e85459dcd1
This complements the existing Ellipsoid and Box local fog shapes. This can be used to represent a light cone coming from a SpotLight.
310 lines
10 KiB
GLSL
310 lines
10 KiB
GLSL
#[compute]
|
|
|
|
#version 450
|
|
|
|
#VERSION_DEFINES
|
|
|
|
layout(local_size_x = 4, local_size_y = 4, local_size_z = 4) in;
|
|
|
|
#define SAMPLER_NEAREST_CLAMP 0
|
|
#define SAMPLER_LINEAR_CLAMP 1
|
|
#define SAMPLER_NEAREST_WITH_MIPMAPS_CLAMP 2
|
|
#define SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP 3
|
|
#define SAMPLER_NEAREST_WITH_MIPMAPS_ANISOTROPIC_CLAMP 4
|
|
#define SAMPLER_LINEAR_WITH_MIPMAPS_ANISOTROPIC_CLAMP 5
|
|
#define SAMPLER_NEAREST_REPEAT 6
|
|
#define SAMPLER_LINEAR_REPEAT 7
|
|
#define SAMPLER_NEAREST_WITH_MIPMAPS_REPEAT 8
|
|
#define SAMPLER_LINEAR_WITH_MIPMAPS_REPEAT 9
|
|
#define SAMPLER_NEAREST_WITH_MIPMAPS_ANISOTROPIC_REPEAT 10
|
|
#define SAMPLER_LINEAR_WITH_MIPMAPS_ANISOTROPIC_REPEAT 11
|
|
|
|
#define DENSITY_SCALE 1024.0
|
|
|
|
#include "cluster_data_inc.glsl"
|
|
#include "light_data_inc.glsl"
|
|
|
|
#define M_PI 3.14159265359
|
|
|
|
layout(set = 0, binding = 1) uniform sampler material_samplers[12];
|
|
|
|
layout(set = 0, binding = 2, std430) restrict readonly buffer GlobalVariableData {
|
|
vec4 data[];
|
|
}
|
|
global_variables;
|
|
|
|
layout(push_constant, std430) uniform Params {
|
|
vec3 position;
|
|
float pad;
|
|
|
|
vec3 extents;
|
|
float pad2;
|
|
|
|
ivec3 corner;
|
|
uint shape;
|
|
|
|
mat4 transform;
|
|
}
|
|
params;
|
|
|
|
#ifdef MOLTENVK_USED
|
|
layout(set = 1, binding = 1) volatile buffer emissive_only_map_buffer {
|
|
uint emissive_only_map[];
|
|
};
|
|
#else
|
|
layout(r32ui, set = 1, binding = 1) uniform volatile uimage3D emissive_only_map;
|
|
#endif
|
|
|
|
layout(set = 1, binding = 2, std140) uniform SceneParams {
|
|
vec2 fog_frustum_size_begin;
|
|
vec2 fog_frustum_size_end;
|
|
|
|
float fog_frustum_end;
|
|
float z_near; //
|
|
float z_far; //
|
|
float time;
|
|
|
|
ivec3 fog_volume_size;
|
|
uint directional_light_count; //
|
|
|
|
bool use_temporal_reprojection;
|
|
uint temporal_frame;
|
|
float detail_spread;
|
|
float temporal_blend;
|
|
|
|
mat4 to_prev_view;
|
|
mat4 transform;
|
|
}
|
|
scene_params;
|
|
|
|
#ifdef MOLTENVK_USED
|
|
layout(set = 1, binding = 3) volatile buffer density_only_map_buffer {
|
|
uint density_only_map[];
|
|
};
|
|
layout(set = 1, binding = 4) volatile buffer light_only_map_buffer {
|
|
uint light_only_map[];
|
|
};
|
|
#else
|
|
layout(r32ui, set = 1, binding = 3) uniform volatile uimage3D density_only_map;
|
|
layout(r32ui, set = 1, binding = 4) uniform volatile uimage3D light_only_map;
|
|
#endif
|
|
|
|
#ifdef MATERIAL_UNIFORMS_USED
|
|
layout(set = 2, binding = 0, std140) uniform MaterialUniforms{
|
|
#MATERIAL_UNIFORMS
|
|
} material;
|
|
#endif
|
|
|
|
#GLOBALS
|
|
|
|
float get_depth_at_pos(float cell_depth_size, int z) {
|
|
float d = float(z) * cell_depth_size + cell_depth_size * 0.5; //center of voxels
|
|
d = pow(d, scene_params.detail_spread);
|
|
return scene_params.fog_frustum_end * d;
|
|
}
|
|
|
|
#define TEMPORAL_FRAMES 16
|
|
|
|
const vec3 halton_map[TEMPORAL_FRAMES] = vec3[](
|
|
vec3(0.5, 0.33333333, 0.2),
|
|
vec3(0.25, 0.66666667, 0.4),
|
|
vec3(0.75, 0.11111111, 0.6),
|
|
vec3(0.125, 0.44444444, 0.8),
|
|
vec3(0.625, 0.77777778, 0.04),
|
|
vec3(0.375, 0.22222222, 0.24),
|
|
vec3(0.875, 0.55555556, 0.44),
|
|
vec3(0.0625, 0.88888889, 0.64),
|
|
vec3(0.5625, 0.03703704, 0.84),
|
|
vec3(0.3125, 0.37037037, 0.08),
|
|
vec3(0.8125, 0.7037037, 0.28),
|
|
vec3(0.1875, 0.14814815, 0.48),
|
|
vec3(0.6875, 0.48148148, 0.68),
|
|
vec3(0.4375, 0.81481481, 0.88),
|
|
vec3(0.9375, 0.25925926, 0.12),
|
|
vec3(0.03125, 0.59259259, 0.32));
|
|
|
|
void main() {
|
|
vec3 fog_cell_size = 1.0 / vec3(scene_params.fog_volume_size);
|
|
|
|
ivec3 pos = ivec3(gl_GlobalInvocationID.xyz) + params.corner;
|
|
if (any(greaterThanEqual(pos, scene_params.fog_volume_size))) {
|
|
return; //do not compute
|
|
}
|
|
#ifdef MOLTENVK_USED
|
|
uint lpos = pos.z * scene_params.fog_volume_size.x * scene_params.fog_volume_size.y + pos.y * scene_params.fog_volume_size.x + pos.x;
|
|
#endif
|
|
|
|
vec3 posf = vec3(pos);
|
|
|
|
vec3 fog_unit_pos = posf * fog_cell_size + fog_cell_size * 0.5; //center of voxels
|
|
fog_unit_pos.z = pow(fog_unit_pos.z, scene_params.detail_spread);
|
|
|
|
vec3 view_pos;
|
|
view_pos.xy = (fog_unit_pos.xy * 2.0 - 1.0) * mix(scene_params.fog_frustum_size_begin, scene_params.fog_frustum_size_end, vec2(fog_unit_pos.z));
|
|
view_pos.z = -scene_params.fog_frustum_end * fog_unit_pos.z;
|
|
view_pos.y = -view_pos.y;
|
|
|
|
if (scene_params.use_temporal_reprojection) {
|
|
vec3 prev_view = (scene_params.to_prev_view * vec4(view_pos, 1.0)).xyz;
|
|
//undo transform into prev view
|
|
prev_view.y = -prev_view.y;
|
|
//z back to unit size
|
|
prev_view.z /= -scene_params.fog_frustum_end;
|
|
//xy back to unit size
|
|
prev_view.xy /= mix(scene_params.fog_frustum_size_begin, scene_params.fog_frustum_size_end, vec2(prev_view.z));
|
|
prev_view.xy = prev_view.xy * 0.5 + 0.5;
|
|
//z back to unspread value
|
|
prev_view.z = pow(prev_view.z, 1.0 / scene_params.detail_spread);
|
|
|
|
if (all(greaterThan(prev_view, vec3(0.0))) && all(lessThan(prev_view, vec3(1.0)))) {
|
|
//reprojectinon fits
|
|
// Since we can reproject, now we must jitter the current view pos.
|
|
// This is done here because cells that can't reproject should not jitter.
|
|
|
|
fog_unit_pos = posf * fog_cell_size + fog_cell_size * halton_map[scene_params.temporal_frame]; //center of voxels, offset by halton table
|
|
fog_unit_pos.z = pow(fog_unit_pos.z, scene_params.detail_spread);
|
|
|
|
view_pos.xy = (fog_unit_pos.xy * 2.0 - 1.0) * mix(scene_params.fog_frustum_size_begin, scene_params.fog_frustum_size_end, vec2(fog_unit_pos.z));
|
|
view_pos.z = -scene_params.fog_frustum_end * fog_unit_pos.z;
|
|
view_pos.y = -view_pos.y;
|
|
}
|
|
}
|
|
|
|
float density = 0.0;
|
|
vec3 emission = vec3(0.0);
|
|
vec3 albedo = vec3(0.0);
|
|
|
|
float cell_depth_size = abs(view_pos.z - get_depth_at_pos(fog_cell_size.z, pos.z + 1));
|
|
|
|
vec4 world = scene_params.transform * vec4(view_pos, 1.0);
|
|
world.xyz /= world.w;
|
|
|
|
vec3 uvw = fog_unit_pos;
|
|
|
|
vec4 local_pos = params.transform * world;
|
|
local_pos.xyz /= local_pos.w;
|
|
|
|
float sdf = -1.0;
|
|
if (params.shape == 0) {
|
|
// Ellipsoid
|
|
// https://www.shadertoy.com/view/tdS3DG
|
|
float k0 = length(local_pos.xyz / params.extents);
|
|
float k1 = length(local_pos.xyz / (params.extents * params.extents));
|
|
sdf = k0 * (k0 - 1.0) / k1;
|
|
} else if (params.shape == 1) {
|
|
// Cone
|
|
// https://iquilezles.org/www/articles/distfunctions/distfunctions.htm
|
|
|
|
// Compute the cone angle automatically to fit within the volume's extents.
|
|
float inv_height = 1.0 / max(0.001, params.extents.y);
|
|
float radius = 1.0 / max(0.001, (min(params.extents.x, params.extents.z) * 0.5));
|
|
float hypotenuse = sqrt(radius * radius + inv_height * inv_height);
|
|
float rsin = radius / hypotenuse;
|
|
float rcos = inv_height / hypotenuse;
|
|
vec2 c = vec2(rsin, rcos);
|
|
|
|
float q = length(local_pos.xz);
|
|
sdf = max(dot(c, vec2(q, local_pos.y - params.extents.y)), -params.extents.y - local_pos.y);
|
|
} else if (params.shape == 2) {
|
|
// Cylinder
|
|
// https://iquilezles.org/www/articles/distfunctions/distfunctions.htm
|
|
vec2 d = abs(vec2(length(local_pos.xz), local_pos.y)) - vec2(min(params.extents.x, params.extents.z), params.extents.y);
|
|
sdf = min(max(d.x, d.y), 0.0) + length(max(d, 0.0));
|
|
} else if (params.shape == 3) {
|
|
// Box
|
|
// https://iquilezles.org/www/articles/distfunctions/distfunctions.htm
|
|
vec3 q = abs(local_pos.xyz) - params.extents;
|
|
sdf = length(max(q, 0.0)) + min(max(q.x, max(q.y, q.z)), 0.0);
|
|
}
|
|
|
|
float cull_mask = 1.0; //used to cull cells that do not contribute
|
|
if (params.shape <= 3) {
|
|
#ifndef SDF_USED
|
|
cull_mask = 1.0 - smoothstep(-0.1, 0.0, sdf);
|
|
#endif
|
|
uvw = clamp((local_pos.xyz + params.extents) / (2.0 * params.extents), 0.0, 1.0);
|
|
}
|
|
|
|
if (cull_mask > 0.0) {
|
|
{
|
|
#CODE : FOG
|
|
}
|
|
|
|
#ifdef DENSITY_USED
|
|
density *= cull_mask;
|
|
if (abs(density) > 0.001) {
|
|
int final_density = int(density * DENSITY_SCALE);
|
|
#ifdef MOLTENVK_USED
|
|
atomicAdd(density_only_map[lpos], uint(final_density));
|
|
#else
|
|
imageAtomicAdd(density_only_map, pos, uint(final_density));
|
|
#endif
|
|
|
|
#ifdef EMISSION_USED
|
|
{
|
|
emission *= clamp(density, 0.0, 1.0);
|
|
emission = clamp(emission, vec3(0.0), vec3(4.0));
|
|
// Scale to fit into R11G11B10 with a range of 0-4
|
|
uvec3 emission_u = uvec3(emission.r * 511.0, emission.g * 511.0, emission.b * 255.0);
|
|
// R and G have 11 bits each and B has 10. Then pack them into a 32 bit uint
|
|
uint final_emission = emission_u.r << 21 | emission_u.g << 10 | emission_u.b;
|
|
#ifdef MOLTENVK_USED
|
|
uint prev_emission = atomicAdd(emissive_only_map[lpos], final_emission);
|
|
#else
|
|
uint prev_emission = imageAtomicAdd(emissive_only_map, pos, final_emission);
|
|
#endif
|
|
|
|
// Adding can lead to colors overflowing, so validate
|
|
uvec3 prev_emission_u = uvec3(prev_emission >> 21, (prev_emission << 11) >> 21, prev_emission % 1024);
|
|
uint add_emission = final_emission + prev_emission;
|
|
uvec3 add_emission_u = uvec3(add_emission >> 21, (add_emission << 11) >> 21, add_emission % 1024);
|
|
|
|
bvec3 overflowing = lessThan(add_emission_u, prev_emission_u + emission_u);
|
|
|
|
if (any(overflowing)) {
|
|
uvec3 overflow_factor = mix(uvec3(0), uvec3(2047 << 21, 2047 << 10, 1023), overflowing);
|
|
uint force_max = overflow_factor.r | overflow_factor.g | overflow_factor.b;
|
|
#ifdef MOLTENVK_USED
|
|
atomicOr(emissive_only_map[lpos], force_max);
|
|
#else
|
|
imageAtomicOr(emissive_only_map, pos, force_max);
|
|
#endif
|
|
}
|
|
}
|
|
#endif
|
|
#ifdef ALBEDO_USED
|
|
{
|
|
vec3 scattering = albedo * clamp(density, 0.0, 1.0);
|
|
scattering = clamp(scattering, vec3(0.0), vec3(1.0));
|
|
uvec3 scattering_u = uvec3(scattering.r * 2047.0, scattering.g * 2047.0, scattering.b * 1023.0);
|
|
// R and G have 11 bits each and B has 10. Then pack them into a 32 bit uint
|
|
uint final_scattering = scattering_u.r << 21 | scattering_u.g << 10 | scattering_u.b;
|
|
#ifdef MOLTENVK_USED
|
|
uint prev_scattering = atomicAdd(light_only_map[lpos], final_scattering);
|
|
#else
|
|
uint prev_scattering = imageAtomicAdd(light_only_map, pos, final_scattering);
|
|
#endif
|
|
|
|
// Adding can lead to colors overflowing, so validate
|
|
uvec3 prev_scattering_u = uvec3(prev_scattering >> 21, (prev_scattering << 11) >> 21, prev_scattering % 1024);
|
|
uint add_scattering = final_scattering + prev_scattering;
|
|
uvec3 add_scattering_u = uvec3(add_scattering >> 21, (add_scattering << 11) >> 21, add_scattering % 1024);
|
|
|
|
bvec3 overflowing = lessThan(add_scattering_u, prev_scattering_u + scattering_u);
|
|
|
|
if (any(overflowing)) {
|
|
uvec3 overflow_factor = mix(uvec3(0), uvec3(2047 << 21, 2047 << 10, 1023), overflowing);
|
|
uint force_max = overflow_factor.r | overflow_factor.g | overflow_factor.b;
|
|
#ifdef MOLTENVK_USED
|
|
atomicOr(light_only_map[lpos], force_max);
|
|
#else
|
|
imageAtomicOr(light_only_map, pos, force_max);
|
|
#endif
|
|
}
|
|
}
|
|
#endif // ALBEDO_USED
|
|
}
|
|
#endif // DENSITY_USED
|
|
}
|
|
}
|