godot/core/math/transform.h
Rémi Verschelde f8db8a3faa Bring that Whole New World to the Old Continent too
Applies the clang-format style to the 2.1 branch as done for master in
5dbf1809c6.
2017-03-19 00:36:26 +01:00

256 lines
8.9 KiB
C++

/*************************************************************************/
/* transform.h */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* http://www.godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#ifndef TRANSFORM_H
#define TRANSFORM_H
#include "aabb.h"
#include "matrix3.h"
#include "plane.h"
/**
@author Juan Linietsky <reduzio@gmail.com>
*/
class Transform {
public:
Matrix3 basis;
Vector3 origin;
void invert();
Transform inverse() const;
void affine_invert();
Transform affine_inverse() const;
Transform rotated(const Vector3 &p_axis, real_t p_phi) const;
void rotate(const Vector3 &p_axis, real_t p_phi);
void rotate_basis(const Vector3 &p_axis, real_t p_phi);
void set_look_at(const Vector3 &p_eye, const Vector3 &p_target, const Vector3 &p_up);
Transform looking_at(const Vector3 &p_target, const Vector3 &p_up) const;
void scale(const Vector3 &p_scale);
Transform scaled(const Vector3 &p_scale) const;
void scale_basis(const Vector3 &p_scale);
void translate(real_t p_tx, real_t p_ty, real_t p_tz);
void translate(const Vector3 &p_translation);
Transform translated(const Vector3 &p_translation) const;
const Matrix3 &get_basis() const { return basis; }
void set_basis(const Matrix3 &p_basis) { basis = p_basis; }
const Vector3 &get_origin() const { return origin; }
void set_origin(const Vector3 &p_origin) { origin = p_origin; }
void orthonormalize();
Transform orthonormalized() const;
bool operator==(const Transform &p_transform) const;
bool operator!=(const Transform &p_transform) const;
_FORCE_INLINE_ Vector3 xform(const Vector3 &p_vector) const;
_FORCE_INLINE_ Vector3 xform_inv(const Vector3 &p_vector) const;
_FORCE_INLINE_ Plane xform(const Plane &p_plane) const;
_FORCE_INLINE_ Plane xform_inv(const Plane &p_plane) const;
_FORCE_INLINE_ AABB xform(const AABB &p_aabb) const;
_FORCE_INLINE_ AABB xform_inv(const AABB &p_aabb) const;
void operator*=(const Transform &p_transform);
Transform operator*(const Transform &p_transform) const;
Transform interpolate_with(const Transform &p_transform, float p_c) const;
_FORCE_INLINE_ Transform inverse_xform(const Transform &t) const {
Vector3 v = t.origin - origin;
return Transform(basis.transpose_xform(t.basis),
basis.xform(v));
}
void set(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz, real_t tx, real_t ty, real_t tz) {
basis.elements[0][0] = xx;
basis.elements[0][1] = xy;
basis.elements[0][2] = xz;
basis.elements[1][0] = yx;
basis.elements[1][1] = yy;
basis.elements[1][2] = yz;
basis.elements[2][0] = zx;
basis.elements[2][1] = zy;
basis.elements[2][2] = zz;
origin.x = tx;
origin.y = ty;
origin.z = tz;
}
operator String() const;
Transform(const Matrix3 &p_basis, const Vector3 &p_origin = Vector3());
Transform() {}
};
_FORCE_INLINE_ Vector3 Transform::xform(const Vector3 &p_vector) const {
return Vector3(
basis[0].dot(p_vector) + origin.x,
basis[1].dot(p_vector) + origin.y,
basis[2].dot(p_vector) + origin.z);
}
_FORCE_INLINE_ Vector3 Transform::xform_inv(const Vector3 &p_vector) const {
Vector3 v = p_vector - origin;
return Vector3(
(basis.elements[0][0] * v.x) + (basis.elements[1][0] * v.y) + (basis.elements[2][0] * v.z),
(basis.elements[0][1] * v.x) + (basis.elements[1][1] * v.y) + (basis.elements[2][1] * v.z),
(basis.elements[0][2] * v.x) + (basis.elements[1][2] * v.y) + (basis.elements[2][2] * v.z));
}
_FORCE_INLINE_ Plane Transform::xform(const Plane &p_plane) const {
Vector3 point = p_plane.normal * p_plane.d;
Vector3 point_dir = point + p_plane.normal;
point = xform(point);
point_dir = xform(point_dir);
Vector3 normal = point_dir - point;
normal.normalize();
real_t d = normal.dot(point);
return Plane(normal, d);
}
_FORCE_INLINE_ Plane Transform::xform_inv(const Plane &p_plane) const {
Vector3 point = p_plane.normal * p_plane.d;
Vector3 point_dir = point + p_plane.normal;
xform_inv(point);
xform_inv(point_dir);
Vector3 normal = point_dir - point;
normal.normalize();
real_t d = normal.dot(point);
return Plane(normal, d);
}
_FORCE_INLINE_ AABB Transform::xform(const AABB &p_aabb) const {
/* define vertices */
#if 1
Vector3 x = basis.get_axis(0) * p_aabb.size.x;
Vector3 y = basis.get_axis(1) * p_aabb.size.y;
Vector3 z = basis.get_axis(2) * p_aabb.size.z;
Vector3 pos = xform(p_aabb.pos);
//could be even further optimized
AABB new_aabb;
new_aabb.pos = pos;
new_aabb.expand_to(pos + x);
new_aabb.expand_to(pos + y);
new_aabb.expand_to(pos + z);
new_aabb.expand_to(pos + x + y);
new_aabb.expand_to(pos + x + z);
new_aabb.expand_to(pos + y + z);
new_aabb.expand_to(pos + x + y + z);
return new_aabb;
#else
Vector3 vertices[8] = {
Vector3(p_aabb.pos.x + p_aabb.size.x, p_aabb.pos.y + p_aabb.size.y, p_aabb.pos.z + p_aabb.size.z),
Vector3(p_aabb.pos.x + p_aabb.size.x, p_aabb.pos.y + p_aabb.size.y, p_aabb.pos.z),
Vector3(p_aabb.pos.x + p_aabb.size.x, p_aabb.pos.y, p_aabb.pos.z + p_aabb.size.z),
Vector3(p_aabb.pos.x + p_aabb.size.x, p_aabb.pos.y, p_aabb.pos.z),
Vector3(p_aabb.pos.x, p_aabb.pos.y + p_aabb.size.y, p_aabb.pos.z + p_aabb.size.z),
Vector3(p_aabb.pos.x, p_aabb.pos.y + p_aabb.size.y, p_aabb.pos.z),
Vector3(p_aabb.pos.x, p_aabb.pos.y, p_aabb.pos.z + p_aabb.size.z),
Vector3(p_aabb.pos.x, p_aabb.pos.y, p_aabb.pos.z)
};
AABB ret;
ret.pos = xform(vertices[0]);
for (int i = 1; i < 8; i++) {
ret.expand_to(xform(vertices[i]));
}
return ret;
#endif
}
_FORCE_INLINE_ AABB Transform::xform_inv(const AABB &p_aabb) const {
/* define vertices */
Vector3 vertices[8] = {
Vector3(p_aabb.pos.x + p_aabb.size.x, p_aabb.pos.y + p_aabb.size.y, p_aabb.pos.z + p_aabb.size.z),
Vector3(p_aabb.pos.x + p_aabb.size.x, p_aabb.pos.y + p_aabb.size.y, p_aabb.pos.z),
Vector3(p_aabb.pos.x + p_aabb.size.x, p_aabb.pos.y, p_aabb.pos.z + p_aabb.size.z),
Vector3(p_aabb.pos.x + p_aabb.size.x, p_aabb.pos.y, p_aabb.pos.z),
Vector3(p_aabb.pos.x, p_aabb.pos.y + p_aabb.size.y, p_aabb.pos.z + p_aabb.size.z),
Vector3(p_aabb.pos.x, p_aabb.pos.y + p_aabb.size.y, p_aabb.pos.z),
Vector3(p_aabb.pos.x, p_aabb.pos.y, p_aabb.pos.z + p_aabb.size.z),
Vector3(p_aabb.pos.x, p_aabb.pos.y, p_aabb.pos.z)
};
AABB ret;
ret.pos = xform_inv(vertices[0]);
for (int i = 1; i < 8; i++) {
ret.expand_to(xform_inv(vertices[i]));
}
return ret;
}
#ifdef OPTIMIZED_TRANSFORM_IMPL_OVERRIDE
#else
struct OptimizedTransform {
Transform transform;
_FORCE_INLINE_ void invert() { transform.invert(); }
_FORCE_INLINE_ void affine_invert() { transform.affine_invert(); }
_FORCE_INLINE_ Vector3 xform(const Vector3 &p_vec) const { return transform.xform(p_vec); };
_FORCE_INLINE_ Vector3 xform_inv(const Vector3 &p_vec) const { return transform.xform_inv(p_vec); };
_FORCE_INLINE_ OptimizedTransform operator*(const OptimizedTransform &p_ot) const { return OptimizedTransform(transform * p_ot.transform); }
_FORCE_INLINE_ Transform get_transform() const { return transform; }
_FORCE_INLINE_ void set_transform(const Transform &p_transform) { transform = p_transform; }
OptimizedTransform(const Transform &p_transform) {
transform = p_transform;
}
};
#endif
#endif