godot/drivers/webpold/dec/frame.c

680 lines
24 KiB
C

// Copyright 2010 Google Inc. All Rights Reserved.
//
// This code is licensed under the same terms as WebM:
// Software License Agreement: http://www.webmproject.org/license/software/
// Additional IP Rights Grant: http://www.webmproject.org/license/additional/
// -----------------------------------------------------------------------------
//
// Frame-reconstruction function. Memory allocation.
//
// Author: Skal (pascal.massimino@gmail.com)
#include <stdlib.h>
#include "./vp8i.h"
#include "../utils/utils.h"
#if defined(__cplusplus) || defined(c_plusplus)
extern "C" {
#endif
#define ALIGN_MASK (32 - 1)
//------------------------------------------------------------------------------
// Filtering
// kFilterExtraRows[] = How many extra lines are needed on the MB boundary
// for caching, given a filtering level.
// Simple filter: up to 2 luma samples are read and 1 is written.
// Complex filter: up to 4 luma samples are read and 3 are written. Same for
// U/V, so it's 8 samples total (because of the 2x upsampling).
static const uint8_t kFilterExtraRows[3] = { 0, 2, 8 };
static WEBP_INLINE int hev_thresh_from_level(int level, int keyframe) {
if (keyframe) {
return (level >= 40) ? 2 : (level >= 15) ? 1 : 0;
} else {
return (level >= 40) ? 3 : (level >= 20) ? 2 : (level >= 15) ? 1 : 0;
}
}
static void DoFilter(const VP8Decoder* const dec, int mb_x, int mb_y) {
const VP8ThreadContext* const ctx = &dec->thread_ctx_;
const int y_bps = dec->cache_y_stride_;
VP8FInfo* const f_info = ctx->f_info_ + mb_x;
uint8_t* const y_dst = dec->cache_y_ + ctx->id_ * 16 * y_bps + mb_x * 16;
const int level = f_info->f_level_;
const int ilevel = f_info->f_ilevel_;
const int limit = 2 * level + ilevel;
if (level == 0) {
return;
}
if (dec->filter_type_ == 1) { // simple
if (mb_x > 0) {
VP8SimpleHFilter16(y_dst, y_bps, limit + 4);
}
if (f_info->f_inner_) {
VP8SimpleHFilter16i(y_dst, y_bps, limit);
}
if (mb_y > 0) {
VP8SimpleVFilter16(y_dst, y_bps, limit + 4);
}
if (f_info->f_inner_) {
VP8SimpleVFilter16i(y_dst, y_bps, limit);
}
} else { // complex
const int uv_bps = dec->cache_uv_stride_;
uint8_t* const u_dst = dec->cache_u_ + ctx->id_ * 8 * uv_bps + mb_x * 8;
uint8_t* const v_dst = dec->cache_v_ + ctx->id_ * 8 * uv_bps + mb_x * 8;
const int hev_thresh =
hev_thresh_from_level(level, dec->frm_hdr_.key_frame_);
if (mb_x > 0) {
VP8HFilter16(y_dst, y_bps, limit + 4, ilevel, hev_thresh);
VP8HFilter8(u_dst, v_dst, uv_bps, limit + 4, ilevel, hev_thresh);
}
if (f_info->f_inner_) {
VP8HFilter16i(y_dst, y_bps, limit, ilevel, hev_thresh);
VP8HFilter8i(u_dst, v_dst, uv_bps, limit, ilevel, hev_thresh);
}
if (mb_y > 0) {
VP8VFilter16(y_dst, y_bps, limit + 4, ilevel, hev_thresh);
VP8VFilter8(u_dst, v_dst, uv_bps, limit + 4, ilevel, hev_thresh);
}
if (f_info->f_inner_) {
VP8VFilter16i(y_dst, y_bps, limit, ilevel, hev_thresh);
VP8VFilter8i(u_dst, v_dst, uv_bps, limit, ilevel, hev_thresh);
}
}
}
// Filter the decoded macroblock row (if needed)
static void FilterRow(const VP8Decoder* const dec) {
int mb_x;
const int mb_y = dec->thread_ctx_.mb_y_;
assert(dec->thread_ctx_.filter_row_);
for (mb_x = dec->tl_mb_x_; mb_x < dec->br_mb_x_; ++mb_x) {
DoFilter(dec, mb_x, mb_y);
}
}
//------------------------------------------------------------------------------
void VP8StoreBlock(VP8Decoder* const dec) {
if (dec->filter_type_ > 0) {
VP8FInfo* const info = dec->f_info_ + dec->mb_x_;
const int skip = dec->mb_info_[dec->mb_x_].skip_;
int level = dec->filter_levels_[dec->segment_];
if (dec->filter_hdr_.use_lf_delta_) {
// TODO(skal): only CURRENT is handled for now.
level += dec->filter_hdr_.ref_lf_delta_[0];
if (dec->is_i4x4_) {
level += dec->filter_hdr_.mode_lf_delta_[0];
}
}
level = (level < 0) ? 0 : (level > 63) ? 63 : level;
info->f_level_ = level;
if (dec->filter_hdr_.sharpness_ > 0) {
if (dec->filter_hdr_.sharpness_ > 4) {
level >>= 2;
} else {
level >>= 1;
}
if (level > 9 - dec->filter_hdr_.sharpness_) {
level = 9 - dec->filter_hdr_.sharpness_;
}
}
info->f_ilevel_ = (level < 1) ? 1 : level;
info->f_inner_ = (!skip || dec->is_i4x4_);
}
{
// Transfer samples to row cache
int y;
const int y_offset = dec->cache_id_ * 16 * dec->cache_y_stride_;
const int uv_offset = dec->cache_id_ * 8 * dec->cache_uv_stride_;
uint8_t* const ydst = dec->cache_y_ + dec->mb_x_ * 16 + y_offset;
uint8_t* const udst = dec->cache_u_ + dec->mb_x_ * 8 + uv_offset;
uint8_t* const vdst = dec->cache_v_ + dec->mb_x_ * 8 + uv_offset;
for (y = 0; y < 16; ++y) {
memcpy(ydst + y * dec->cache_y_stride_,
dec->yuv_b_ + Y_OFF + y * BPS, 16);
}
for (y = 0; y < 8; ++y) {
memcpy(udst + y * dec->cache_uv_stride_,
dec->yuv_b_ + U_OFF + y * BPS, 8);
memcpy(vdst + y * dec->cache_uv_stride_,
dec->yuv_b_ + V_OFF + y * BPS, 8);
}
}
}
//------------------------------------------------------------------------------
// This function is called after a row of macroblocks is finished decoding.
// It also takes into account the following restrictions:
// * In case of in-loop filtering, we must hold off sending some of the bottom
// pixels as they are yet unfiltered. They will be when the next macroblock
// row is decoded. Meanwhile, we must preserve them by rotating them in the
// cache area. This doesn't hold for the very bottom row of the uncropped
// picture of course.
// * we must clip the remaining pixels against the cropping area. The VP8Io
// struct must have the following fields set correctly before calling put():
#define MACROBLOCK_VPOS(mb_y) ((mb_y) * 16) // vertical position of a MB
// Finalize and transmit a complete row. Return false in case of user-abort.
static int FinishRow(VP8Decoder* const dec, VP8Io* const io) {
int ok = 1;
const VP8ThreadContext* const ctx = &dec->thread_ctx_;
const int extra_y_rows = kFilterExtraRows[dec->filter_type_];
const int ysize = extra_y_rows * dec->cache_y_stride_;
const int uvsize = (extra_y_rows / 2) * dec->cache_uv_stride_;
const int y_offset = ctx->id_ * 16 * dec->cache_y_stride_;
const int uv_offset = ctx->id_ * 8 * dec->cache_uv_stride_;
uint8_t* const ydst = dec->cache_y_ - ysize + y_offset;
uint8_t* const udst = dec->cache_u_ - uvsize + uv_offset;
uint8_t* const vdst = dec->cache_v_ - uvsize + uv_offset;
const int first_row = (ctx->mb_y_ == 0);
const int last_row = (ctx->mb_y_ >= dec->br_mb_y_ - 1);
int y_start = MACROBLOCK_VPOS(ctx->mb_y_);
int y_end = MACROBLOCK_VPOS(ctx->mb_y_ + 1);
if (ctx->filter_row_) {
FilterRow(dec);
}
if (io->put) {
if (!first_row) {
y_start -= extra_y_rows;
io->y = ydst;
io->u = udst;
io->v = vdst;
} else {
io->y = dec->cache_y_ + y_offset;
io->u = dec->cache_u_ + uv_offset;
io->v = dec->cache_v_ + uv_offset;
}
if (!last_row) {
y_end -= extra_y_rows;
}
if (y_end > io->crop_bottom) {
y_end = io->crop_bottom; // make sure we don't overflow on last row.
}
io->a = NULL;
if (dec->alpha_data_ != NULL && y_start < y_end) {
// TODO(skal): several things to correct here:
// * testing presence of alpha with dec->alpha_data_ is not a good idea
// * we're actually decompressing the full plane only once. It should be
// more obvious from signature.
// * we could free alpha_data_ right after this call, but we don't own.
io->a = VP8DecompressAlphaRows(dec, y_start, y_end - y_start);
if (io->a == NULL) {
return VP8SetError(dec, VP8_STATUS_BITSTREAM_ERROR,
"Could not decode alpha data.");
}
}
if (y_start < io->crop_top) {
const int delta_y = io->crop_top - y_start;
y_start = io->crop_top;
assert(!(delta_y & 1));
io->y += dec->cache_y_stride_ * delta_y;
io->u += dec->cache_uv_stride_ * (delta_y >> 1);
io->v += dec->cache_uv_stride_ * (delta_y >> 1);
if (io->a != NULL) {
io->a += io->width * delta_y;
}
}
if (y_start < y_end) {
io->y += io->crop_left;
io->u += io->crop_left >> 1;
io->v += io->crop_left >> 1;
if (io->a != NULL) {
io->a += io->crop_left;
}
io->mb_y = y_start - io->crop_top;
io->mb_w = io->crop_right - io->crop_left;
io->mb_h = y_end - y_start;
ok = io->put(io);
}
}
// rotate top samples if needed
if (ctx->id_ + 1 == dec->num_caches_) {
if (!last_row) {
memcpy(dec->cache_y_ - ysize, ydst + 16 * dec->cache_y_stride_, ysize);
memcpy(dec->cache_u_ - uvsize, udst + 8 * dec->cache_uv_stride_, uvsize);
memcpy(dec->cache_v_ - uvsize, vdst + 8 * dec->cache_uv_stride_, uvsize);
}
}
return ok;
}
#undef MACROBLOCK_VPOS
//------------------------------------------------------------------------------
int VP8ProcessRow(VP8Decoder* const dec, VP8Io* const io) {
int ok = 1;
VP8ThreadContext* const ctx = &dec->thread_ctx_;
if (!dec->use_threads_) {
// ctx->id_ and ctx->f_info_ are already set
ctx->mb_y_ = dec->mb_y_;
ctx->filter_row_ = dec->filter_row_;
ok = FinishRow(dec, io);
} else {
WebPWorker* const worker = &dec->worker_;
// Finish previous job *before* updating context
ok &= WebPWorkerSync(worker);
assert(worker->status_ == OK);
if (ok) { // spawn a new deblocking/output job
ctx->io_ = *io;
ctx->id_ = dec->cache_id_;
ctx->mb_y_ = dec->mb_y_;
ctx->filter_row_ = dec->filter_row_;
if (ctx->filter_row_) { // just swap filter info
VP8FInfo* const tmp = ctx->f_info_;
ctx->f_info_ = dec->f_info_;
dec->f_info_ = tmp;
}
WebPWorkerLaunch(worker);
if (++dec->cache_id_ == dec->num_caches_) {
dec->cache_id_ = 0;
}
}
}
return ok;
}
//------------------------------------------------------------------------------
// Finish setting up the decoding parameter once user's setup() is called.
VP8StatusCode VP8EnterCritical(VP8Decoder* const dec, VP8Io* const io) {
// Call setup() first. This may trigger additional decoding features on 'io'.
// Note: Afterward, we must call teardown() not matter what.
if (io->setup && !io->setup(io)) {
VP8SetError(dec, VP8_STATUS_USER_ABORT, "Frame setup failed");
return dec->status_;
}
// Disable filtering per user request
if (io->bypass_filtering) {
dec->filter_type_ = 0;
}
// TODO(skal): filter type / strength / sharpness forcing
// Define the area where we can skip in-loop filtering, in case of cropping.
//
// 'Simple' filter reads two luma samples outside of the macroblock and
// and filters one. It doesn't filter the chroma samples. Hence, we can
// avoid doing the in-loop filtering before crop_top/crop_left position.
// For the 'Complex' filter, 3 samples are read and up to 3 are filtered.
// Means: there's a dependency chain that goes all the way up to the
// top-left corner of the picture (MB #0). We must filter all the previous
// macroblocks.
// TODO(skal): add an 'approximate_decoding' option, that won't produce
// a 1:1 bit-exactness for complex filtering?
{
const int extra_pixels = kFilterExtraRows[dec->filter_type_];
if (dec->filter_type_ == 2) {
// For complex filter, we need to preserve the dependency chain.
dec->tl_mb_x_ = 0;
dec->tl_mb_y_ = 0;
} else {
// For simple filter, we can filter only the cropped region.
// We include 'extra_pixels' on the other side of the boundary, since
// vertical or horizontal filtering of the previous macroblock can
// modify some abutting pixels.
dec->tl_mb_x_ = (io->crop_left - extra_pixels) >> 4;
dec->tl_mb_y_ = (io->crop_top - extra_pixels) >> 4;
if (dec->tl_mb_x_ < 0) dec->tl_mb_x_ = 0;
if (dec->tl_mb_y_ < 0) dec->tl_mb_y_ = 0;
}
// We need some 'extra' pixels on the right/bottom.
dec->br_mb_y_ = (io->crop_bottom + 15 + extra_pixels) >> 4;
dec->br_mb_x_ = (io->crop_right + 15 + extra_pixels) >> 4;
if (dec->br_mb_x_ > dec->mb_w_) {
dec->br_mb_x_ = dec->mb_w_;
}
if (dec->br_mb_y_ > dec->mb_h_) {
dec->br_mb_y_ = dec->mb_h_;
}
}
return VP8_STATUS_OK;
}
int VP8ExitCritical(VP8Decoder* const dec, VP8Io* const io) {
int ok = 1;
if (dec->use_threads_) {
ok = WebPWorkerSync(&dec->worker_);
}
if (io->teardown) {
io->teardown(io);
}
return ok;
}
//------------------------------------------------------------------------------
// For multi-threaded decoding we need to use 3 rows of 16 pixels as delay line.
//
// Reason is: the deblocking filter cannot deblock the bottom horizontal edges
// immediately, and needs to wait for first few rows of the next macroblock to
// be decoded. Hence, deblocking is lagging behind by 4 or 8 pixels (depending
// on strength).
// With two threads, the vertical positions of the rows being decoded are:
// Decode: [ 0..15][16..31][32..47][48..63][64..79][...
// Deblock: [ 0..11][12..27][28..43][44..59][...
// If we use two threads and two caches of 16 pixels, the sequence would be:
// Decode: [ 0..15][16..31][ 0..15!!][16..31][ 0..15][...
// Deblock: [ 0..11][12..27!!][-4..11][12..27][...
// The problem occurs during row [12..15!!] that both the decoding and
// deblocking threads are writing simultaneously.
// With 3 cache lines, one get a safe write pattern:
// Decode: [ 0..15][16..31][32..47][ 0..15][16..31][32..47][0..
// Deblock: [ 0..11][12..27][28..43][-4..11][12..27][28...
// Note that multi-threaded output _without_ deblocking can make use of two
// cache lines of 16 pixels only, since there's no lagging behind. The decoding
// and output process have non-concurrent writing:
// Decode: [ 0..15][16..31][ 0..15][16..31][...
// io->put: [ 0..15][16..31][ 0..15][...
#define MT_CACHE_LINES 3
#define ST_CACHE_LINES 1 // 1 cache row only for single-threaded case
// Initialize multi/single-thread worker
static int InitThreadContext(VP8Decoder* const dec) {
dec->cache_id_ = 0;
if (dec->use_threads_) {
WebPWorker* const worker = &dec->worker_;
if (!WebPWorkerReset(worker)) {
return VP8SetError(dec, VP8_STATUS_OUT_OF_MEMORY,
"thread initialization failed.");
}
worker->data1 = dec;
worker->data2 = (void*)&dec->thread_ctx_.io_;
worker->hook = (WebPWorkerHook)FinishRow;
dec->num_caches_ =
(dec->filter_type_ > 0) ? MT_CACHE_LINES : MT_CACHE_LINES - 1;
} else {
dec->num_caches_ = ST_CACHE_LINES;
}
return 1;
}
#undef MT_CACHE_LINES
#undef ST_CACHE_LINES
//------------------------------------------------------------------------------
// Memory setup
static int AllocateMemory(VP8Decoder* const dec) {
const int num_caches = dec->num_caches_;
const int mb_w = dec->mb_w_;
// Note: we use 'size_t' when there's no overflow risk, uint64_t otherwise.
const size_t intra_pred_mode_size = 4 * mb_w * sizeof(uint8_t);
const size_t top_size = (16 + 8 + 8) * mb_w;
const size_t mb_info_size = (mb_w + 1) * sizeof(VP8MB);
const size_t f_info_size =
(dec->filter_type_ > 0) ?
mb_w * (dec->use_threads_ ? 2 : 1) * sizeof(VP8FInfo)
: 0;
const size_t yuv_size = YUV_SIZE * sizeof(*dec->yuv_b_);
const size_t coeffs_size = 384 * sizeof(*dec->coeffs_);
const size_t cache_height = (16 * num_caches
+ kFilterExtraRows[dec->filter_type_]) * 3 / 2;
const size_t cache_size = top_size * cache_height;
// alpha_size is the only one that scales as width x height.
const uint64_t alpha_size = (dec->alpha_data_ != NULL) ?
(uint64_t)dec->pic_hdr_.width_ * dec->pic_hdr_.height_ : 0ULL;
const uint64_t needed = (uint64_t)intra_pred_mode_size
+ top_size + mb_info_size + f_info_size
+ yuv_size + coeffs_size
+ cache_size + alpha_size + ALIGN_MASK;
uint8_t* mem;
if (needed != (size_t)needed) return 0; // check for overflow
if (needed > dec->mem_size_) {
free(dec->mem_);
dec->mem_size_ = 0;
dec->mem_ = WebPSafeMalloc(needed, sizeof(uint8_t));
if (dec->mem_ == NULL) {
return VP8SetError(dec, VP8_STATUS_OUT_OF_MEMORY,
"no memory during frame initialization.");
}
// down-cast is ok, thanks to WebPSafeAlloc() above.
dec->mem_size_ = (size_t)needed;
}
mem = (uint8_t*)dec->mem_;
dec->intra_t_ = (uint8_t*)mem;
mem += intra_pred_mode_size;
dec->y_t_ = (uint8_t*)mem;
mem += 16 * mb_w;
dec->u_t_ = (uint8_t*)mem;
mem += 8 * mb_w;
dec->v_t_ = (uint8_t*)mem;
mem += 8 * mb_w;
dec->mb_info_ = ((VP8MB*)mem) + 1;
mem += mb_info_size;
dec->f_info_ = f_info_size ? (VP8FInfo*)mem : NULL;
mem += f_info_size;
dec->thread_ctx_.id_ = 0;
dec->thread_ctx_.f_info_ = dec->f_info_;
if (dec->use_threads_) {
// secondary cache line. The deblocking process need to make use of the
// filtering strength from previous macroblock row, while the new ones
// are being decoded in parallel. We'll just swap the pointers.
dec->thread_ctx_.f_info_ += mb_w;
}
mem = (uint8_t*)((uintptr_t)(mem + ALIGN_MASK) & ~ALIGN_MASK);
assert((yuv_size & ALIGN_MASK) == 0);
dec->yuv_b_ = (uint8_t*)mem;
mem += yuv_size;
dec->coeffs_ = (int16_t*)mem;
mem += coeffs_size;
dec->cache_y_stride_ = 16 * mb_w;
dec->cache_uv_stride_ = 8 * mb_w;
{
const int extra_rows = kFilterExtraRows[dec->filter_type_];
const int extra_y = extra_rows * dec->cache_y_stride_;
const int extra_uv = (extra_rows / 2) * dec->cache_uv_stride_;
dec->cache_y_ = ((uint8_t*)mem) + extra_y;
dec->cache_u_ = dec->cache_y_
+ 16 * num_caches * dec->cache_y_stride_ + extra_uv;
dec->cache_v_ = dec->cache_u_
+ 8 * num_caches * dec->cache_uv_stride_ + extra_uv;
dec->cache_id_ = 0;
}
mem += cache_size;
// alpha plane
dec->alpha_plane_ = alpha_size ? (uint8_t*)mem : NULL;
mem += alpha_size;
// note: left-info is initialized once for all.
memset(dec->mb_info_ - 1, 0, mb_info_size);
// initialize top
memset(dec->intra_t_, B_DC_PRED, intra_pred_mode_size);
return 1;
}
static void InitIo(VP8Decoder* const dec, VP8Io* io) {
// prepare 'io'
io->mb_y = 0;
io->y = dec->cache_y_;
io->u = dec->cache_u_;
io->v = dec->cache_v_;
io->y_stride = dec->cache_y_stride_;
io->uv_stride = dec->cache_uv_stride_;
io->a = NULL;
}
int VP8InitFrame(VP8Decoder* const dec, VP8Io* io) {
if (!InitThreadContext(dec)) return 0; // call first. Sets dec->num_caches_.
if (!AllocateMemory(dec)) return 0;
InitIo(dec, io);
VP8DspInit(); // Init critical function pointers and look-up tables.
return 1;
}
//------------------------------------------------------------------------------
// Main reconstruction function.
static const int kScan[16] = {
0 + 0 * BPS, 4 + 0 * BPS, 8 + 0 * BPS, 12 + 0 * BPS,
0 + 4 * BPS, 4 + 4 * BPS, 8 + 4 * BPS, 12 + 4 * BPS,
0 + 8 * BPS, 4 + 8 * BPS, 8 + 8 * BPS, 12 + 8 * BPS,
0 + 12 * BPS, 4 + 12 * BPS, 8 + 12 * BPS, 12 + 12 * BPS
};
static WEBP_INLINE int CheckMode(VP8Decoder* const dec, int mode) {
if (mode == B_DC_PRED) {
if (dec->mb_x_ == 0) {
return (dec->mb_y_ == 0) ? B_DC_PRED_NOTOPLEFT : B_DC_PRED_NOLEFT;
} else {
return (dec->mb_y_ == 0) ? B_DC_PRED_NOTOP : B_DC_PRED;
}
}
return mode;
}
static WEBP_INLINE void Copy32b(uint8_t* dst, uint8_t* src) {
*(uint32_t*)dst = *(uint32_t*)src;
}
void VP8ReconstructBlock(VP8Decoder* const dec) {
uint8_t* const y_dst = dec->yuv_b_ + Y_OFF;
uint8_t* const u_dst = dec->yuv_b_ + U_OFF;
uint8_t* const v_dst = dec->yuv_b_ + V_OFF;
// Rotate in the left samples from previously decoded block. We move four
// pixels at a time for alignment reason, and because of in-loop filter.
if (dec->mb_x_ > 0) {
int j;
for (j = -1; j < 16; ++j) {
Copy32b(&y_dst[j * BPS - 4], &y_dst[j * BPS + 12]);
}
for (j = -1; j < 8; ++j) {
Copy32b(&u_dst[j * BPS - 4], &u_dst[j * BPS + 4]);
Copy32b(&v_dst[j * BPS - 4], &v_dst[j * BPS + 4]);
}
} else {
int j;
for (j = 0; j < 16; ++j) {
y_dst[j * BPS - 1] = 129;
}
for (j = 0; j < 8; ++j) {
u_dst[j * BPS - 1] = 129;
v_dst[j * BPS - 1] = 129;
}
// Init top-left sample on left column too
if (dec->mb_y_ > 0) {
y_dst[-1 - BPS] = u_dst[-1 - BPS] = v_dst[-1 - BPS] = 129;
}
}
{
// bring top samples into the cache
uint8_t* const top_y = dec->y_t_ + dec->mb_x_ * 16;
uint8_t* const top_u = dec->u_t_ + dec->mb_x_ * 8;
uint8_t* const top_v = dec->v_t_ + dec->mb_x_ * 8;
const int16_t* coeffs = dec->coeffs_;
int n;
if (dec->mb_y_ > 0) {
memcpy(y_dst - BPS, top_y, 16);
memcpy(u_dst - BPS, top_u, 8);
memcpy(v_dst - BPS, top_v, 8);
} else if (dec->mb_x_ == 0) {
// we only need to do this init once at block (0,0).
// Afterward, it remains valid for the whole topmost row.
memset(y_dst - BPS - 1, 127, 16 + 4 + 1);
memset(u_dst - BPS - 1, 127, 8 + 1);
memset(v_dst - BPS - 1, 127, 8 + 1);
}
// predict and add residuals
if (dec->is_i4x4_) { // 4x4
uint32_t* const top_right = (uint32_t*)(y_dst - BPS + 16);
if (dec->mb_y_ > 0) {
if (dec->mb_x_ >= dec->mb_w_ - 1) { // on rightmost border
top_right[0] = top_y[15] * 0x01010101u;
} else {
memcpy(top_right, top_y + 16, sizeof(*top_right));
}
}
// replicate the top-right pixels below
top_right[BPS] = top_right[2 * BPS] = top_right[3 * BPS] = top_right[0];
// predict and add residues for all 4x4 blocks in turn.
for (n = 0; n < 16; n++) {
uint8_t* const dst = y_dst + kScan[n];
VP8PredLuma4[dec->imodes_[n]](dst);
if (dec->non_zero_ac_ & (1 << n)) {
VP8Transform(coeffs + n * 16, dst, 0);
} else if (dec->non_zero_ & (1 << n)) { // only DC is present
VP8TransformDC(coeffs + n * 16, dst);
}
}
} else { // 16x16
const int pred_func = CheckMode(dec, dec->imodes_[0]);
VP8PredLuma16[pred_func](y_dst);
if (dec->non_zero_) {
for (n = 0; n < 16; n++) {
uint8_t* const dst = y_dst + kScan[n];
if (dec->non_zero_ac_ & (1 << n)) {
VP8Transform(coeffs + n * 16, dst, 0);
} else if (dec->non_zero_ & (1 << n)) { // only DC is present
VP8TransformDC(coeffs + n * 16, dst);
}
}
}
}
{
// Chroma
const int pred_func = CheckMode(dec, dec->uvmode_);
VP8PredChroma8[pred_func](u_dst);
VP8PredChroma8[pred_func](v_dst);
if (dec->non_zero_ & 0x0f0000) { // chroma-U
const int16_t* const u_coeffs = dec->coeffs_ + 16 * 16;
if (dec->non_zero_ac_ & 0x0f0000) {
VP8TransformUV(u_coeffs, u_dst);
} else {
VP8TransformDCUV(u_coeffs, u_dst);
}
}
if (dec->non_zero_ & 0xf00000) { // chroma-V
const int16_t* const v_coeffs = dec->coeffs_ + 20 * 16;
if (dec->non_zero_ac_ & 0xf00000) {
VP8TransformUV(v_coeffs, v_dst);
} else {
VP8TransformDCUV(v_coeffs, v_dst);
}
}
// stash away top samples for next block
if (dec->mb_y_ < dec->mb_h_ - 1) {
memcpy(top_y, y_dst + 15 * BPS, 16);
memcpy(top_u, u_dst + 7 * BPS, 8);
memcpy(top_v, v_dst + 7 * BPS, 8);
}
}
}
}
//------------------------------------------------------------------------------
#if defined(__cplusplus) || defined(c_plusplus)
} // extern "C"
#endif