godot/thirdparty/mbedtls/library/timing.c

527 lines
14 KiB
C

/*
* Portable interface to the CPU cycle counter
*
* Copyright The Mbed TLS Contributors
* SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
*/
#include <string.h>
#include "common.h"
#include "mbedtls/platform.h"
#if defined(MBEDTLS_TIMING_C)
#include "mbedtls/timing.h"
#if !defined(MBEDTLS_TIMING_ALT)
#if !defined(unix) && !defined(__unix__) && !defined(__unix) && \
!defined(__APPLE__) && !defined(_WIN32) && !defined(__QNXNTO__) && \
!defined(__HAIKU__) && !defined(__midipix__)
#error "This module only works on Unix and Windows, see MBEDTLS_TIMING_C in config.h"
#endif
/* *INDENT-OFF* */
#ifndef asm
#define asm __asm
#endif
/* *INDENT-ON* */
#if defined(_WIN32) && !defined(EFIX64) && !defined(EFI32)
#include <windows.h>
#include <process.h>
struct _hr_time {
LARGE_INTEGER start;
};
#else
#include <unistd.h>
#include <sys/types.h>
#include <signal.h>
/* time.h should be included independently of MBEDTLS_HAVE_TIME. If the
* platform matches the ifdefs above, it will be used. */
#include <time.h>
#include <sys/time.h>
struct _hr_time {
struct timeval start;
};
#endif /* _WIN32 && !EFIX64 && !EFI32 */
#if !defined(HAVE_HARDCLOCK) && defined(MBEDTLS_HAVE_ASM) && \
(defined(_MSC_VER) && defined(_M_IX86)) || defined(__WATCOMC__)
#define HAVE_HARDCLOCK
unsigned long mbedtls_timing_hardclock(void)
{
unsigned long tsc;
__asm rdtsc
__asm mov[tsc], eax
return tsc;
}
#endif /* !HAVE_HARDCLOCK && MBEDTLS_HAVE_ASM &&
( _MSC_VER && _M_IX86 ) || __WATCOMC__ */
/* some versions of mingw-64 have 32-bit longs even on x84_64 */
#if !defined(HAVE_HARDCLOCK) && defined(MBEDTLS_HAVE_ASM) && \
defined(__GNUC__) && (defined(__i386__) || ( \
(defined(__amd64__) || defined(__x86_64__)) && __SIZEOF_LONG__ == 4))
#define HAVE_HARDCLOCK
unsigned long mbedtls_timing_hardclock(void)
{
unsigned long lo, hi;
asm volatile ("rdtsc" : "=a" (lo), "=d" (hi));
return lo;
}
#endif /* !HAVE_HARDCLOCK && MBEDTLS_HAVE_ASM &&
__GNUC__ && __i386__ */
#if !defined(HAVE_HARDCLOCK) && defined(MBEDTLS_HAVE_ASM) && \
defined(__GNUC__) && (defined(__amd64__) || defined(__x86_64__))
#define HAVE_HARDCLOCK
unsigned long mbedtls_timing_hardclock(void)
{
unsigned long lo, hi;
asm volatile ("rdtsc" : "=a" (lo), "=d" (hi));
return lo | (hi << 32);
}
#endif /* !HAVE_HARDCLOCK && MBEDTLS_HAVE_ASM &&
__GNUC__ && ( __amd64__ || __x86_64__ ) */
#if !defined(HAVE_HARDCLOCK) && defined(MBEDTLS_HAVE_ASM) && \
defined(__GNUC__) && (defined(__powerpc__) || defined(__ppc__))
#define HAVE_HARDCLOCK
unsigned long mbedtls_timing_hardclock(void)
{
unsigned long tbl, tbu0, tbu1;
do {
asm volatile ("mftbu %0" : "=r" (tbu0));
asm volatile ("mftb %0" : "=r" (tbl));
asm volatile ("mftbu %0" : "=r" (tbu1));
} while (tbu0 != tbu1);
return tbl;
}
#endif /* !HAVE_HARDCLOCK && MBEDTLS_HAVE_ASM &&
__GNUC__ && ( __powerpc__ || __ppc__ ) */
#if !defined(HAVE_HARDCLOCK) && defined(MBEDTLS_HAVE_ASM) && \
defined(__GNUC__) && defined(__sparc64__)
#if defined(__OpenBSD__)
#warning OpenBSD does not allow access to tick register using software version instead
#else
#define HAVE_HARDCLOCK
unsigned long mbedtls_timing_hardclock(void)
{
unsigned long tick;
asm volatile ("rdpr %%tick, %0;" : "=&r" (tick));
return tick;
}
#endif /* __OpenBSD__ */
#endif /* !HAVE_HARDCLOCK && MBEDTLS_HAVE_ASM &&
__GNUC__ && __sparc64__ */
#if !defined(HAVE_HARDCLOCK) && defined(MBEDTLS_HAVE_ASM) && \
defined(__GNUC__) && defined(__sparc__) && !defined(__sparc64__)
#define HAVE_HARDCLOCK
unsigned long mbedtls_timing_hardclock(void)
{
unsigned long tick;
asm volatile (".byte 0x83, 0x41, 0x00, 0x00");
asm volatile ("mov %%g1, %0" : "=r" (tick));
return tick;
}
#endif /* !HAVE_HARDCLOCK && MBEDTLS_HAVE_ASM &&
__GNUC__ && __sparc__ && !__sparc64__ */
#if !defined(HAVE_HARDCLOCK) && defined(MBEDTLS_HAVE_ASM) && \
defined(__GNUC__) && defined(__alpha__)
#define HAVE_HARDCLOCK
unsigned long mbedtls_timing_hardclock(void)
{
unsigned long cc;
asm volatile ("rpcc %0" : "=r" (cc));
return cc & 0xFFFFFFFF;
}
#endif /* !HAVE_HARDCLOCK && MBEDTLS_HAVE_ASM &&
__GNUC__ && __alpha__ */
#if !defined(HAVE_HARDCLOCK) && defined(MBEDTLS_HAVE_ASM) && \
defined(__GNUC__) && defined(__ia64__)
#define HAVE_HARDCLOCK
unsigned long mbedtls_timing_hardclock(void)
{
unsigned long itc;
asm volatile ("mov %0 = ar.itc" : "=r" (itc));
return itc;
}
#endif /* !HAVE_HARDCLOCK && MBEDTLS_HAVE_ASM &&
__GNUC__ && __ia64__ */
// -- GODOT start --
#if !defined(HAVE_HARDCLOCK) && defined(_WIN32) && \
!defined(EFIX64) && !defined(EFI32)
// -- GODOT end --
#define HAVE_HARDCLOCK
unsigned long mbedtls_timing_hardclock(void)
{
LARGE_INTEGER offset;
QueryPerformanceCounter(&offset);
return (unsigned long) (offset.QuadPart);
}
#endif /* !HAVE_HARDCLOCK && _MSC_VER && !EFIX64 && !EFI32 */
#if !defined(HAVE_HARDCLOCK)
#define HAVE_HARDCLOCK
static int hardclock_init = 0;
static struct timeval tv_init;
unsigned long mbedtls_timing_hardclock(void)
{
struct timeval tv_cur;
if (hardclock_init == 0) {
gettimeofday(&tv_init, NULL);
hardclock_init = 1;
}
gettimeofday(&tv_cur, NULL);
return (tv_cur.tv_sec - tv_init.tv_sec) * 1000000U
+ (tv_cur.tv_usec - tv_init.tv_usec);
}
#endif /* !HAVE_HARDCLOCK */
volatile int mbedtls_timing_alarmed = 0;
#if defined(_WIN32) && !defined(EFIX64) && !defined(EFI32)
unsigned long mbedtls_timing_get_timer(struct mbedtls_timing_hr_time *val, int reset)
{
struct _hr_time t;
if (reset) {
QueryPerformanceCounter(&t.start);
memcpy(val, &t, sizeof(struct _hr_time));
return 0;
} else {
unsigned long delta;
LARGE_INTEGER now, hfreq;
/* We can't safely cast val because it may not be aligned, so use memcpy */
memcpy(&t, val, sizeof(struct _hr_time));
QueryPerformanceCounter(&now);
QueryPerformanceFrequency(&hfreq);
delta = (unsigned long) ((now.QuadPart - t.start.QuadPart) * 1000ul
/ hfreq.QuadPart);
return delta;
}
}
/* It's OK to use a global because alarm() is supposed to be global anyway */
static DWORD alarmMs;
static void TimerProc(void *TimerContext)
{
(void) TimerContext;
Sleep(alarmMs);
mbedtls_timing_alarmed = 1;
/* _endthread will be called implicitly on return
* That ensures execution of thread function's epilogue */
}
void mbedtls_set_alarm(int seconds)
{
if (seconds == 0) {
/* No need to create a thread for this simple case.
* Also, this shorcut is more reliable at least on MinGW32 */
mbedtls_timing_alarmed = 1;
return;
}
mbedtls_timing_alarmed = 0;
alarmMs = seconds * 1000;
(void) _beginthread(TimerProc, 0, NULL);
}
#else /* _WIN32 && !EFIX64 && !EFI32 */
unsigned long mbedtls_timing_get_timer(struct mbedtls_timing_hr_time *val, int reset)
{
struct _hr_time t;
if (reset) {
gettimeofday(&t.start, NULL);
memcpy(val, &t, sizeof(struct _hr_time));
return 0;
} else {
unsigned long delta;
struct timeval now;
/* We can't safely cast val because it may not be aligned, so use memcpy */
memcpy(&t, val, sizeof(struct _hr_time));
gettimeofday(&now, NULL);
delta = (now.tv_sec - t.start.tv_sec) * 1000ul
+ (now.tv_usec - t.start.tv_usec) / 1000;
return delta;
}
}
static void sighandler(int signum)
{
mbedtls_timing_alarmed = 1;
signal(signum, sighandler);
}
void mbedtls_set_alarm(int seconds)
{
mbedtls_timing_alarmed = 0;
signal(SIGALRM, sighandler);
alarm(seconds);
if (seconds == 0) {
/* alarm(0) cancelled any previous pending alarm, but the
handler won't fire, so raise the flag straight away. */
mbedtls_timing_alarmed = 1;
}
}
#endif /* _WIN32 && !EFIX64 && !EFI32 */
/*
* Set delays to watch
*/
void mbedtls_timing_set_delay(void *data, uint32_t int_ms, uint32_t fin_ms)
{
mbedtls_timing_delay_context *ctx = (mbedtls_timing_delay_context *) data;
ctx->int_ms = int_ms;
ctx->fin_ms = fin_ms;
if (fin_ms != 0) {
(void) mbedtls_timing_get_timer(&ctx->timer, 1);
}
}
/*
* Get number of delays expired
*/
int mbedtls_timing_get_delay(void *data)
{
mbedtls_timing_delay_context *ctx = (mbedtls_timing_delay_context *) data;
unsigned long elapsed_ms;
if (ctx->fin_ms == 0) {
return -1;
}
elapsed_ms = mbedtls_timing_get_timer(&ctx->timer, 0);
if (elapsed_ms >= ctx->fin_ms) {
return 2;
}
if (elapsed_ms >= ctx->int_ms) {
return 1;
}
return 0;
}
#endif /* !MBEDTLS_TIMING_ALT */
#if defined(MBEDTLS_SELF_TEST)
/*
* Busy-waits for the given number of milliseconds.
* Used for testing mbedtls_timing_hardclock.
*/
static void busy_msleep(unsigned long msec)
{
struct mbedtls_timing_hr_time hires;
unsigned long i = 0; /* for busy-waiting */
volatile unsigned long j; /* to prevent optimisation */
(void) mbedtls_timing_get_timer(&hires, 1);
while (mbedtls_timing_get_timer(&hires, 0) < msec) {
i++;
}
j = i;
(void) j;
}
#define FAIL do \
{ \
if (verbose != 0) \
{ \
mbedtls_printf("failed at line %d\n", __LINE__); \
mbedtls_printf(" cycles=%lu ratio=%lu millisecs=%lu secs=%lu hardfail=%d a=%lu b=%lu\n", \
cycles, ratio, millisecs, secs, hardfail, \
(unsigned long) a, (unsigned long) b); \
mbedtls_printf(" elapsed(hires)=%lu status(ctx)=%d\n", \
mbedtls_timing_get_timer(&hires, 0), \
mbedtls_timing_get_delay(&ctx)); \
} \
return 1; \
} while (0)
/*
* Checkup routine
*
* Warning: this is work in progress, some tests may not be reliable enough
* yet! False positives may happen.
*/
int mbedtls_timing_self_test(int verbose)
{
unsigned long cycles = 0, ratio = 0;
unsigned long millisecs = 0, secs = 0;
int hardfail = 0;
struct mbedtls_timing_hr_time hires;
uint32_t a = 0, b = 0;
mbedtls_timing_delay_context ctx;
if (verbose != 0) {
mbedtls_printf(" TIMING tests note: will take some time!\n");
}
if (verbose != 0) {
mbedtls_printf(" TIMING test #1 (set_alarm / get_timer): ");
}
{
secs = 1;
(void) mbedtls_timing_get_timer(&hires, 1);
mbedtls_set_alarm((int) secs);
while (!mbedtls_timing_alarmed) {
;
}
millisecs = mbedtls_timing_get_timer(&hires, 0);
/* For some reason on Windows it looks like alarm has an extra delay
* (maybe related to creating a new thread). Allow some room here. */
if (millisecs < 800 * secs || millisecs > 1200 * secs + 300) {
FAIL;
}
}
if (verbose != 0) {
mbedtls_printf("passed\n");
}
if (verbose != 0) {
mbedtls_printf(" TIMING test #2 (set/get_delay ): ");
}
{
a = 800;
b = 400;
mbedtls_timing_set_delay(&ctx, a, a + b); /* T = 0 */
busy_msleep(a - a / 4); /* T = a - a/4 */
if (mbedtls_timing_get_delay(&ctx) != 0) {
FAIL;
}
busy_msleep(a / 4 + b / 4); /* T = a + b/4 */
if (mbedtls_timing_get_delay(&ctx) != 1) {
FAIL;
}
busy_msleep(b); /* T = a + b + b/4 */
if (mbedtls_timing_get_delay(&ctx) != 2) {
FAIL;
}
}
mbedtls_timing_set_delay(&ctx, 0, 0);
busy_msleep(200);
if (mbedtls_timing_get_delay(&ctx) != -1) {
FAIL;
}
if (verbose != 0) {
mbedtls_printf("passed\n");
}
if (verbose != 0) {
mbedtls_printf(" TIMING test #3 (hardclock / get_timer): ");
}
/*
* Allow one failure for possible counter wrapping.
* On a 4Ghz 32-bit machine the cycle counter wraps about once per second;
* since the whole test is about 10ms, it shouldn't happen twice in a row.
*/
hard_test:
if (hardfail > 1) {
if (verbose != 0) {
mbedtls_printf("failed (ignored)\n");
}
goto hard_test_done;
}
/* Get a reference ratio cycles/ms */
millisecs = 1;
cycles = mbedtls_timing_hardclock();
busy_msleep(millisecs);
cycles = mbedtls_timing_hardclock() - cycles;
ratio = cycles / millisecs;
/* Check that the ratio is mostly constant */
for (millisecs = 2; millisecs <= 4; millisecs++) {
cycles = mbedtls_timing_hardclock();
busy_msleep(millisecs);
cycles = mbedtls_timing_hardclock() - cycles;
/* Allow variation up to 20% */
if (cycles / millisecs < ratio - ratio / 5 ||
cycles / millisecs > ratio + ratio / 5) {
hardfail++;
goto hard_test;
}
}
if (verbose != 0) {
mbedtls_printf("passed\n");
}
hard_test_done:
if (verbose != 0) {
mbedtls_printf("\n");
}
return 0;
}
#endif /* MBEDTLS_SELF_TEST */
#endif /* MBEDTLS_TIMING_C */