalar btSin(btScalar x) { return sin(x); }
|
|
SIMD_FORCE_INLINE btScalar btTan(btScalar x) { return tan(x); }
|
|
SIMD_FORCE_INLINE btScalar btAcos(btScalar x)
|
|
{
|
|
if (x < btScalar(-1)) x = btScalar(-1);
|
|
if (x > btScalar(1)) x = btScalar(1);
|
|
return acos(x);
|
|
}
|
|
SIMD_FORCE_INLINE btScalar btAsin(btScalar x)
|
|
{
|
|
if (x < btScalar(-1)) x = btScalar(-1);
|
|
if (x > btScalar(1)) x = btScalar(1);
|
|
return asin(x);
|
|
}
|
|
SIMD_FORCE_INLINE btScalar btAtan(btScalar x) { return atan(x); }
|
|
SIMD_FORCE_INLINE btScalar btAtan2(btScalar x, btScalar y) { return atan2(x, y); }
|
|
SIMD_FORCE_INLINE btScalar btExp(btScalar x) { return exp(x); }
|
|
SIMD_FORCE_INLINE btScalar btLog(btScalar x) { return log(x); }
|
|
SIMD_FORCE_INLINE btScalar btPow(btScalar x, btScalar y) { return pow(x, y); }
|
|
SIMD_FORCE_INLINE btScalar btFmod(btScalar x, btScalar y) { return fmod(x, y); }
|
|
|
|
#else//BT_USE_DOUBLE_PRECISION
|
|
|
|
SIMD_FORCE_INLINE btScalar btSqrt(btScalar y)
|
|
{
|
|
#ifdef USE_APPROXIMATION
|
|
#ifdef __LP64__
|
|
float xhalf = 0.5f * y;
|
|
int i = *(int *)&y;
|
|
i = 0x5f375a86 - (i >> 1);
|
|
y = *(float *)&i;
|
|
y = y * (1.5f - xhalf * y * y);
|
|
y = y * (1.5f - xhalf * y * y);
|
|
y = y * (1.5f - xhalf * y * y);
|
|
y = 1 / y;
|
|
return y;
|
|
#else
|
|
double x, z, tempf;
|
|
unsigned long *tfptr = ((unsigned long *)&tempf) + 1;
|
|
tempf = y;
|
|
*tfptr = (0xbfcdd90a - *tfptr) >> 1; /* estimate of 1/sqrt(y) */
|
|
x = tempf;
|
|
z = y * btScalar(0.5);
|
|
x = (btScalar(1.5) * x) - (x * x) * (x * z); /* iteration formula */
|
|
x = (btScalar(1.5) * x) - (x * x) * (x * z);
|
|
x = (btScalar(1.5) * x) - (x * x) * (x * z);
|
|
x = (btScalar(1.5) * x) - (x * x) * (x * z);
|
|
x = (btScalar(1.5) * x) - (x * x) * (x * z);
|
|
return x * y;
|
|
#endif
|
|
#else
|
|
return sqrtf(y);
|
|
#endif
|
|
}
|
|
SIMD_FORCE_INLINE btScalar btFabs(btScalar x) { return fabsf(x); }
|
|
SIMD_FORCE_INLINE btScalar btCos(btScalar x) { return cosf(x); }
|
|
SIMD_FORCE_INLINE btScalar btSin(btScalar x) { return sinf(x); }
|
|
SIMD_FORCE_INLINE btScalar btTan(btScalar x) { return tanf(x); }
|
|
SIMD_FORCE_INLINE btScalar btAcos(btScalar x)
|
|
{
|
|
if (x < btScalar(-1))
|
|
x = btScalar(-1);
|
|
if (x > btScalar(1))
|
|
x = btScalar(1);
|
|
return acosf(x);
|
|
}
|
|
SIMD_FORCE_INLINE btScalar btAsin(btScalar x)
|
|
{
|
|
if (x < btScalar(-1))
|
|
x = btScalar(-1);
|
|
if (x > btScalar(1))
|
|
x = btScalar(1);
|
|
return asinf(x);
|
|
}
|
|
SIMD_FORCE_INLINE btScalar btAtan(btScalar x) { return atanf(x); }
|
|
SIMD_FORCE_INLINE btScalar btAtan2(btScalar x, btScalar y) { return atan2f(x, y); }
|
|
SIMD_FORCE_INLINE btScalar btExp(btScalar x) { return expf(x); }
|
|
SIMD_FORCE_INLINE btScalar btLog(btScalar x) { return logf(x); }
|
|
SIMD_FORCE_INLINE btScalar btPow(btScalar x, btScalar y) { return powf(x, y); }
|
|
SIMD_FORCE_INLINE btScalar btFmod(btScalar x, btScalar y) { return fmodf(x, y); }
|
|
|
|
#endif//BT_USE_DOUBLE_PRECISION
|
|
|
|
#define SIMD_PI btScalar(3.1415926535897932384626433832795029)
|
|
#define SIMD_2_PI (btScalar(2.0) * SIMD_PI)
|
|
#define SIMD_HALF_PI (SIMD_PI * btScalar(0.5))
|
|
#define SIMD_RADS_PER_DEG (SIMD_2_PI / btScalar(360.0))
|
|
#define SIMD_DEGS_PER_RAD (btScalar(360.0) / SIMD_2_PI)
|
|
#define SIMDSQRT12 btScalar(0.7071067811865475244008443621048490)
|
|
#define btRecipSqrt(x) ((btScalar)(btScalar(1.0) / btSqrt(btScalar(x)))) /* reciprocal square root */
|
|
#define btRecip(x) (btScalar(1.0) / btScalar(x))
|
|
|
|
#ifdef BT_USE_DOUBLE_PRECISION
|
|
#define SIMD_EPSILON DBL_EPSILON
|
|
#define SIMD_INFINITY DBL_MAX
|
|
#define BT_ONE 1.0
|
|
#define BT_ZERO 0.0
|
|
#define BT_TWO 2.0
|
|
#define BT_HALF 0.5
|
|
#else
|
|
#define SIMD_EPSILON FLT_EPSILON
|
|
#define SIMD_INFINITY FLT_MAX
|
|
#define BT_ONE 1.0f
|
|
#define BT_ZERO 0.0f
|
|
#define BT_TWO 2.0f
|
|
#define BT_HALF 0.5f
|
|
#endif
|
|
|
|
// clang-format on
|
|
|
|
SIMD_FORCE_INLINE btScalar btAtan2Fast(btScalar y, btScalar x)
|
|
{
|
|
btScalar coeff_1 = SIMD_PI / 4.0f;
|
|
btScalar coeff_2 = 3.0f * coeff_1;
|
|
btScalar abs_y = btFabs(y);
|
|
btScalar angle;
|
|
if (x >= 0.0f)
|
|
{
|
|
btScalar r = (x - abs_y) / (x + abs_y);
|
|
angle = coeff_1 - coeff_1 * r;
|
|
}
|
|
else
|
|
{
|
|
btScalar r = (x + abs_y) / (abs_y - x);
|
|
angle = coeff_2 - coeff_1 * r;
|
|
}
|
|
return (y < 0.0f) ? -angle : angle;
|
|
}
|
|
|
|
SIMD_FORCE_INLINE bool btFuzzyZero(btScalar x) { return btFabs(x) < SIMD_EPSILON; }
|
|
|
|
SIMD_FORCE_INLINE bool btEqual(btScalar a, btScalar eps)
|
|
{
|
|
return (((a) <= eps) && !((a) < -eps));
|
|
}
|
|
SIMD_FORCE_INLINE bool btGreaterEqual(btScalar a, btScalar eps)
|
|
{
|
|
return (!((a) <= eps));
|
|
}
|
|
|
|
SIMD_FORCE_INLINE int btIsNegative(btScalar x)
|
|
{
|
|
return x < btScalar(0.0) ? 1 : 0;
|
|
}
|
|
|
|
SIMD_FORCE_INLINE btScalar btRadians(btScalar x) { return x * SIMD_RADS_PER_DEG; }
|
|
SIMD_FORCE_INLINE btScalar btDegrees(btScalar x) { return x * SIMD_DEGS_PER_RAD; }
|
|
|
|
#define BT_DECLARE_HANDLE(name) \
|
|
typedef struct name##__ \
|
|
{ \
|
|
int unused; \
|
|
} * name
|
|
|
|
#ifndef btFsel
|
|
SIMD_FORCE_INLINE btScalar btFsel(btScalar a, btScalar b, btScalar c)
|
|
{
|
|
return a >= 0 ? b : c;
|
|
}
|
|
#endif
|
|
#define btFsels(a, b, c) (btScalar) btFsel(a, b, c)
|
|
|
|
SIMD_FORCE_INLINE bool btMachineIsLittleEndian()
|
|
{
|
|
long int i = 1;
|
|
const char *p = (const char *)&i;
|
|
if (p[0] == 1) // Lowest address contains the least significant byte
|
|
return true;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
///btSelect avoids branches, which makes performance much better for consoles like Playstation 3 and XBox 360
|
|
///Thanks Phil Knight. See also http://www.cellperformance.com/articles/2006/04/more_techniques_for_eliminatin_1.html
|
|
SIMD_FORCE_INLINE unsigned btSelect(unsigned condition, unsigned valueIfConditionNonZero, unsigned valueIfConditionZero)
|
|
{
|
|
// Set testNz to 0xFFFFFFFF if condition is nonzero, 0x00000000 if condition is zero
|
|
// Rely on positive value or'ed with its negative having sign bit on
|
|
// and zero value or'ed with its negative (which is still zero) having sign bit off
|
|
// Use arithmetic shift right, shifting the sign bit through all 32 bits
|
|
unsigned testNz = (unsigned)(((int)condition | -(int)condition) >> 31);
|
|
unsigned testEqz = ~testNz;
|
|
return ((valueIfConditionNonZero & testNz) | (valueIfConditionZero & testEqz));
|
|
}
|
|
SIMD_FORCE_INLINE int btSelect(unsigned condition, int valueIfConditionNonZero, int valueIfConditionZero)
|
|
{
|
|
unsigned testNz = (unsigned)(((int)condition | -(int)condition) >> 31);
|
|
unsigned testEqz = ~testNz;
|
|
return static_cast<int>((valueIfConditionNonZero & testNz) | (valueIfConditionZero & testEqz));
|
|
}
|
|
SIMD_FORCE_INLINE float btSelect(unsigned condition, float valueIfConditionNonZero, float valueIfConditionZero)
|
|
{
|
|
#ifdef BT_HAVE_NATIVE_FSEL
|
|
return (float)btFsel((btScalar)condition - btScalar(1.0f), valueIfConditionNonZero, valueIfConditionZero);
|
|
#else
|
|
return (condition != 0) ? valueIfConditionNonZero : valueIfConditionZero;
|
|
#endif
|
|
}
|
|
|
|
template <typename T>
|
|
SIMD_FORCE_INLINE void btSwap(T &a, T &b)
|
|
{
|
|
T tmp = a;
|
|
a = b;
|
|
b = tmp;
|
|
}
|
|
|
|
//PCK: endian swapping functions
|
|
SIMD_FORCE_INLINE unsigned btSwapEndian(unsigned val)
|
|
{
|
|
return (((val & 0xff000000) >> 24) | ((val & 0x00ff0000) >> 8) | ((val & 0x0000ff00) << 8) | ((val & 0x000000ff) << 24));
|
|
}
|
|
|
|
SIMD_FORCE_INLINE unsigned short btSwapEndian(unsigned short val)
|
|
{
|
|
return static_cast<unsigned short>(((val & 0xff00) >> 8) | ((val & 0x00ff) << 8));
|
|
}
|
|
|
|
SIMD_FORCE_INLINE unsigned btSwapEndian(int val)
|
|
{
|
|
return btSwapEndian((unsigned)val);
|
|
}
|
|
|
|
SIMD_FORCE_INLINE unsigned short btSwapEndian(short val)
|
|
{
|
|
return btSwapEndian((unsigned short)val);
|
|
}
|
|
|
|
///btSwapFloat uses using char pointers to swap the endianness
|
|
////btSwapFloat/btSwapDouble will NOT return a float, because the machine might 'correct' invalid floating point values
|
|
///Not all values of sign/exponent/mantissa are valid floating point numbers according to IEEE 754.
|
|
///When a floating point unit is faced with an invalid value, it may actually change the value, or worse, throw an exception.
|
|
///In most systems, running user mode code, you wouldn't get an exception, but instead the hardware/os/runtime will 'fix' the number for you.
|
|
///so instead of returning a float/double, we return integer/long long integer
|
|
SIMD_FORCE_INLINE unsigned int btSwapEndianFloat(float d)
|
|
{
|
|
unsigned int a = 0;
|
|
unsigned char *dst = (unsigned char *)&a;
|
|
unsigned char *src = (unsigned char *)&d;
|
|
|
|
dst[0] = src[3];
|
|
dst[1] = src[2];
|
|
dst[2] = src[1];
|
|
dst[3] = src[0];
|
|
return a;
|
|
}
|
|
|
|
// unswap using char pointers
|
|
SIMD_FORCE_INLINE float btUnswapEndianFloat(unsigned int a)
|
|
{
|
|
float d = 0.0f;
|
|
unsigned char *src = (unsigned char *)&a;
|
|
unsigned char *dst = (unsigned char *)&d;
|
|
|
|
dst[0] = src[3];
|
|
dst[1] = src[2];
|
|
dst[2] = src[1];
|
|
dst[3] = src[0];
|
|
|
|
return d;
|
|
}
|
|
|
|
// swap using char pointers
|
|
SIMD_FORCE_INLINE void btSwapEndianDouble(double d, unsigned char *dst)
|
|
{
|
|
unsigned char *src = (unsigned char *)&d;
|
|
|
|
dst[0] = src[7];
|
|
dst[1] = src[6];
|
|
dst[2] = src[5];
|
|
dst[3] = src[4];
|
|
dst[4] = src[3];
|
|
dst[5] = src[2];
|
|
dst[6] = src[1];
|
|
dst[7] = src[0];
|
|
}
|
|
|
|
// unswap using char pointers
|
|
SIMD_FORCE_INLINE double btUnswapEndianDouble(const unsigned char *src)
|
|
{
|
|
double d = 0.0;
|
|
unsigned char *dst = (unsigned char *)&d;
|
|
|
|
dst[0] = src[7];
|
|
dst[1] = src[6];
|
|
dst[2] = src[5];
|
|
dst[3] = src[4];
|
|
dst[4] = src[3];
|
|
dst[5] = src[2];
|
|
dst[6] = src[1];
|
|
dst[7] = src[0];
|
|
|
|
return d;
|
|
}
|
|
|
|
template <typename T>
|
|
SIMD_FORCE_INLINE void btSetZero(T *a, int n)
|
|
{
|
|
T *acurr = a;
|
|
size_t ncurr = n;
|
|
while (ncurr > 0)
|
|
{
|
|
*(acurr++) = 0;
|
|
--ncurr;
|
|
}
|
|
}
|
|
|
|
SIMD_FORCE_INLINE btScalar btLargeDot(const btScalar *a, const btScalar *b, int n)
|
|
{
|
|
btScalar p0, q0, m0, p1, q1, m1, sum;
|
|
sum = 0;
|
|
n -= 2;
|
|
while (n >= 0)
|
|
{
|
|
p0 = a[0];
|
|
q0 = b[0];
|
|
m0 = p0 * q0;
|
|
p1 = a[1];
|
|
q1 = b[1];
|
|
m1 = p1 * q1;
|
|
sum += m0;
|
|
sum += m1;
|
|
a += 2;
|
|
b += 2;
|
|
n -= 2;
|
|
}
|
|
n += 2;
|
|
while (n > 0)
|
|
{
|
|
sum += (*a) * (*b);
|
|
a++;
|
|
b++;
|
|
n--;
|
|
}
|
|
return sum;
|
|
}
|
|
|
|
// returns normalized value in range [-SIMD_PI, SIMD_PI]
|
|
SIMD_FORCE_INLINE btScalar btNormalizeAngle(btScalar angleInRadians)
|
|
{
|
|
angleInRadians = btFmod(angleInRadians, SIMD_2_PI);
|
|
if (angleInRadians < -SIMD_PI)
|
|
{
|
|
return angleInRadians + SIMD_2_PI;
|
|
}
|
|
else if (angleInRadians > SIMD_PI)
|
|
{
|
|
return angleInRadians - SIMD_2_PI;
|
|
}
|
|
else
|
|
{
|
|
return angleInRadians;
|
|
}
|
|
}
|
|
|
|
///rudimentary class to provide type info
|
|
struct btTypedObject
|
|
{
|
|
btTypedObject(int objectType)
|
|
: m_objectType(objectType)
|
|
{
|
|
}
|
|
int m_objectType;
|
|
inline int getObjectType() const
|
|
{
|
|
return m_objectType;
|
|
}
|
|
};
|
|
|
|
///align a pointer to the provided alignment, upwards
|
|
template <typename T>
|
|
T *btAlignPointer(T *unalignedPtr, size_t alignment)
|
|
{
|
|
struct btConvertPointerSizeT
|
|
{
|
|
union {
|
|
T *ptr;
|
|
size_t integer;
|
|
};
|
|
};
|
|
btConvertPointerSizeT converter;
|
|
|
|
const size_t bit_mask = ~(alignment - 1);
|
|
converter.ptr = unalignedPtr;
|
|
converter.integer += alignment - 1;
|
|
converter.integer &= bit_mask;
|
|
return converter.ptr;
|
|
}
|
|
|
|
#endif //BT_SCALAR_H
|