godot/modules/fbx/tools/import_utils.h

402 lines
14 KiB
C++

/*************************************************************************/
/* import_utils.h */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#ifndef IMPORT_UTILS_H
#define IMPORT_UTILS_H
#include "core/io/image_loader.h"
#include "data/import_state.h"
#include "fbx_parser/FBXDocument.h"
#include <string>
#define CONVERT_FBX_TIME(time) static_cast<double>(time) / 46186158000LL
/**
* Import Utils
* Conversion tools / glue code to convert from FBX to Godot
*/
class ImportUtils {
public:
/// Convert a vector from degrees to radians.
static Vector3 deg2rad(const Vector3 &p_rotation);
/// Convert a vector from radians to degrees.
static Vector3 rad2deg(const Vector3 &p_rotation);
/// Converts rotation order vector (in rad) to quaternion.
static Basis EulerToBasis(FBXDocParser::Model::RotOrder mode, const Vector3 &p_rotation);
/// Converts rotation order vector (in rad) to quaternion.
static Quat EulerToQuaternion(FBXDocParser::Model::RotOrder mode, const Vector3 &p_rotation);
/// Converts basis into rotation order vector (in rad).
static Vector3 BasisToEuler(FBXDocParser::Model::RotOrder mode, const Basis &p_rotation);
/// Converts quaternion into rotation order vector (in rad).
static Vector3 QuaternionToEuler(FBXDocParser::Model::RotOrder mode, const Quat &p_rotation);
static void debug_xform(String name, const Transform &t) {
print_verbose(name + " " + t.origin + " rotation: " + (t.basis.get_euler() * (180 / Math_PI)));
}
static String FBXNodeToName(const std::string &name) {
// strip Model:: prefix, avoiding ambiguities (i.e. don't strip if
// this causes ambiguities, well possible between empty identifiers,
// such as "Model::" and ""). Make sure the behaviour is consistent
// across multiple calls to FixNodeName().
// We must remove this from the name
// Some bones have this
// SubDeformer::
// Meshes, Joints have this, some other IK elements too.
// Model::
String node_name = String(name.c_str());
if (node_name.substr(0, 7) == "Model::") {
node_name = node_name.substr(7, node_name.length() - 7);
return node_name.replace(":", "");
}
if (node_name.substr(0, 13) == "SubDeformer::") {
node_name = node_name.substr(13, node_name.length() - 13);
return node_name.replace(":", "");
}
if (node_name.substr(0, 11) == "AnimStack::") {
node_name = node_name.substr(11, node_name.length() - 11);
return node_name.replace(":", "");
}
if (node_name.substr(0, 15) == "AnimCurveNode::") {
node_name = node_name.substr(15, node_name.length() - 15);
return node_name.replace(":", "");
}
if (node_name.substr(0, 11) == "AnimCurve::") {
node_name = node_name.substr(11, node_name.length() - 11);
return node_name.replace(":", "");
}
if (node_name.substr(0, 10) == "Geometry::") {
node_name = node_name.substr(10, node_name.length() - 10);
return node_name.replace(":", "");
}
if (node_name.substr(0, 10) == "Material::") {
node_name = node_name.substr(10, node_name.length() - 10);
return node_name.replace(":", "");
}
if (node_name.substr(0, 9) == "Texture::") {
node_name = node_name.substr(9, node_name.length() - 9);
return node_name.replace(":", "");
}
return node_name.replace(":", "");
}
static std::string FBXAnimMeshName(const std::string &name) {
if (name.length()) {
size_t indexOf = name.find_first_of("::");
if (indexOf != std::string::npos && indexOf < name.size() - 2) {
return name.substr(indexOf + 2);
}
}
return name.length() ? name : "AnimMesh";
}
static Vector3 safe_import_vector3(const Vector3 &p_vec) {
Vector3 vector = p_vec;
if (Math::is_equal_approx(0, vector.x)) {
vector.x = 0;
}
if (Math::is_equal_approx(0, vector.y)) {
vector.y = 0;
}
if (Math::is_equal_approx(0, vector.z)) {
vector.z = 0;
}
return vector;
}
static void debug_xform(String name, const Basis &t) {
//print_verbose(name + " rotation: " + (t.get_euler() * (180 / Math_PI)));
}
static Vector3 FixAxisConversions(Vector3 input) {
return Vector3(input.x, input.y, input.z);
}
static void AlignMeshAxes(std::vector<Vector3> &vertex_data) {
for (size_t x = 0; x < vertex_data.size(); x++) {
vertex_data[x] = FixAxisConversions(vertex_data[x]);
}
}
struct AssetImportFbx {
enum ETimeMode {
TIME_MODE_DEFAULT = 0,
TIME_MODE_120 = 1,
TIME_MODE_100 = 2,
TIME_MODE_60 = 3,
TIME_MODE_50 = 4,
TIME_MODE_48 = 5,
TIME_MODE_30 = 6,
TIME_MODE_30_DROP = 7,
TIME_MODE_NTSC_DROP_FRAME = 8,
TIME_MODE_NTSC_FULL_FRAME = 9,
TIME_MODE_PAL = 10,
TIME_MODE_CINEMA = 11,
TIME_MODE_1000 = 12,
TIME_MODE_CINEMA_ND = 13,
TIME_MODE_CUSTOM = 14,
TIME_MODE_TIME_MODE_COUNT = 15
};
enum UpAxis {
UP_VECTOR_AXIS_X = 1,
UP_VECTOR_AXIS_Y = 2,
UP_VECTOR_AXIS_Z = 3
};
enum FrontAxis {
FRONT_PARITY_EVEN = 1,
FRONT_PARITY_ODD = 2,
};
enum CoordAxis {
COORD_RIGHT = 0,
COORD_LEFT = 1
};
};
/** Get fbx fps for time mode meta data
*/
static float get_fbx_fps(int32_t time_mode) {
switch (time_mode) {
case AssetImportFbx::TIME_MODE_DEFAULT:
return 24;
case AssetImportFbx::TIME_MODE_120:
return 120;
case AssetImportFbx::TIME_MODE_100:
return 100;
case AssetImportFbx::TIME_MODE_60:
return 60;
case AssetImportFbx::TIME_MODE_50:
return 50;
case AssetImportFbx::TIME_MODE_48:
return 48;
case AssetImportFbx::TIME_MODE_30:
return 30;
case AssetImportFbx::TIME_MODE_30_DROP:
return 30;
case AssetImportFbx::TIME_MODE_NTSC_DROP_FRAME:
return 29.9700262f;
case AssetImportFbx::TIME_MODE_NTSC_FULL_FRAME:
return 29.9700262f;
case AssetImportFbx::TIME_MODE_PAL:
return 25;
case AssetImportFbx::TIME_MODE_CINEMA:
return 24;
case AssetImportFbx::TIME_MODE_1000:
return 1000;
case AssetImportFbx::TIME_MODE_CINEMA_ND:
return 23.976f;
case AssetImportFbx::TIME_MODE_CUSTOM:
return -1;
}
return 0;
}
static float get_fbx_fps(const FBXDocParser::FileGlobalSettings *FBXSettings) {
int time_mode = FBXSettings->TimeMode();
// get the animation FPS
float frames_per_second = get_fbx_fps(time_mode);
// handle animation custom FPS time.
if (time_mode == ImportUtils::AssetImportFbx::TIME_MODE_CUSTOM) {
print_verbose("FBX Animation has custom FPS setting");
frames_per_second = FBXSettings->CustomFrameRate();
// not our problem this is the modeller, we can print as an error so they can fix the source.
if (frames_per_second == 0) {
print_error("Custom animation time in file is set to 0 value, animation won't play, please edit your file to correct the FPS value");
}
}
return frames_per_second;
}
/**
* Find hardcoded textures from assimp which could be in many different directories
*/
/**
* set_texture_mapping_mode
* Helper to check the mapping mode of the texture (repeat, clamp and mirror)
*/
// static void set_texture_mapping_mode(aiTextureMapMode *map_mode, Ref<ImageTexture> texture) {
// ERR_FAIL_COND(texture.is_null());
// ERR_FAIL_COND(map_mode == NULL);
// aiTextureMapMode tex_mode = map_mode[0];
// int32_t flags = Texture::FLAGS_DEFAULT;
// if (tex_mode == aiTextureMapMode_Wrap) {
// //Default
// } else if (tex_mode == aiTextureMapMode_Clamp) {
// flags = flags & ~Texture::FLAG_REPEAT;
// } else if (tex_mode == aiTextureMapMode_Mirror) {
// flags = flags | Texture::FLAG_MIRRORED_REPEAT;
// }
// texture->set_flags(flags);
// }
/**
* Load or load from cache image :)
* We need to upgrade this in the later version :) should not be hard
*/
//static Ref<Image> load_image(ImportState &state, const aiScene *p_scene, String p_path){
// Map<String, Ref<Image> >::Element *match = state.path_to_image_cache.find(p_path);
// // if our cache contains this image then don't bother
// if (match) {
// return match->get();
// }
// Vector<String> split_path = p_path.get_basename().split("*");
// if (split_path.size() == 2) {
// size_t texture_idx = split_path[1].to_int();
// ERR_FAIL_COND_V(texture_idx >= p_scene->mNumTextures, Ref<Image>());
// aiTexture *tex = p_scene->mTextures[texture_idx];
// String filename = AssimpUtils::get_raw_string_from_assimp(tex->mFilename);
// filename = filename.get_file();
// print_verbose("Open Asset Import: Loading embedded texture " + filename);
// if (tex->mHeight == 0) {
// if (tex->CheckFormat("png")) {
// Ref<Image> img = Image::_png_mem_loader_func((uint8_t *)tex->pcData, tex->mWidth);
// ERR_FAIL_COND_V(img.is_null(), Ref<Image>());
// state.path_to_image_cache.insert(p_path, img);
// return img;
// } else if (tex->CheckFormat("jpg")) {
// Ref<Image> img = Image::_jpg_mem_loader_func((uint8_t *)tex->pcData, tex->mWidth);
// ERR_FAIL_COND_V(img.is_null(), Ref<Image>());
// state.path_to_image_cache.insert(p_path, img);
// return img;
// } else if (tex->CheckFormat("dds")) {
// ERR_FAIL_COND_V_MSG(true, Ref<Image>(), "Open Asset Import: Embedded dds not implemented");
// }
// } else {
// Ref<Image> img;
// img.instance();
// PoolByteArray arr;
// uint32_t size = tex->mWidth * tex->mHeight;
// arr.resize(size);
// memcpy(arr.write().ptr(), tex->pcData, size);
// ERR_FAIL_COND_V(arr.size() % 4 != 0, Ref<Image>());
// //ARGB8888 to RGBA8888
// for (int32_t i = 0; i < arr.size() / 4; i++) {
// arr.write().ptr()[(4 * i) + 3] = arr[(4 * i) + 0];
// arr.write().ptr()[(4 * i) + 0] = arr[(4 * i) + 1];
// arr.write().ptr()[(4 * i) + 1] = arr[(4 * i) + 2];
// arr.write().ptr()[(4 * i) + 2] = arr[(4 * i) + 3];
// }
// img->create(tex->mWidth, tex->mHeight, true, Image::FORMAT_RGBA8, arr);
// ERR_FAIL_COND_V(img.is_null(), Ref<Image>());
// state.path_to_image_cache.insert(p_path, img);
// return img;
// }
// return Ref<Image>();
// } else {
// Ref<Texture> texture = ResourceLoader::load(p_path);
// ERR_FAIL_COND_V(texture.is_null(), Ref<Image>());
// Ref<Image> image = texture->get_data();
// ERR_FAIL_COND_V(image.is_null(), Ref<Image>());
// state.path_to_image_cache.insert(p_path, image);
// return image;
// }
// return Ref<Image>();
//}
// /* create texture from assimp data, if found in path */
// static bool CreateAssimpTexture(
// AssimpImporter::ImportState &state,
// aiString texture_path,
// String &filename,
// String &path,
// AssimpImageData &image_state) {
// filename = get_raw_string_from_assimp(texture_path);
// path = state.path.get_base_dir().plus_file(filename.replace("\\", "/"));
// bool found = false;
// find_texture_path(state.path, path, found);
// if (found) {
// image_state.raw_image = AssimpUtils::load_image(state, state.assimp_scene, path);
// if (image_state.raw_image.is_valid()) {
// image_state.texture.instance();
// image_state.texture->create_from_image(image_state.raw_image);
// image_state.texture->set_storage(ImageTexture::STORAGE_COMPRESS_LOSSY);
// return true;
// }
// }
// return false;
// }
// /** GetAssimpTexture
// * Designed to retrieve textures for you
// */
// static bool GetAssimpTexture(
// AssimpImporter::ImportState &state,
// aiMaterial *ai_material,
// aiTextureType texture_type,
// String &filename,
// String &path,
// AssimpImageData &image_state) {
// aiString ai_filename = aiString();
// if (AI_SUCCESS == ai_material->GetTexture(texture_type, 0, &ai_filename, NULL, NULL, NULL, NULL, image_state.map_mode)) {
// return CreateAssimpTexture(state, ai_filename, filename, path, image_state);
// }
// return false;
// }
};
// Apply the transforms so the basis will have scale 1.
Transform get_unscaled_transform(const Transform &p_initial, real_t p_scale);
/// Uses the Newell's method to compute any polygon normal.
/// The polygon must be at least size of 3 or bigger.
Vector3 get_poly_normal(const std::vector<Vector3> &p_vertices);
#endif // IMPORT_UTILS_H