godot/scene/resources/mesh.cpp
Omar El Sheikh d274284069 Octahedral Normal/Tangent Compression
Implement Octahedral Compression for normal/tangent vectors
*Oct32 for uncompressed vectors
*Oct16 for compressed vectors

Reduces vertex size for each attribute by
*Uncompressed: 12 bytes, vec4<float32> -> vec2<unorm16>
*Compressed: 2 bytes, vec4<unorm8> -> vec2<unorm8>

Binormal sign is encoded in the y coordinate of the encoded tangent

Added conversion functions to go from octahedral mapping to cartesian
for normal and tangent vectors

sprite_3d and soft_body meshes write to their vertex buffer memory
directly and need to convert their normals and tangents to the new oct
format before writing

Created a new mesh flag to specify whether a mesh is using octahedral
compression or not
Updated documentation to discuss new flag/defaults

Created shader flags to specify whether octahedral or cartesian vectors
are being used

Updated importers to use octahedral representation as the default format
for importing meshes

Updated ShaderGLES2 to support 64 bit version codes as we hit the limit
of the 32-bit integer that was previously used as a bitset to store
enabled/disabled flags
2021-07-30 10:29:09 -04:00

1518 lines
46 KiB
C++

/*************************************************************************/
/* mesh.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "mesh.h"
#include "core/crypto/crypto_core.h"
#include "core/local_vector.h"
#include "core/math/convex_hull.h"
#include "core/pair.h"
#include "scene/resources/concave_polygon_shape.h"
#include "scene/resources/convex_polygon_shape.h"
#include "surface_tool.h"
#include <stdlib.h>
Mesh::ConvexDecompositionFunc Mesh::convex_composition_function = nullptr;
Ref<TriangleMesh> Mesh::generate_triangle_mesh() const {
if (triangle_mesh.is_valid()) {
return triangle_mesh;
}
int facecount = 0;
for (int i = 0; i < get_surface_count(); i++) {
if (surface_get_primitive_type(i) != PRIMITIVE_TRIANGLES) {
continue;
}
if (surface_get_format(i) & ARRAY_FORMAT_INDEX) {
facecount += surface_get_array_index_len(i);
} else {
facecount += surface_get_array_len(i);
}
}
if (facecount == 0 || (facecount % 3) != 0) {
return triangle_mesh;
}
PoolVector<Vector3> faces;
faces.resize(facecount);
PoolVector<Vector3>::Write facesw = faces.write();
int widx = 0;
for (int i = 0; i < get_surface_count(); i++) {
if (surface_get_primitive_type(i) != PRIMITIVE_TRIANGLES) {
continue;
}
Array a = surface_get_arrays(i);
ERR_FAIL_COND_V(a.empty(), Ref<TriangleMesh>());
int vc = surface_get_array_len(i);
PoolVector<Vector3> vertices = a[ARRAY_VERTEX];
PoolVector<Vector3>::Read vr = vertices.read();
if (surface_get_format(i) & ARRAY_FORMAT_INDEX) {
int ic = surface_get_array_index_len(i);
PoolVector<int> indices = a[ARRAY_INDEX];
PoolVector<int>::Read ir = indices.read();
for (int j = 0; j < ic; j++) {
int index = ir[j];
facesw[widx++] = vr[index];
}
} else {
for (int j = 0; j < vc; j++) {
facesw[widx++] = vr[j];
}
}
}
facesw.release();
triangle_mesh = Ref<TriangleMesh>(memnew(TriangleMesh));
triangle_mesh->create(faces);
return triangle_mesh;
}
void Mesh::generate_debug_mesh_lines(Vector<Vector3> &r_lines) {
if (debug_lines.size() > 0) {
r_lines = debug_lines;
return;
}
Ref<TriangleMesh> tm = generate_triangle_mesh();
if (tm.is_null()) {
return;
}
PoolVector<int> triangle_indices;
tm->get_indices(&triangle_indices);
const int triangles_num = tm->get_triangles().size();
PoolVector<Vector3> vertices = tm->get_vertices();
debug_lines.resize(tm->get_triangles().size() * 6); // 3 lines x 2 points each line
PoolVector<int>::Read ind_r = triangle_indices.read();
PoolVector<Vector3>::Read ver_r = vertices.read();
for (int j = 0, x = 0, i = 0; i < triangles_num; j += 6, x += 3, ++i) {
// Triangle line 1
debug_lines.write[j + 0] = ver_r[ind_r[x + 0]];
debug_lines.write[j + 1] = ver_r[ind_r[x + 1]];
// Triangle line 2
debug_lines.write[j + 2] = ver_r[ind_r[x + 1]];
debug_lines.write[j + 3] = ver_r[ind_r[x + 2]];
// Triangle line 3
debug_lines.write[j + 4] = ver_r[ind_r[x + 2]];
debug_lines.write[j + 5] = ver_r[ind_r[x + 0]];
}
r_lines = debug_lines;
}
void Mesh::generate_debug_mesh_indices(Vector<Vector3> &r_points) {
Ref<TriangleMesh> tm = generate_triangle_mesh();
if (tm.is_null()) {
return;
}
PoolVector<Vector3> vertices = tm->get_vertices();
int vertices_size = vertices.size();
r_points.resize(vertices_size);
for (int i = 0; i < vertices_size; ++i) {
r_points.write[i] = vertices[i];
}
}
bool Mesh::surface_is_softbody_friendly(int p_idx) const {
const uint32_t surface_format = surface_get_format(p_idx);
return (surface_format & Mesh::ARRAY_FLAG_USE_DYNAMIC_UPDATE && (!(surface_format & Mesh::ARRAY_COMPRESS_VERTEX)) && (!(surface_format & Mesh::ARRAY_COMPRESS_NORMAL)));
}
PoolVector<Face3> Mesh::get_faces() const {
Ref<TriangleMesh> tm = generate_triangle_mesh();
if (tm.is_valid()) {
return tm->get_faces();
}
return PoolVector<Face3>();
/*
for (int i=0;i<surfaces.size();i++) {
if (VisualServer::get_singleton()->mesh_surface_get_primitive_type( mesh, i ) != VisualServer::PRIMITIVE_TRIANGLES )
continue;
PoolVector<int> indices;
PoolVector<Vector3> vertices;
vertices=VisualServer::get_singleton()->mesh_surface_get_array(mesh, i,VisualServer::ARRAY_VERTEX);
int len=VisualServer::get_singleton()->mesh_surface_get_array_index_len(mesh, i);
bool has_indices;
if (len>0) {
indices=VisualServer::get_singleton()->mesh_surface_get_array(mesh, i,VisualServer::ARRAY_INDEX);
has_indices=true;
} else {
len=vertices.size();
has_indices=false;
}
if (len<=0)
continue;
PoolVector<int>::Read indicesr = indices.read();
const int *indicesptr = indicesr.ptr();
PoolVector<Vector3>::Read verticesr = vertices.read();
const Vector3 *verticesptr = verticesr.ptr();
int old_faces=faces.size();
int new_faces=old_faces+(len/3);
faces.resize(new_faces);
PoolVector<Face3>::Write facesw = faces.write();
Face3 *facesptr=facesw.ptr();
for (int i=0;i<len/3;i++) {
Face3 face;
for (int j=0;j<3;j++) {
int idx=i*3+j;
face.vertex[j] = has_indices ? verticesptr[ indicesptr[ idx ] ] : verticesptr[idx];
}
facesptr[i+old_faces]=face;
}
}
*/
}
Ref<Shape> Mesh::create_convex_shape(bool p_clean, bool p_simplify) const {
if (p_simplify) {
Vector<Ref<Shape>> decomposed = convex_decompose(1);
if (decomposed.size() == 1) {
return decomposed[0];
} else {
ERR_PRINT("Convex shape simplification failed, falling back to simpler process.");
}
}
PoolVector<Vector3> vertices;
for (int i = 0; i < get_surface_count(); i++) {
Array a = surface_get_arrays(i);
ERR_FAIL_COND_V(a.empty(), Ref<ConvexPolygonShape>());
PoolVector<Vector3> v = a[ARRAY_VERTEX];
vertices.append_array(v);
}
Ref<ConvexPolygonShape> shape = memnew(ConvexPolygonShape);
if (p_clean) {
Geometry::MeshData md;
Error err = ConvexHullComputer::convex_hull(vertices, md);
if (err == OK) {
int vertex_count = md.vertices.size();
vertices.resize(vertex_count);
{
PoolVector<Vector3>::Write w = vertices.write();
for (int idx = 0; idx < vertex_count; ++idx) {
w[idx] = md.vertices[idx];
}
}
} else {
ERR_PRINT("Convex shape cleaning failed, falling back to simpler process.");
}
}
shape->set_points(vertices);
return shape;
}
Ref<Shape> Mesh::create_trimesh_shape() const {
PoolVector<Face3> faces = get_faces();
if (faces.size() == 0) {
return Ref<Shape>();
}
PoolVector<Vector3> face_points;
face_points.resize(faces.size() * 3);
for (int i = 0; i < face_points.size(); i += 3) {
Face3 f = faces.get(i / 3);
face_points.set(i, f.vertex[0]);
face_points.set(i + 1, f.vertex[1]);
face_points.set(i + 2, f.vertex[2]);
}
Ref<ConcavePolygonShape> shape = memnew(ConcavePolygonShape);
shape->set_faces(face_points);
return shape;
}
Ref<Mesh> Mesh::create_outline(float p_margin) const {
Array arrays;
int index_accum = 0;
for (int i = 0; i < get_surface_count(); i++) {
if (surface_get_primitive_type(i) != PRIMITIVE_TRIANGLES) {
continue;
}
Array a = surface_get_arrays(i);
ERR_FAIL_COND_V(a.empty(), Ref<ArrayMesh>());
if (i == 0) {
arrays = a;
PoolVector<Vector3> v = a[ARRAY_VERTEX];
index_accum += v.size();
} else {
int vcount = 0;
for (int j = 0; j < arrays.size(); j++) {
if (arrays[j].get_type() == Variant::NIL || a[j].get_type() == Variant::NIL) {
//mismatch, do not use
arrays[j] = Variant();
continue;
}
switch (j) {
case ARRAY_VERTEX:
case ARRAY_NORMAL: {
PoolVector<Vector3> dst = arrays[j];
PoolVector<Vector3> src = a[j];
if (j == ARRAY_VERTEX) {
vcount = src.size();
}
if (dst.size() == 0 || src.size() == 0) {
arrays[j] = Variant();
continue;
}
dst.append_array(src);
arrays[j] = dst;
} break;
case ARRAY_TANGENT:
case ARRAY_BONES:
case ARRAY_WEIGHTS: {
PoolVector<real_t> dst = arrays[j];
PoolVector<real_t> src = a[j];
if (dst.size() == 0 || src.size() == 0) {
arrays[j] = Variant();
continue;
}
dst.append_array(src);
arrays[j] = dst;
} break;
case ARRAY_COLOR: {
PoolVector<Color> dst = arrays[j];
PoolVector<Color> src = a[j];
if (dst.size() == 0 || src.size() == 0) {
arrays[j] = Variant();
continue;
}
dst.append_array(src);
arrays[j] = dst;
} break;
case ARRAY_TEX_UV:
case ARRAY_TEX_UV2: {
PoolVector<Vector2> dst = arrays[j];
PoolVector<Vector2> src = a[j];
if (dst.size() == 0 || src.size() == 0) {
arrays[j] = Variant();
continue;
}
dst.append_array(src);
arrays[j] = dst;
} break;
case ARRAY_INDEX: {
PoolVector<int> dst = arrays[j];
PoolVector<int> src = a[j];
if (dst.size() == 0 || src.size() == 0) {
arrays[j] = Variant();
continue;
}
{
int ss = src.size();
PoolVector<int>::Write w = src.write();
for (int k = 0; k < ss; k++) {
w[k] += index_accum;
}
}
dst.append_array(src);
arrays[j] = dst;
index_accum += vcount;
} break;
}
}
}
}
ERR_FAIL_COND_V(arrays.size() != ARRAY_MAX, Ref<ArrayMesh>());
{
PoolVector<int>::Write ir;
PoolVector<int> indices = arrays[ARRAY_INDEX];
bool has_indices = false;
PoolVector<Vector3> vertices = arrays[ARRAY_VERTEX];
int vc = vertices.size();
ERR_FAIL_COND_V(!vc, Ref<ArrayMesh>());
PoolVector<Vector3>::Write r = vertices.write();
if (indices.size()) {
ERR_FAIL_COND_V(indices.size() % 3 != 0, Ref<ArrayMesh>());
vc = indices.size();
ir = indices.write();
has_indices = true;
}
Map<Vector3, Vector3> normal_accum;
//fill normals with triangle normals
for (int i = 0; i < vc; i += 3) {
Vector3 t[3];
if (has_indices) {
t[0] = r[ir[i + 0]];
t[1] = r[ir[i + 1]];
t[2] = r[ir[i + 2]];
} else {
t[0] = r[i + 0];
t[1] = r[i + 1];
t[2] = r[i + 2];
}
Vector3 n = Plane(t[0], t[1], t[2]).normal;
for (int j = 0; j < 3; j++) {
Map<Vector3, Vector3>::Element *E = normal_accum.find(t[j]);
if (!E) {
normal_accum[t[j]] = n;
} else {
float d = n.dot(E->get());
if (d < 1.0) {
E->get() += n * (1.0 - d);
}
//E->get()+=n;
}
}
}
//normalize
for (Map<Vector3, Vector3>::Element *E = normal_accum.front(); E; E = E->next()) {
E->get().normalize();
}
//displace normals
int vc2 = vertices.size();
for (int i = 0; i < vc2; i++) {
Vector3 t = r[i];
Map<Vector3, Vector3>::Element *E = normal_accum.find(t);
ERR_CONTINUE(!E);
t += E->get() * p_margin;
r[i] = t;
}
r.release();
arrays[ARRAY_VERTEX] = vertices;
if (!has_indices) {
PoolVector<int> new_indices;
new_indices.resize(vertices.size());
PoolVector<int>::Write iw = new_indices.write();
for (int j = 0; j < vc2; j += 3) {
iw[j] = j;
iw[j + 1] = j + 2;
iw[j + 2] = j + 1;
}
iw.release();
arrays[ARRAY_INDEX] = new_indices;
} else {
for (int j = 0; j < vc; j += 3) {
SWAP(ir[j + 1], ir[j + 2]);
}
ir.release();
arrays[ARRAY_INDEX] = indices;
}
}
Ref<ArrayMesh> newmesh = memnew(ArrayMesh);
newmesh->add_surface_from_arrays(PRIMITIVE_TRIANGLES, arrays);
return newmesh;
}
void Mesh::set_lightmap_size_hint(const Vector2 &p_size) {
lightmap_size_hint = p_size;
}
Size2 Mesh::get_lightmap_size_hint() const {
return lightmap_size_hint;
}
void Mesh::_bind_methods() {
ClassDB::bind_method(D_METHOD("set_lightmap_size_hint", "size"), &Mesh::set_lightmap_size_hint);
ClassDB::bind_method(D_METHOD("get_lightmap_size_hint"), &Mesh::get_lightmap_size_hint);
ClassDB::bind_method(D_METHOD("get_aabb"), &Mesh::get_aabb);
ADD_PROPERTY(PropertyInfo(Variant::VECTOR2, "lightmap_size_hint"), "set_lightmap_size_hint", "get_lightmap_size_hint");
ClassDB::bind_method(D_METHOD("get_surface_count"), &Mesh::get_surface_count);
ClassDB::bind_method(D_METHOD("surface_get_arrays", "surf_idx"), &Mesh::surface_get_arrays);
ClassDB::bind_method(D_METHOD("surface_get_blend_shape_arrays", "surf_idx"), &Mesh::surface_get_blend_shape_arrays);
ClassDB::bind_method(D_METHOD("surface_set_material", "surf_idx", "material"), &Mesh::surface_set_material);
ClassDB::bind_method(D_METHOD("surface_get_material", "surf_idx"), &Mesh::surface_get_material);
BIND_ENUM_CONSTANT(PRIMITIVE_POINTS);
BIND_ENUM_CONSTANT(PRIMITIVE_LINES);
BIND_ENUM_CONSTANT(PRIMITIVE_LINE_STRIP);
BIND_ENUM_CONSTANT(PRIMITIVE_LINE_LOOP);
BIND_ENUM_CONSTANT(PRIMITIVE_TRIANGLES);
BIND_ENUM_CONSTANT(PRIMITIVE_TRIANGLE_STRIP);
BIND_ENUM_CONSTANT(PRIMITIVE_TRIANGLE_FAN);
BIND_ENUM_CONSTANT(BLEND_SHAPE_MODE_NORMALIZED);
BIND_ENUM_CONSTANT(BLEND_SHAPE_MODE_RELATIVE);
BIND_ENUM_CONSTANT(ARRAY_FORMAT_VERTEX);
BIND_ENUM_CONSTANT(ARRAY_FORMAT_NORMAL);
BIND_ENUM_CONSTANT(ARRAY_FORMAT_TANGENT);
BIND_ENUM_CONSTANT(ARRAY_FORMAT_COLOR);
BIND_ENUM_CONSTANT(ARRAY_FORMAT_TEX_UV);
BIND_ENUM_CONSTANT(ARRAY_FORMAT_TEX_UV2);
BIND_ENUM_CONSTANT(ARRAY_FORMAT_BONES);
BIND_ENUM_CONSTANT(ARRAY_FORMAT_WEIGHTS);
BIND_ENUM_CONSTANT(ARRAY_FORMAT_INDEX);
BIND_ENUM_CONSTANT(ARRAY_COMPRESS_BASE);
BIND_ENUM_CONSTANT(ARRAY_COMPRESS_VERTEX);
BIND_ENUM_CONSTANT(ARRAY_COMPRESS_NORMAL);
BIND_ENUM_CONSTANT(ARRAY_COMPRESS_TANGENT);
BIND_ENUM_CONSTANT(ARRAY_COMPRESS_COLOR);
BIND_ENUM_CONSTANT(ARRAY_COMPRESS_TEX_UV);
BIND_ENUM_CONSTANT(ARRAY_COMPRESS_TEX_UV2);
BIND_ENUM_CONSTANT(ARRAY_COMPRESS_BONES);
BIND_ENUM_CONSTANT(ARRAY_COMPRESS_WEIGHTS);
BIND_ENUM_CONSTANT(ARRAY_COMPRESS_INDEX);
BIND_ENUM_CONSTANT(ARRAY_FLAG_USE_2D_VERTICES);
BIND_ENUM_CONSTANT(ARRAY_FLAG_USE_16_BIT_BONES);
BIND_ENUM_CONSTANT(ARRAY_FLAG_USE_OCTAHEDRAL_COMPRESSION);
BIND_ENUM_CONSTANT(ARRAY_COMPRESS_DEFAULT);
BIND_ENUM_CONSTANT(ARRAY_VERTEX);
BIND_ENUM_CONSTANT(ARRAY_NORMAL);
BIND_ENUM_CONSTANT(ARRAY_TANGENT);
BIND_ENUM_CONSTANT(ARRAY_COLOR);
BIND_ENUM_CONSTANT(ARRAY_TEX_UV);
BIND_ENUM_CONSTANT(ARRAY_TEX_UV2);
BIND_ENUM_CONSTANT(ARRAY_BONES);
BIND_ENUM_CONSTANT(ARRAY_WEIGHTS);
BIND_ENUM_CONSTANT(ARRAY_INDEX);
BIND_ENUM_CONSTANT(ARRAY_MAX);
}
void Mesh::clear_cache() const {
triangle_mesh.unref();
debug_lines.clear();
}
Vector<Ref<Shape>> Mesh::convex_decompose(int p_max_convex_hulls) const {
ERR_FAIL_COND_V(!convex_composition_function, Vector<Ref<Shape>>());
PoolVector<Face3> faces = get_faces();
Vector<Face3> f3;
f3.resize(faces.size());
PoolVector<Face3>::Read f = faces.read();
for (int i = 0; i < f3.size(); i++) {
f3.write[i] = f[i];
}
Vector<Vector<Face3>> decomposed = convex_composition_function(f3, p_max_convex_hulls);
Vector<Ref<Shape>> ret;
for (int i = 0; i < decomposed.size(); i++) {
Set<Vector3> points;
for (int j = 0; j < decomposed[i].size(); j++) {
points.insert(decomposed[i][j].vertex[0]);
points.insert(decomposed[i][j].vertex[1]);
points.insert(decomposed[i][j].vertex[2]);
}
PoolVector<Vector3> convex_points;
convex_points.resize(points.size());
{
PoolVector<Vector3>::Write w = convex_points.write();
int idx = 0;
for (Set<Vector3>::Element *E = points.front(); E; E = E->next()) {
w[idx++] = E->get();
}
}
Ref<ConvexPolygonShape> shape;
shape.instance();
shape->set_points(convex_points);
ret.push_back(shape);
}
return ret;
}
Mesh::Mesh() {
}
bool ArrayMesh::_set(const StringName &p_name, const Variant &p_value) {
String sname = p_name;
if (p_name == "blend_shape/names") {
PoolVector<String> sk = p_value;
int sz = sk.size();
PoolVector<String>::Read r = sk.read();
for (int i = 0; i < sz; i++) {
add_blend_shape(r[i]);
}
return true;
}
if (p_name == "blend_shape/mode") {
set_blend_shape_mode(BlendShapeMode(int(p_value)));
return true;
}
if (sname.begins_with("surface_")) {
int sl = sname.find("/");
if (sl == -1) {
return false;
}
int idx = sname.substr(8, sl - 8).to_int() - 1;
String what = sname.get_slicec('/', 1);
if (what == "material") {
surface_set_material(idx, p_value);
} else if (what == "name") {
surface_set_name(idx, p_value);
}
return true;
}
if (!sname.begins_with("surfaces")) {
return false;
}
int idx = sname.get_slicec('/', 1).to_int();
String what = sname.get_slicec('/', 2);
if (idx == surfaces.size()) {
//create
Dictionary d = p_value;
ERR_FAIL_COND_V(!d.has("primitive"), false);
if (d.has("arrays")) {
//old format
ERR_FAIL_COND_V(!d.has("morph_arrays"), false);
add_surface_from_arrays(PrimitiveType(int(d["primitive"])), d["arrays"], d["morph_arrays"]);
} else if (d.has("array_data")) {
PoolVector<uint8_t> array_data = d["array_data"];
PoolVector<uint8_t> array_index_data;
if (d.has("array_index_data")) {
array_index_data = d["array_index_data"];
}
ERR_FAIL_COND_V(!d.has("format"), false);
uint32_t format = d["format"];
uint32_t primitive = d["primitive"];
ERR_FAIL_COND_V(!d.has("vertex_count"), false);
int vertex_count = d["vertex_count"];
int index_count = 0;
if (d.has("index_count")) {
index_count = d["index_count"];
}
Vector<PoolVector<uint8_t>> blend_shapes;
if (d.has("blend_shape_data")) {
Array blend_shape_data = d["blend_shape_data"];
for (int i = 0; i < blend_shape_data.size(); i++) {
PoolVector<uint8_t> shape = blend_shape_data[i];
blend_shapes.push_back(shape);
}
}
ERR_FAIL_COND_V(!d.has("aabb"), false);
AABB aabb = d["aabb"];
Vector<AABB> bone_aabb;
if (d.has("skeleton_aabb")) {
Array baabb = d["skeleton_aabb"];
bone_aabb.resize(baabb.size());
for (int i = 0; i < baabb.size(); i++) {
bone_aabb.write[i] = baabb[i];
}
}
add_surface(format, PrimitiveType(primitive), array_data, vertex_count, array_index_data, index_count, aabb, blend_shapes, bone_aabb);
} else {
ERR_FAIL_V(false);
}
if (d.has("material")) {
surface_set_material(idx, d["material"]);
}
if (d.has("name")) {
surface_set_name(idx, d["name"]);
}
return true;
}
return false;
}
bool ArrayMesh::_get(const StringName &p_name, Variant &r_ret) const {
if (_is_generated()) {
return false;
}
String sname = p_name;
if (p_name == "blend_shape/names") {
PoolVector<String> sk;
for (int i = 0; i < blend_shapes.size(); i++) {
sk.push_back(blend_shapes[i]);
}
r_ret = sk;
return true;
} else if (p_name == "blend_shape/mode") {
r_ret = get_blend_shape_mode();
return true;
} else if (sname.begins_with("surface_")) {
int sl = sname.find("/");
if (sl == -1) {
return false;
}
int idx = sname.substr(8, sl - 8).to_int() - 1;
String what = sname.get_slicec('/', 1);
if (what == "material") {
r_ret = surface_get_material(idx);
} else if (what == "name") {
r_ret = surface_get_name(idx);
}
return true;
} else if (!sname.begins_with("surfaces")) {
return false;
}
int idx = sname.get_slicec('/', 1).to_int();
ERR_FAIL_INDEX_V(idx, surfaces.size(), false);
Dictionary d;
d["array_data"] = VS::get_singleton()->mesh_surface_get_array(mesh, idx);
d["vertex_count"] = VS::get_singleton()->mesh_surface_get_array_len(mesh, idx);
d["array_index_data"] = VS::get_singleton()->mesh_surface_get_index_array(mesh, idx);
d["index_count"] = VS::get_singleton()->mesh_surface_get_array_index_len(mesh, idx);
d["primitive"] = VS::get_singleton()->mesh_surface_get_primitive_type(mesh, idx);
d["format"] = VS::get_singleton()->mesh_surface_get_format(mesh, idx);
d["aabb"] = VS::get_singleton()->mesh_surface_get_aabb(mesh, idx);
Vector<AABB> skel_aabb = VS::get_singleton()->mesh_surface_get_skeleton_aabb(mesh, idx);
Array arr;
arr.resize(skel_aabb.size());
for (int i = 0; i < skel_aabb.size(); i++) {
arr[i] = skel_aabb[i];
}
d["skeleton_aabb"] = arr;
Vector<PoolVector<uint8_t>> blend_shape_data = VS::get_singleton()->mesh_surface_get_blend_shapes(mesh, idx);
Array md;
for (int i = 0; i < blend_shape_data.size(); i++) {
md.push_back(blend_shape_data[i]);
}
d["blend_shape_data"] = md;
Ref<Material> m = surface_get_material(idx);
if (m.is_valid()) {
d["material"] = m;
}
String n = surface_get_name(idx);
if (n != "") {
d["name"] = n;
}
r_ret = d;
return true;
}
void ArrayMesh::_get_property_list(List<PropertyInfo> *p_list) const {
if (_is_generated()) {
return;
}
if (blend_shapes.size()) {
p_list->push_back(PropertyInfo(Variant::POOL_STRING_ARRAY, "blend_shape/names", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR | PROPERTY_USAGE_INTERNAL));
p_list->push_back(PropertyInfo(Variant::INT, "blend_shape/mode", PROPERTY_HINT_ENUM, "Normalized,Relative"));
}
for (int i = 0; i < surfaces.size(); i++) {
p_list->push_back(PropertyInfo(Variant::DICTIONARY, "surfaces/" + itos(i), PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR | PROPERTY_USAGE_INTERNAL));
p_list->push_back(PropertyInfo(Variant::STRING, "surface_" + itos(i + 1) + "/name", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_EDITOR));
if (surfaces[i].is_2d) {
p_list->push_back(PropertyInfo(Variant::OBJECT, "surface_" + itos(i + 1) + "/material", PROPERTY_HINT_RESOURCE_TYPE, "ShaderMaterial,CanvasItemMaterial", PROPERTY_USAGE_EDITOR));
} else {
p_list->push_back(PropertyInfo(Variant::OBJECT, "surface_" + itos(i + 1) + "/material", PROPERTY_HINT_RESOURCE_TYPE, "ShaderMaterial,SpatialMaterial", PROPERTY_USAGE_EDITOR));
}
}
}
void ArrayMesh::_recompute_aabb() {
// regenerate AABB
aabb = AABB();
for (int i = 0; i < surfaces.size(); i++) {
if (i == 0) {
aabb = surfaces[i].aabb;
} else {
aabb.merge_with(surfaces[i].aabb);
}
}
}
void ArrayMesh::add_surface(uint32_t p_format, PrimitiveType p_primitive, const PoolVector<uint8_t> &p_array, int p_vertex_count, const PoolVector<uint8_t> &p_index_array, int p_index_count, const AABB &p_aabb, const Vector<PoolVector<uint8_t>> &p_blend_shapes, const Vector<AABB> &p_bone_aabbs) {
Surface s;
s.aabb = p_aabb;
s.is_2d = p_format & ARRAY_FLAG_USE_2D_VERTICES;
surfaces.push_back(s);
_recompute_aabb();
VisualServer::get_singleton()->mesh_add_surface(mesh, p_format, (VS::PrimitiveType)p_primitive, p_array, p_vertex_count, p_index_array, p_index_count, p_aabb, p_blend_shapes, p_bone_aabbs);
}
void ArrayMesh::add_surface_from_arrays(PrimitiveType p_primitive, const Array &p_arrays, const Array &p_blend_shapes, uint32_t p_flags) {
ERR_FAIL_COND(p_arrays.size() != ARRAY_MAX);
Surface s;
VisualServer::get_singleton()->mesh_add_surface_from_arrays(mesh, (VisualServer::PrimitiveType)p_primitive, p_arrays, p_blend_shapes, p_flags);
/* make aABB? */ {
Variant arr = p_arrays[ARRAY_VERTEX];
PoolVector<Vector3> vertices = arr;
int len = vertices.size();
ERR_FAIL_COND(len == 0);
PoolVector<Vector3>::Read r = vertices.read();
const Vector3 *vtx = r.ptr();
// check AABB
AABB aabb;
for (int i = 0; i < len; i++) {
if (i == 0) {
aabb.position = vtx[i];
} else {
aabb.expand_to(vtx[i]);
}
}
s.aabb = aabb;
s.is_2d = arr.get_type() == Variant::POOL_VECTOR2_ARRAY;
surfaces.push_back(s);
_recompute_aabb();
}
clear_cache();
_change_notify();
emit_changed();
}
Array ArrayMesh::surface_get_arrays(int p_surface) const {
ERR_FAIL_INDEX_V(p_surface, surfaces.size(), Array());
return VisualServer::get_singleton()->mesh_surface_get_arrays(mesh, p_surface);
}
Array ArrayMesh::surface_get_blend_shape_arrays(int p_surface) const {
ERR_FAIL_INDEX_V(p_surface, surfaces.size(), Array());
return VisualServer::get_singleton()->mesh_surface_get_blend_shape_arrays(mesh, p_surface);
}
int ArrayMesh::get_surface_count() const {
return surfaces.size();
}
void ArrayMesh::add_blend_shape(const StringName &p_name) {
ERR_FAIL_COND_MSG(surfaces.size(), "Can't add a shape key count if surfaces are already created.");
StringName name = p_name;
if (blend_shapes.find(name) != -1) {
int count = 2;
do {
name = String(p_name) + " " + itos(count);
count++;
} while (blend_shapes.find(name) != -1);
}
blend_shapes.push_back(name);
VS::get_singleton()->mesh_set_blend_shape_count(mesh, blend_shapes.size());
}
int ArrayMesh::get_blend_shape_count() const {
return blend_shapes.size();
}
StringName ArrayMesh::get_blend_shape_name(int p_index) const {
ERR_FAIL_INDEX_V(p_index, blend_shapes.size(), StringName());
return blend_shapes[p_index];
}
void ArrayMesh::set_blend_shape_name(int p_index, const StringName &p_name) {
ERR_FAIL_INDEX(p_index, blend_shapes.size());
StringName name = p_name;
int found = blend_shapes.find(name);
if (found != -1 && found != p_index) {
int count = 2;
do {
name = String(p_name) + " " + itos(count);
count++;
} while (blend_shapes.find(name) != -1);
}
blend_shapes.write[p_index] = name;
}
void ArrayMesh::clear_blend_shapes() {
ERR_FAIL_COND_MSG(surfaces.size(), "Can't set shape key count if surfaces are already created.");
blend_shapes.clear();
}
void ArrayMesh::set_blend_shape_mode(BlendShapeMode p_mode) {
blend_shape_mode = p_mode;
VS::get_singleton()->mesh_set_blend_shape_mode(mesh, (VS::BlendShapeMode)p_mode);
}
ArrayMesh::BlendShapeMode ArrayMesh::get_blend_shape_mode() const {
return blend_shape_mode;
}
void ArrayMesh::surface_remove(int p_idx) {
ERR_FAIL_INDEX(p_idx, surfaces.size());
VisualServer::get_singleton()->mesh_remove_surface(mesh, p_idx);
surfaces.remove(p_idx);
clear_cache();
_recompute_aabb();
_change_notify();
emit_changed();
}
int ArrayMesh::surface_get_array_len(int p_idx) const {
ERR_FAIL_INDEX_V(p_idx, surfaces.size(), -1);
return VisualServer::get_singleton()->mesh_surface_get_array_len(mesh, p_idx);
}
int ArrayMesh::surface_get_array_index_len(int p_idx) const {
ERR_FAIL_INDEX_V(p_idx, surfaces.size(), -1);
return VisualServer::get_singleton()->mesh_surface_get_array_index_len(mesh, p_idx);
}
uint32_t ArrayMesh::surface_get_format(int p_idx) const {
ERR_FAIL_INDEX_V(p_idx, surfaces.size(), 0);
return VisualServer::get_singleton()->mesh_surface_get_format(mesh, p_idx);
}
ArrayMesh::PrimitiveType ArrayMesh::surface_get_primitive_type(int p_idx) const {
ERR_FAIL_INDEX_V(p_idx, surfaces.size(), PRIMITIVE_LINES);
return (PrimitiveType)VisualServer::get_singleton()->mesh_surface_get_primitive_type(mesh, p_idx);
}
void ArrayMesh::surface_set_material(int p_idx, const Ref<Material> &p_material) {
ERR_FAIL_INDEX(p_idx, surfaces.size());
if (surfaces[p_idx].material == p_material) {
return;
}
surfaces.write[p_idx].material = p_material;
VisualServer::get_singleton()->mesh_surface_set_material(mesh, p_idx, p_material.is_null() ? RID() : p_material->get_rid());
_change_notify("material");
emit_changed();
}
int ArrayMesh::surface_find_by_name(const String &p_name) const {
for (int i = 0; i < surfaces.size(); i++) {
if (surfaces[i].name == p_name) {
return i;
}
}
return -1;
}
void ArrayMesh::surface_set_name(int p_idx, const String &p_name) {
ERR_FAIL_INDEX(p_idx, surfaces.size());
surfaces.write[p_idx].name = p_name;
emit_changed();
}
String ArrayMesh::surface_get_name(int p_idx) const {
ERR_FAIL_INDEX_V(p_idx, surfaces.size(), String());
return surfaces[p_idx].name;
}
void ArrayMesh::surface_update_region(int p_surface, int p_offset, const PoolVector<uint8_t> &p_data) {
ERR_FAIL_INDEX(p_surface, surfaces.size());
VS::get_singleton()->mesh_surface_update_region(mesh, p_surface, p_offset, p_data);
emit_changed();
}
void ArrayMesh::surface_set_custom_aabb(int p_idx, const AABB &p_aabb) {
ERR_FAIL_INDEX(p_idx, surfaces.size());
surfaces.write[p_idx].aabb = p_aabb;
// set custom aabb too?
emit_changed();
}
Ref<Material> ArrayMesh::surface_get_material(int p_idx) const {
ERR_FAIL_INDEX_V(p_idx, surfaces.size(), Ref<Material>());
return surfaces[p_idx].material;
}
void ArrayMesh::add_surface_from_mesh_data(const Geometry::MeshData &p_mesh_data) {
VisualServer::get_singleton()->mesh_add_surface_from_mesh_data(mesh, p_mesh_data);
AABB aabb;
for (int i = 0; i < p_mesh_data.vertices.size(); i++) {
if (i == 0) {
aabb.position = p_mesh_data.vertices[i];
} else {
aabb.expand_to(p_mesh_data.vertices[i]);
}
}
Surface s;
s.aabb = aabb;
if (surfaces.size() == 0) {
aabb = s.aabb;
} else {
aabb.merge_with(s.aabb);
}
clear_cache();
surfaces.push_back(s);
_change_notify();
emit_changed();
}
RID ArrayMesh::get_rid() const {
return mesh;
}
AABB ArrayMesh::get_aabb() const {
return aabb;
}
void ArrayMesh::clear_surfaces() {
if (!mesh.is_valid()) {
return;
}
VS::get_singleton()->mesh_clear(mesh);
surfaces.clear();
aabb = AABB();
}
void ArrayMesh::set_custom_aabb(const AABB &p_custom) {
custom_aabb = p_custom;
VS::get_singleton()->mesh_set_custom_aabb(mesh, custom_aabb);
emit_changed();
}
AABB ArrayMesh::get_custom_aabb() const {
return custom_aabb;
}
void ArrayMesh::regen_normalmaps() {
Vector<Ref<SurfaceTool>> surfs;
for (int i = 0; i < get_surface_count(); i++) {
Ref<SurfaceTool> st = memnew(SurfaceTool);
st->create_from(Ref<ArrayMesh>(this), i);
surfs.push_back(st);
}
while (get_surface_count()) {
surface_remove(0);
}
for (int i = 0; i < surfs.size(); i++) {
surfs.write[i]->generate_tangents();
surfs.write[i]->commit(Ref<ArrayMesh>(this));
}
}
//dirty hack
bool (*array_mesh_lightmap_unwrap_callback)(float p_texel_size, const float *p_vertices, const float *p_normals, int p_vertex_count, const int *p_indices, const int *p_face_materials, int p_index_count, float **r_uv, int **r_vertex, int *r_vertex_count, int **r_index, int *r_index_count, int *r_size_hint_x, int *r_size_hint_y) = nullptr;
struct ArrayMeshLightmapSurface {
Ref<Material> material;
Vector<SurfaceTool::Vertex> vertices;
Mesh::PrimitiveType primitive;
uint32_t format;
};
Error ArrayMesh::lightmap_unwrap(const Transform &p_base_transform, float p_texel_size) {
int *cache_data = nullptr;
unsigned int cache_size = 0;
bool use_cache = false; // Don't use cache
return lightmap_unwrap_cached(cache_data, cache_size, use_cache, p_base_transform, p_texel_size);
}
Error ArrayMesh::lightmap_unwrap_cached(int *&r_cache_data, unsigned int &r_cache_size, bool &r_used_cache, const Transform &p_base_transform, float p_texel_size) {
ERR_FAIL_COND_V(!array_mesh_lightmap_unwrap_callback, ERR_UNCONFIGURED);
ERR_FAIL_COND_V_MSG(blend_shapes.size() != 0, ERR_UNAVAILABLE, "Can't unwrap mesh with blend shapes.");
LocalVector<float> vertices;
LocalVector<float> normals;
LocalVector<int> indices;
LocalVector<int> face_materials;
LocalVector<float> uv;
LocalVector<Pair<int, int>> uv_indices;
Vector<ArrayMeshLightmapSurface> lightmap_surfaces;
// Keep only the scale
Basis basis = p_base_transform.get_basis();
Vector3 scale = Vector3(basis.get_axis(0).length(), basis.get_axis(1).length(), basis.get_axis(2).length());
Transform transform;
transform.scale(scale);
Basis normal_basis = transform.basis.inverse().transposed();
for (int i = 0; i < get_surface_count(); i++) {
ArrayMeshLightmapSurface s;
s.primitive = surface_get_primitive_type(i);
ERR_FAIL_COND_V_MSG(s.primitive != Mesh::PRIMITIVE_TRIANGLES, ERR_UNAVAILABLE, "Only triangles are supported for lightmap unwrap.");
s.format = surface_get_format(i);
ERR_FAIL_COND_V_MSG(!(s.format & ARRAY_FORMAT_NORMAL), ERR_UNAVAILABLE, "Normals are required for lightmap unwrap.");
Array arrays = surface_get_arrays(i);
s.material = surface_get_material(i);
s.vertices = SurfaceTool::create_vertex_array_from_triangle_arrays(arrays);
PoolVector<Vector3> rvertices = arrays[Mesh::ARRAY_VERTEX];
int vc = rvertices.size();
PoolVector<Vector3>::Read r = rvertices.read();
PoolVector<Vector3> rnormals = arrays[Mesh::ARRAY_NORMAL];
PoolVector<Vector3>::Read rn = rnormals.read();
int vertex_ofs = vertices.size() / 3;
vertices.resize((vertex_ofs + vc) * 3);
normals.resize((vertex_ofs + vc) * 3);
uv_indices.resize(vertex_ofs + vc);
for (int j = 0; j < vc; j++) {
Vector3 v = transform.xform(r[j]);
Vector3 n = normal_basis.xform(rn[j]).normalized();
vertices[(j + vertex_ofs) * 3 + 0] = v.x;
vertices[(j + vertex_ofs) * 3 + 1] = v.y;
vertices[(j + vertex_ofs) * 3 + 2] = v.z;
normals[(j + vertex_ofs) * 3 + 0] = n.x;
normals[(j + vertex_ofs) * 3 + 1] = n.y;
normals[(j + vertex_ofs) * 3 + 2] = n.z;
uv_indices[j + vertex_ofs] = Pair<int, int>(i, j);
}
PoolVector<int> rindices = arrays[Mesh::ARRAY_INDEX];
int ic = rindices.size();
float eps = 1.19209290e-7F; // Taken from xatlas.h
if (ic == 0) {
for (int j = 0; j < vc / 3; j++) {
Vector3 p0 = transform.xform(r[j * 3 + 0]);
Vector3 p1 = transform.xform(r[j * 3 + 1]);
Vector3 p2 = transform.xform(r[j * 3 + 2]);
if ((p0 - p1).length_squared() < eps || (p1 - p2).length_squared() < eps || (p2 - p0).length_squared() < eps) {
continue;
}
indices.push_back(vertex_ofs + j * 3 + 0);
indices.push_back(vertex_ofs + j * 3 + 1);
indices.push_back(vertex_ofs + j * 3 + 2);
face_materials.push_back(i);
}
} else {
PoolVector<int>::Read ri = rindices.read();
for (int j = 0; j < ic / 3; j++) {
Vector3 p0 = transform.xform(r[ri[j * 3 + 0]]);
Vector3 p1 = transform.xform(r[ri[j * 3 + 1]]);
Vector3 p2 = transform.xform(r[ri[j * 3 + 2]]);
if ((p0 - p1).length_squared() < eps || (p1 - p2).length_squared() < eps || (p2 - p0).length_squared() < eps) {
continue;
}
indices.push_back(vertex_ofs + ri[j * 3 + 0]);
indices.push_back(vertex_ofs + ri[j * 3 + 1]);
indices.push_back(vertex_ofs + ri[j * 3 + 2]);
face_materials.push_back(i);
}
}
lightmap_surfaces.push_back(s);
}
CryptoCore::MD5Context ctx;
ctx.start();
ctx.update((unsigned char *)&p_texel_size, sizeof(float));
ctx.update((unsigned char *)indices.ptr(), sizeof(int) * indices.size());
ctx.update((unsigned char *)face_materials.ptr(), sizeof(int) * face_materials.size());
ctx.update((unsigned char *)vertices.ptr(), sizeof(float) * vertices.size());
ctx.update((unsigned char *)normals.ptr(), sizeof(float) * normals.size());
unsigned char hash[16];
ctx.finish(hash);
bool cached = false;
unsigned int cache_idx = 0;
if (r_used_cache && r_cache_data) {
//Check if hash is in cache data
int *cache_data = r_cache_data;
int n_entries = cache_data[0];
unsigned int r_idx = 1;
for (int i = 0; i < n_entries; ++i) {
if (memcmp(&cache_data[r_idx], hash, 16) == 0) {
cached = true;
cache_idx = r_idx;
break;
}
r_idx += 4; // hash
r_idx += 2; // size hint
int vertex_count = cache_data[r_idx];
r_idx += 1; // vertex count
r_idx += vertex_count; // vertex
r_idx += vertex_count * 2; // uvs
int index_count = cache_data[r_idx];
r_idx += 1; // index count
r_idx += index_count; // indices
}
}
//unwrap
float *gen_uvs;
int *gen_vertices;
int *gen_indices;
int gen_vertex_count;
int gen_index_count;
int size_x;
int size_y;
if (r_used_cache && cached) {
int *cache_data = r_cache_data;
// Return cache data pointer to the caller
r_cache_data = &cache_data[cache_idx];
cache_idx += 4;
// Load size
size_x = ((int *)cache_data)[cache_idx];
size_y = ((int *)cache_data)[cache_idx + 1];
cache_idx += 2;
// Load vertices
gen_vertex_count = cache_data[cache_idx];
cache_idx++;
gen_vertices = &cache_data[cache_idx];
cache_idx += gen_vertex_count;
// Load UVs
gen_uvs = (float *)&cache_data[cache_idx];
cache_idx += gen_vertex_count * 2;
// Load indices
gen_index_count = cache_data[cache_idx];
cache_idx++;
gen_indices = &cache_data[cache_idx];
// Return cache data size to the caller
r_cache_size = sizeof(int) * (4 + 2 + 1 + gen_vertex_count + (gen_vertex_count * 2) + 1 + gen_index_count); // hash + size hint + vertex_count + vertices + uvs + index_count + indices
r_used_cache = true;
}
if (!cached) {
bool ok = array_mesh_lightmap_unwrap_callback(p_texel_size, vertices.ptr(), normals.ptr(), vertices.size() / 3, indices.ptr(), face_materials.ptr(), indices.size(), &gen_uvs, &gen_vertices, &gen_vertex_count, &gen_indices, &gen_index_count, &size_x, &size_y);
if (!ok) {
return ERR_CANT_CREATE;
}
if (r_used_cache) {
unsigned int new_cache_size = 4 + 2 + 1 + gen_vertex_count + (gen_vertex_count * 2) + 1 + gen_index_count; // hash + size hint + vertex_count + vertices + uvs + index_count + indices
new_cache_size *= sizeof(int);
int *new_cache_data = (int *)memalloc(new_cache_size);
unsigned int new_cache_idx = 0;
// hash
memcpy(&new_cache_data[new_cache_idx], hash, 16);
new_cache_idx += 4;
// size hint
new_cache_data[new_cache_idx] = size_x;
new_cache_data[new_cache_idx + 1] = size_y;
new_cache_idx += 2;
// vertex count
new_cache_data[new_cache_idx] = gen_vertex_count;
new_cache_idx++;
// vertices
memcpy(&new_cache_data[new_cache_idx], gen_vertices, sizeof(int) * gen_vertex_count);
new_cache_idx += gen_vertex_count;
// uvs
memcpy(&new_cache_data[new_cache_idx], gen_uvs, sizeof(float) * gen_vertex_count * 2);
new_cache_idx += gen_vertex_count * 2;
// index count
new_cache_data[new_cache_idx] = gen_index_count;
new_cache_idx++;
// indices
memcpy(&new_cache_data[new_cache_idx], gen_indices, sizeof(int) * gen_index_count);
new_cache_idx += gen_index_count;
// Return cache data to the caller
r_cache_data = new_cache_data;
r_cache_size = new_cache_size;
r_used_cache = false;
}
}
//remove surfaces
while (get_surface_count()) {
surface_remove(0);
}
//create surfacetools for each surface..
LocalVector<Ref<SurfaceTool>> surfaces_tools;
for (int i = 0; i < lightmap_surfaces.size(); i++) {
Ref<SurfaceTool> st;
st.instance();
st->begin(Mesh::PRIMITIVE_TRIANGLES);
st->set_material(lightmap_surfaces[i].material);
surfaces_tools.push_back(st); //stay there
}
print_verbose("Mesh: Gen indices: " + itos(gen_index_count));
//go through all indices
for (int i = 0; i < gen_index_count; i += 3) {
ERR_FAIL_INDEX_V(gen_vertices[gen_indices[i + 0]], (int)uv_indices.size(), ERR_BUG);
ERR_FAIL_INDEX_V(gen_vertices[gen_indices[i + 1]], (int)uv_indices.size(), ERR_BUG);
ERR_FAIL_INDEX_V(gen_vertices[gen_indices[i + 2]], (int)uv_indices.size(), ERR_BUG);
ERR_FAIL_COND_V(uv_indices[gen_vertices[gen_indices[i + 0]]].first != uv_indices[gen_vertices[gen_indices[i + 1]]].first || uv_indices[gen_vertices[gen_indices[i + 0]]].first != uv_indices[gen_vertices[gen_indices[i + 2]]].first, ERR_BUG);
int surface = uv_indices[gen_vertices[gen_indices[i + 0]]].first;
for (int j = 0; j < 3; j++) {
SurfaceTool::Vertex v = lightmap_surfaces[surface].vertices[uv_indices[gen_vertices[gen_indices[i + j]]].second];
if (lightmap_surfaces[surface].format & ARRAY_FORMAT_COLOR) {
surfaces_tools[surface]->add_color(v.color);
}
if (lightmap_surfaces[surface].format & ARRAY_FORMAT_TEX_UV) {
surfaces_tools[surface]->add_uv(v.uv);
}
if (lightmap_surfaces[surface].format & ARRAY_FORMAT_NORMAL) {
surfaces_tools[surface]->add_normal(v.normal);
}
if (lightmap_surfaces[surface].format & ARRAY_FORMAT_TANGENT) {
Plane t;
t.normal = v.tangent;
t.d = v.binormal.dot(v.normal.cross(v.tangent)) < 0 ? -1 : 1;
surfaces_tools[surface]->add_tangent(t);
}
if (lightmap_surfaces[surface].format & ARRAY_FORMAT_BONES) {
surfaces_tools[surface]->add_bones(v.bones);
}
if (lightmap_surfaces[surface].format & ARRAY_FORMAT_WEIGHTS) {
surfaces_tools[surface]->add_weights(v.weights);
}
Vector2 uv2(gen_uvs[gen_indices[i + j] * 2 + 0], gen_uvs[gen_indices[i + j] * 2 + 1]);
surfaces_tools[surface]->add_uv2(uv2);
surfaces_tools[surface]->add_vertex(v.vertex);
}
}
//generate surfaces
for (unsigned int i = 0; i < surfaces_tools.size(); i++) {
surfaces_tools[i]->index();
surfaces_tools[i]->commit(Ref<ArrayMesh>((ArrayMesh *)this), lightmap_surfaces[i].format);
}
set_lightmap_size_hint(Size2(size_x, size_y));
if (!cached) {
//free stuff
::free(gen_vertices);
::free(gen_indices);
::free(gen_uvs);
}
return OK;
}
void ArrayMesh::_bind_methods() {
ClassDB::bind_method(D_METHOD("add_blend_shape", "name"), &ArrayMesh::add_blend_shape);
ClassDB::bind_method(D_METHOD("get_blend_shape_count"), &ArrayMesh::get_blend_shape_count);
ClassDB::bind_method(D_METHOD("get_blend_shape_name", "index"), &ArrayMesh::get_blend_shape_name);
ClassDB::bind_method(D_METHOD("set_blend_shape_name", "index", "name"), &ArrayMesh::set_blend_shape_name);
ClassDB::bind_method(D_METHOD("clear_blend_shapes"), &ArrayMesh::clear_blend_shapes);
ClassDB::bind_method(D_METHOD("set_blend_shape_mode", "mode"), &ArrayMesh::set_blend_shape_mode);
ClassDB::bind_method(D_METHOD("get_blend_shape_mode"), &ArrayMesh::get_blend_shape_mode);
ClassDB::bind_method(D_METHOD("add_surface_from_arrays", "primitive", "arrays", "blend_shapes", "compress_flags"), &ArrayMesh::add_surface_from_arrays, DEFVAL(Array()), DEFVAL(ARRAY_COMPRESS_DEFAULT));
ClassDB::bind_method(D_METHOD("clear_surfaces"), &ArrayMesh::clear_surfaces);
ClassDB::bind_method(D_METHOD("surface_remove", "surf_idx"), &ArrayMesh::surface_remove);
ClassDB::bind_method(D_METHOD("surface_update_region", "surf_idx", "offset", "data"), &ArrayMesh::surface_update_region);
ClassDB::bind_method(D_METHOD("surface_get_array_len", "surf_idx"), &ArrayMesh::surface_get_array_len);
ClassDB::bind_method(D_METHOD("surface_get_array_index_len", "surf_idx"), &ArrayMesh::surface_get_array_index_len);
ClassDB::bind_method(D_METHOD("surface_get_format", "surf_idx"), &ArrayMesh::surface_get_format);
ClassDB::bind_method(D_METHOD("surface_get_primitive_type", "surf_idx"), &ArrayMesh::surface_get_primitive_type);
ClassDB::bind_method(D_METHOD("surface_find_by_name", "name"), &ArrayMesh::surface_find_by_name);
ClassDB::bind_method(D_METHOD("surface_set_name", "surf_idx", "name"), &ArrayMesh::surface_set_name);
ClassDB::bind_method(D_METHOD("surface_get_name", "surf_idx"), &ArrayMesh::surface_get_name);
ClassDB::bind_method(D_METHOD("create_trimesh_shape"), &ArrayMesh::create_trimesh_shape);
ClassDB::bind_method(D_METHOD("create_convex_shape", "clean", "simplify"), &ArrayMesh::create_convex_shape, DEFVAL(true), DEFVAL(false));
ClassDB::bind_method(D_METHOD("create_outline", "margin"), &ArrayMesh::create_outline);
ClassDB::bind_method(D_METHOD("regen_normalmaps"), &ArrayMesh::regen_normalmaps);
ClassDB::set_method_flags(get_class_static(), _scs_create("regen_normalmaps"), METHOD_FLAGS_DEFAULT | METHOD_FLAG_EDITOR);
ClassDB::bind_method(D_METHOD("lightmap_unwrap", "transform", "texel_size"), &ArrayMesh::lightmap_unwrap);
ClassDB::set_method_flags(get_class_static(), _scs_create("lightmap_unwrap"), METHOD_FLAGS_DEFAULT | METHOD_FLAG_EDITOR);
ClassDB::bind_method(D_METHOD("get_faces"), &ArrayMesh::get_faces);
ClassDB::bind_method(D_METHOD("generate_triangle_mesh"), &ArrayMesh::generate_triangle_mesh);
ClassDB::bind_method(D_METHOD("set_custom_aabb", "aabb"), &ArrayMesh::set_custom_aabb);
ClassDB::bind_method(D_METHOD("get_custom_aabb"), &ArrayMesh::get_custom_aabb);
ADD_PROPERTY(PropertyInfo(Variant::INT, "blend_shape_mode", PROPERTY_HINT_ENUM, "Normalized,Relative", PROPERTY_USAGE_NOEDITOR), "set_blend_shape_mode", "get_blend_shape_mode");
ADD_PROPERTY(PropertyInfo(Variant::AABB, "custom_aabb", PROPERTY_HINT_NONE, ""), "set_custom_aabb", "get_custom_aabb");
BIND_CONSTANT(NO_INDEX_ARRAY);
BIND_CONSTANT(ARRAY_WEIGHTS_SIZE);
BIND_ENUM_CONSTANT(ARRAY_VERTEX);
BIND_ENUM_CONSTANT(ARRAY_NORMAL);
BIND_ENUM_CONSTANT(ARRAY_TANGENT);
BIND_ENUM_CONSTANT(ARRAY_COLOR);
BIND_ENUM_CONSTANT(ARRAY_TEX_UV);
BIND_ENUM_CONSTANT(ARRAY_TEX_UV2);
BIND_ENUM_CONSTANT(ARRAY_BONES);
BIND_ENUM_CONSTANT(ARRAY_WEIGHTS);
BIND_ENUM_CONSTANT(ARRAY_INDEX);
BIND_ENUM_CONSTANT(ARRAY_MAX);
BIND_ENUM_CONSTANT(ARRAY_FORMAT_VERTEX);
BIND_ENUM_CONSTANT(ARRAY_FORMAT_NORMAL);
BIND_ENUM_CONSTANT(ARRAY_FORMAT_TANGENT);
BIND_ENUM_CONSTANT(ARRAY_FORMAT_COLOR);
BIND_ENUM_CONSTANT(ARRAY_FORMAT_TEX_UV);
BIND_ENUM_CONSTANT(ARRAY_FORMAT_TEX_UV2);
BIND_ENUM_CONSTANT(ARRAY_FORMAT_BONES);
BIND_ENUM_CONSTANT(ARRAY_FORMAT_WEIGHTS);
BIND_ENUM_CONSTANT(ARRAY_FORMAT_INDEX);
}
void ArrayMesh::reload_from_file() {
VisualServer::get_singleton()->mesh_clear(mesh);
surfaces.clear();
clear_blend_shapes();
clear_cache();
Resource::reload_from_file();
_change_notify();
}
ArrayMesh::ArrayMesh() {
mesh = VisualServer::get_singleton()->mesh_create();
blend_shape_mode = BLEND_SHAPE_MODE_RELATIVE;
}
ArrayMesh::~ArrayMesh() {
VisualServer::get_singleton()->free(mesh);
}