godot/servers/rendering/renderer_rd/renderer_scene_render_rd.h

1236 lines
48 KiB
C++

/*************************************************************************/
/* renderer_scene_render_rd.h */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#ifndef RENDERING_SERVER_SCENE_RENDER_RD_H
#define RENDERING_SERVER_SCENE_RENDER_RD_H
#include "core/templates/local_vector.h"
#include "core/templates/rid_owner.h"
#include "servers/rendering/renderer_compositor.h"
#include "servers/rendering/renderer_rd/cluster_builder_rd.h"
#include "servers/rendering/renderer_rd/renderer_scene_environment_rd.h"
#include "servers/rendering/renderer_rd/renderer_scene_gi_rd.h"
#include "servers/rendering/renderer_rd/renderer_scene_sky_rd.h"
#include "servers/rendering/renderer_rd/renderer_storage_rd.h"
#include "servers/rendering/renderer_rd/shaders/volumetric_fog.glsl.gen.h"
#include "servers/rendering/renderer_scene.h"
#include "servers/rendering/renderer_scene_render.h"
#include "servers/rendering/rendering_device.h"
struct RenderDataRD {
RID render_buffers = RID();
Transform3D cam_transform = Transform3D();
CameraMatrix cam_projection = CameraMatrix();
bool cam_ortogonal = false;
// For stereo rendering
uint32_t view_count = 1;
CameraMatrix view_projection[RendererSceneRender::MAX_RENDER_VIEWS];
float z_near = 0.0;
float z_far = 0.0;
const PagedArray<RendererSceneRender::GeometryInstance *> *instances = nullptr;
const PagedArray<RID> *lights = nullptr;
const PagedArray<RID> *reflection_probes = nullptr;
const PagedArray<RID> *voxel_gi_instances = nullptr;
const PagedArray<RID> *decals = nullptr;
const PagedArray<RID> *lightmaps = nullptr;
RID environment = RID();
RID camera_effects = RID();
RID shadow_atlas = RID();
RID reflection_atlas = RID();
RID reflection_probe = RID();
int reflection_probe_pass = 0;
float lod_distance_multiplier = 0.0;
Plane lod_camera_plane = Plane();
float screen_lod_threshold = 0.0;
RID cluster_buffer = RID();
uint32_t cluster_size = 0;
uint32_t cluster_max_elements = 0;
uint32_t directional_light_count = 0;
RendererScene::RenderInfo *render_info = nullptr;
};
class RendererSceneRenderRD : public RendererSceneRender {
friend RendererSceneSkyRD;
friend RendererSceneGIRD;
protected:
RendererStorageRD *storage;
double time;
double time_step = 0;
struct RenderBufferData {
virtual void configure(RID p_color_buffer, RID p_depth_buffer, int p_width, int p_height, RS::ViewportMSAA p_msaa, uint32_t p_view_count) = 0;
virtual ~RenderBufferData() {}
};
virtual RenderBufferData *_create_render_buffer_data() = 0;
void _setup_lights(const PagedArray<RID> &p_lights, const Transform3D &p_camera_transform, RID p_shadow_atlas, bool p_using_shadows, uint32_t &r_directional_light_count, uint32_t &r_positional_light_count);
void _setup_decals(const PagedArray<RID> &p_decals, const Transform3D &p_camera_inverse_xform);
void _setup_reflections(const PagedArray<RID> &p_reflections, const Transform3D &p_camera_inverse_transform, RID p_environment);
virtual void _render_scene(RenderDataRD *p_render_data, const Color &p_default_color) = 0;
virtual void _render_shadow_begin() = 0;
virtual void _render_shadow_append(RID p_framebuffer, const PagedArray<GeometryInstance *> &p_instances, const CameraMatrix &p_projection, const Transform3D &p_transform, float p_zfar, float p_bias, float p_normal_bias, bool p_use_dp, bool p_use_dp_flip, bool p_use_pancake, const Plane &p_camera_plane = Plane(), float p_lod_distance_multiplier = 0.0, float p_screen_lod_threshold = 0.0, const Rect2i &p_rect = Rect2i(), bool p_flip_y = false, bool p_clear_region = true, bool p_begin = true, bool p_end = true, RendererScene::RenderInfo *p_render_info = nullptr) = 0;
virtual void _render_shadow_process() = 0;
virtual void _render_shadow_end(uint32_t p_barrier = RD::BARRIER_MASK_ALL) = 0;
virtual void _render_material(const Transform3D &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, const PagedArray<GeometryInstance *> &p_instances, RID p_framebuffer, const Rect2i &p_region) = 0;
virtual void _render_uv2(const PagedArray<GeometryInstance *> &p_instances, RID p_framebuffer, const Rect2i &p_region) = 0;
virtual void _render_sdfgi(RID p_render_buffers, const Vector3i &p_from, const Vector3i &p_size, const AABB &p_bounds, const PagedArray<GeometryInstance *> &p_instances, const RID &p_albedo_texture, const RID &p_emission_texture, const RID &p_emission_aniso_texture, const RID &p_geom_facing_texture) = 0;
virtual void _render_particle_collider_heightfield(RID p_fb, const Transform3D &p_cam_transform, const CameraMatrix &p_cam_projection, const PagedArray<GeometryInstance *> &p_instances) = 0;
void _debug_sdfgi_probes(RID p_render_buffers, RD::DrawListID p_draw_list, RID p_framebuffer, const CameraMatrix &p_camera_with_transform);
RenderBufferData *render_buffers_get_data(RID p_render_buffers);
virtual void _base_uniforms_changed() = 0;
virtual RID _render_buffers_get_normal_texture(RID p_render_buffers) = 0;
void _process_ssao(RID p_render_buffers, RID p_environment, RID p_normal_buffer, const CameraMatrix &p_projection);
void _process_ssr(RID p_render_buffers, RID p_dest_framebuffer, RID p_normal_buffer, RID p_specular_buffer, RID p_metallic, const Color &p_metallic_mask, RID p_environment, const CameraMatrix &p_projection, bool p_use_additive);
void _process_sss(RID p_render_buffers, const CameraMatrix &p_camera);
bool _needs_post_prepass_render(RenderDataRD *p_render_data, bool p_use_gi);
void _post_prepass_render(RenderDataRD *p_render_data, bool p_use_gi);
void _pre_resolve_render(RenderDataRD *p_render_data, bool p_use_gi);
void _pre_opaque_render(RenderDataRD *p_render_data, bool p_use_ssao, bool p_use_gi, RID p_normal_roughness_buffer, RID p_voxel_gi_buffer);
// needed for a single argument calls (material and uv2)
PagedArrayPool<GeometryInstance *> cull_argument_pool;
PagedArray<GeometryInstance *> cull_argument; //need this to exist
RendererSceneGIRD gi;
RendererSceneSkyRD sky;
RendererSceneEnvironmentRD *get_environment(RID p_environment) {
if (p_environment.is_valid()) {
return environment_owner.getornull(p_environment);
} else {
return nullptr;
}
}
private:
RS::ViewportDebugDraw debug_draw = RS::VIEWPORT_DEBUG_DRAW_DISABLED;
static RendererSceneRenderRD *singleton;
/* REFLECTION ATLAS */
struct ReflectionAtlas {
int count = 0;
int size = 0;
RID reflection;
RID depth_buffer;
RID depth_fb;
struct Reflection {
RID owner;
RendererSceneSkyRD::ReflectionData data;
RID fbs[6];
};
Vector<Reflection> reflections;
ClusterBuilderRD *cluster_builder = nullptr;
};
mutable RID_Owner<ReflectionAtlas> reflection_atlas_owner;
/* REFLECTION PROBE INSTANCE */
struct ReflectionProbeInstance {
RID probe;
int atlas_index = -1;
RID atlas;
bool dirty = true;
bool rendering = false;
int processing_layer = 1;
int processing_side = 0;
uint32_t render_step = 0;
uint64_t last_pass = 0;
uint32_t render_index = 0;
uint32_t cull_mask = 0;
Transform3D transform;
};
mutable RID_Owner<ReflectionProbeInstance> reflection_probe_instance_owner;
/* DECAL INSTANCE */
struct DecalInstance {
RID decal;
Transform3D transform;
uint32_t render_index;
uint32_t cull_mask;
};
mutable RID_Owner<DecalInstance> decal_instance_owner;
/* LIGHTMAP INSTANCE */
struct LightmapInstance {
RID lightmap;
Transform3D transform;
};
mutable RID_Owner<LightmapInstance> lightmap_instance_owner;
/* SHADOW ATLAS */
struct ShadowShrinkStage {
RID texture;
RID filter_texture;
uint32_t size;
};
struct ShadowAtlas {
enum {
QUADRANT_SHIFT = 27,
SHADOW_INDEX_MASK = (1 << QUADRANT_SHIFT) - 1,
SHADOW_INVALID = 0xFFFFFFFF
};
struct Quadrant {
uint32_t subdivision;
struct Shadow {
RID owner;
uint64_t version;
uint64_t fog_version; // used for fog
uint64_t alloc_tick;
Shadow() {
version = 0;
fog_version = 0;
alloc_tick = 0;
}
};
Vector<Shadow> shadows;
Quadrant() {
subdivision = 0; //not in use
}
} quadrants[4];
int size_order[4] = { 0, 1, 2, 3 };
uint32_t smallest_subdiv = 0;
int size = 0;
bool use_16_bits = false;
RID depth;
RID fb; //for copying
Map<RID, uint32_t> shadow_owners;
};
RID_Owner<ShadowAtlas> shadow_atlas_owner;
void _update_shadow_atlas(ShadowAtlas *shadow_atlas);
bool _shadow_atlas_find_shadow(ShadowAtlas *shadow_atlas, int *p_in_quadrants, int p_quadrant_count, int p_current_subdiv, uint64_t p_tick, int &r_quadrant, int &r_shadow);
RS::ShadowQuality shadows_quality = RS::SHADOW_QUALITY_MAX; //So it always updates when first set
RS::ShadowQuality directional_shadow_quality = RS::SHADOW_QUALITY_MAX;
float shadows_quality_radius = 1.0;
float directional_shadow_quality_radius = 1.0;
float *directional_penumbra_shadow_kernel;
float *directional_soft_shadow_kernel;
float *penumbra_shadow_kernel;
float *soft_shadow_kernel;
int directional_penumbra_shadow_samples = 0;
int directional_soft_shadow_samples = 0;
int penumbra_shadow_samples = 0;
int soft_shadow_samples = 0;
/* DIRECTIONAL SHADOW */
struct DirectionalShadow {
RID depth;
RID fb; //when renderign direct
int light_count = 0;
int size = 0;
bool use_16_bits = false;
int current_light = 0;
} directional_shadow;
void _update_directional_shadow_atlas();
/* SHADOW CUBEMAPS */
struct ShadowCubemap {
RID cubemap;
RID side_fb[6];
};
Map<int, ShadowCubemap> shadow_cubemaps;
ShadowCubemap *_get_shadow_cubemap(int p_size);
void _create_shadow_cubemaps();
/* LIGHT INSTANCE */
struct LightInstance {
struct ShadowTransform {
CameraMatrix camera;
Transform3D transform;
float farplane;
float split;
float bias_scale;
float shadow_texel_size;
float range_begin;
Rect2 atlas_rect;
Vector2 uv_scale;
};
RS::LightType light_type = RS::LIGHT_DIRECTIONAL;
ShadowTransform shadow_transform[6];
AABB aabb;
RID self;
RID light;
Transform3D transform;
Vector3 light_vector;
Vector3 spot_vector;
float linear_att = 0.0;
uint64_t shadow_pass = 0;
uint64_t last_scene_pass = 0;
uint64_t last_scene_shadow_pass = 0;
uint64_t last_pass = 0;
uint32_t light_index = 0;
uint32_t cull_mask = 0;
uint32_t light_directional_index = 0;
uint32_t current_shadow_atlas_key = 0;
Vector2 dp;
Rect2 directional_rect;
Set<RID> shadow_atlases; //shadow atlases where this light is registered
LightInstance() {}
};
mutable RID_Owner<LightInstance> light_instance_owner;
/* ENVIRONMENT */
RS::EnvironmentSSAOQuality ssao_quality = RS::ENV_SSAO_QUALITY_MEDIUM;
bool ssao_half_size = false;
bool ssao_using_half_size = false;
float ssao_adaptive_target = 0.5;
int ssao_blur_passes = 2;
float ssao_fadeout_from = 50.0;
float ssao_fadeout_to = 300.0;
bool glow_bicubic_upscale = false;
bool glow_high_quality = false;
RS::EnvironmentSSRRoughnessQuality ssr_roughness_quality = RS::ENV_SSR_ROUGNESS_QUALITY_LOW;
mutable RID_Owner<RendererSceneEnvironmentRD, true> environment_owner;
/* CAMERA EFFECTS */
struct CameraEffects {
bool dof_blur_far_enabled = false;
float dof_blur_far_distance = 10;
float dof_blur_far_transition = 5;
bool dof_blur_near_enabled = false;
float dof_blur_near_distance = 2;
float dof_blur_near_transition = 1;
float dof_blur_amount = 0.1;
bool override_exposure_enabled = false;
float override_exposure = 1;
};
RS::DOFBlurQuality dof_blur_quality = RS::DOF_BLUR_QUALITY_MEDIUM;
RS::DOFBokehShape dof_blur_bokeh_shape = RS::DOF_BOKEH_HEXAGON;
bool dof_blur_use_jitter = false;
RS::SubSurfaceScatteringQuality sss_quality = RS::SUB_SURFACE_SCATTERING_QUALITY_MEDIUM;
float sss_scale = 0.05;
float sss_depth_scale = 0.01;
mutable RID_Owner<CameraEffects, true> camera_effects_owner;
/* RENDER BUFFERS */
ClusterBuilderSharedDataRD cluster_builder_shared;
ClusterBuilderRD *current_cluster_builder = nullptr;
struct VolumetricFog;
struct RenderBuffers {
RenderBufferData *data = nullptr;
int width = 0, height = 0;
RS::ViewportMSAA msaa = RS::VIEWPORT_MSAA_DISABLED;
RS::ViewportScreenSpaceAA screen_space_aa = RS::VIEWPORT_SCREEN_SPACE_AA_DISABLED;
bool use_debanding = false;
uint32_t view_count = 1;
RID render_target;
uint64_t auto_exposure_version = 1;
RID texture; //main texture for rendering to, must be filled after done rendering
RID depth_texture; //main depth texture
RendererSceneGIRD::SDFGI *sdfgi = nullptr;
VolumetricFog *volumetric_fog = nullptr;
RendererSceneGIRD::RenderBuffersGI gi;
ClusterBuilderRD *cluster_builder = nullptr;
//built-in textures used for ping pong image processing and blurring
struct Blur {
RID texture;
struct Mipmap {
RID texture;
int width;
int height;
};
Vector<Mipmap> mipmaps;
};
Blur blur[2]; //the second one starts from the first mipmap
struct Luminance {
Vector<RID> reduce;
RID current;
} luminance;
struct SSAO {
RID depth;
Vector<RID> depth_slices;
RID ao_deinterleaved;
Vector<RID> ao_deinterleaved_slices;
RID ao_pong;
Vector<RID> ao_pong_slices;
RID ao_final;
RID importance_map[2];
RID downsample_uniform_set;
RID gather_uniform_set;
RID importance_map_uniform_set;
} ssao;
struct SSR {
RID normal_scaled;
RID depth_scaled;
RID blur_radius[2];
} ssr;
RID ambient_buffer;
RID reflection_buffer;
};
/* GI */
bool screen_space_roughness_limiter = false;
float screen_space_roughness_limiter_amount = 0.25;
float screen_space_roughness_limiter_limit = 0.18;
mutable RID_Owner<RenderBuffers> render_buffers_owner;
void _free_render_buffer_data(RenderBuffers *rb);
void _allocate_blur_textures(RenderBuffers *rb);
void _allocate_luminance_textures(RenderBuffers *rb);
void _render_buffers_debug_draw(RID p_render_buffers, RID p_shadow_atlas, RID p_occlusion_buffer);
void _render_buffers_post_process_and_tonemap(const RenderDataRD *p_render_data);
/* Cluster */
struct Cluster {
/* Scene State UBO */
// !BAS! Most data here is not just used by our clustering logic but also by other lighting implementations. Maybe rename this struct to something more appropriate
enum {
REFLECTION_AMBIENT_DISABLED = 0,
REFLECTION_AMBIENT_ENVIRONMENT = 1,
REFLECTION_AMBIENT_COLOR = 2,
};
struct ReflectionData {
float box_extents[3];
float index;
float box_offset[3];
uint32_t mask;
float ambient[3]; // ambient color,
float intensity;
uint32_t exterior;
uint32_t box_project;
uint32_t ambient_mode;
uint32_t pad;
float local_matrix[16]; // up to here for spot and omni, rest is for directional
};
struct LightData {
float position[3];
float inv_radius;
float direction[3];
float size;
float color[3];
float attenuation;
float inv_spot_attenuation;
float cos_spot_angle;
float specular_amount;
uint32_t shadow_enabled;
float atlas_rect[4]; // in omni, used for atlas uv, in spot, used for projector uv
float shadow_matrix[16];
float shadow_bias;
float shadow_normal_bias;
float transmittance_bias;
float soft_shadow_size;
float soft_shadow_scale;
uint32_t mask;
float shadow_volumetric_fog_fade;
uint32_t bake_mode;
float projector_rect[4];
};
struct DirectionalLightData {
float direction[3];
float energy;
float color[3];
float size;
float specular;
uint32_t mask;
float softshadow_angle;
float soft_shadow_scale;
uint32_t blend_splits;
uint32_t shadow_enabled;
float fade_from;
float fade_to;
uint32_t pad[2];
uint32_t bake_mode;
float shadow_volumetric_fog_fade;
float shadow_bias[4];
float shadow_normal_bias[4];
float shadow_transmittance_bias[4];
float shadow_z_range[4];
float shadow_range_begin[4];
float shadow_split_offsets[4];
float shadow_matrices[4][16];
float shadow_color1[4];
float shadow_color2[4];
float shadow_color3[4];
float shadow_color4[4];
float uv_scale1[2];
float uv_scale2[2];
float uv_scale3[2];
float uv_scale4[2];
};
struct DecalData {
float xform[16];
float inv_extents[3];
float albedo_mix;
float albedo_rect[4];
float normal_rect[4];
float orm_rect[4];
float emission_rect[4];
float modulate[4];
float emission_energy;
uint32_t mask;
float upper_fade;
float lower_fade;
float normal_xform[12];
float normal[3];
float normal_fade;
};
template <class T>
struct InstanceSort {
float depth;
T *instance;
bool operator<(const InstanceSort &p_sort) const {
return depth < p_sort.depth;
}
};
ReflectionData *reflections;
InstanceSort<ReflectionProbeInstance> *reflection_sort;
uint32_t max_reflections;
RID reflection_buffer;
uint32_t max_reflection_probes_per_instance;
uint32_t reflection_count = 0;
DecalData *decals;
InstanceSort<DecalInstance> *decal_sort;
uint32_t max_decals;
RID decal_buffer;
uint32_t decal_count;
LightData *omni_lights;
LightData *spot_lights;
InstanceSort<LightInstance> *omni_light_sort;
InstanceSort<LightInstance> *spot_light_sort;
uint32_t max_lights;
RID omni_light_buffer;
RID spot_light_buffer;
uint32_t omni_light_count = 0;
uint32_t spot_light_count = 0;
DirectionalLightData *directional_lights;
uint32_t max_directional_lights;
RID directional_light_buffer;
} cluster;
struct RenderState {
const RendererSceneRender::RenderShadowData *render_shadows = nullptr;
int render_shadow_count = 0;
const RendererSceneRender::RenderSDFGIData *render_sdfgi_regions = nullptr;
int render_sdfgi_region_count = 0;
const RendererSceneRender::RenderSDFGIUpdateData *sdfgi_update_data = nullptr;
uint32_t voxel_gi_count = 0;
LocalVector<int> cube_shadows;
LocalVector<int> shadows;
LocalVector<int> directional_shadows;
bool depth_prepass_used; // this does not seem used anywhere...
} render_state;
struct VolumetricFog {
enum {
MAX_TEMPORAL_FRAMES = 16
};
uint32_t width = 0;
uint32_t height = 0;
uint32_t depth = 0;
float length;
float spread;
RID light_density_map;
RID prev_light_density_map;
RID fog_map;
RID uniform_set;
RID uniform_set2;
RID sdfgi_uniform_set;
RID sky_uniform_set;
int last_shadow_filter = -1;
Transform3D prev_cam_transform;
};
enum {
VOLUMETRIC_FOG_SHADER_DENSITY,
VOLUMETRIC_FOG_SHADER_DENSITY_WITH_SDFGI,
VOLUMETRIC_FOG_SHADER_FILTER,
VOLUMETRIC_FOG_SHADER_FOG,
VOLUMETRIC_FOG_SHADER_MAX,
};
struct VolumetricFogShader {
struct ParamsUBO {
float fog_frustum_size_begin[2];
float fog_frustum_size_end[2];
float fog_frustum_end;
float z_near;
float z_far;
uint32_t filter_axis;
int32_t fog_volume_size[3];
uint32_t directional_light_count;
float light_energy[3];
float base_density;
float detail_spread;
float gi_inject;
uint32_t max_voxel_gi_instances;
uint32_t cluster_type_size;
float screen_size[2];
uint32_t cluster_shift;
uint32_t cluster_width;
uint32_t max_cluster_element_count_div_32;
uint32_t use_temporal_reprojection;
uint32_t temporal_frame;
float temporal_blend;
float cam_rotation[12];
float to_prev_view[16];
};
VolumetricFogShaderRD shader;
RID params_ubo;
RID shader_version;
RID pipelines[VOLUMETRIC_FOG_SHADER_MAX];
} volumetric_fog;
uint32_t volumetric_fog_depth = 128;
uint32_t volumetric_fog_size = 128;
bool volumetric_fog_filter_active = true;
void _volumetric_fog_erase(RenderBuffers *rb);
void _update_volumetric_fog(RID p_render_buffers, RID p_environment, const CameraMatrix &p_cam_projection, const Transform3D &p_cam_transform, RID p_shadow_atlas, int p_directional_light_count, bool p_use_directional_shadows, int p_positional_light_count, int p_voxel_gi_count);
RID shadow_sampler;
uint64_t scene_pass = 0;
uint64_t shadow_atlas_realloc_tolerance_msec = 500;
/* !BAS! is this used anywhere?
struct SDFGICosineNeighbour {
uint32_t neighbour;
float weight;
};
*/
uint32_t max_cluster_elements = 512;
void _render_shadow_pass(RID p_light, RID p_shadow_atlas, int p_pass, const PagedArray<GeometryInstance *> &p_instances, const Plane &p_camera_plane = Plane(), float p_lod_distance_multiplier = 0, float p_screen_lod_threshold = 0.0, bool p_open_pass = true, bool p_close_pass = true, bool p_clear_region = true, RendererScene::RenderInfo *p_render_info = nullptr);
public:
virtual Transform3D geometry_instance_get_transform(GeometryInstance *p_instance) = 0;
virtual AABB geometry_instance_get_aabb(GeometryInstance *p_instance) = 0;
/* SHADOW ATLAS API */
virtual RID shadow_atlas_create() override;
virtual void shadow_atlas_set_size(RID p_atlas, int p_size, bool p_16_bits = false) override;
virtual void shadow_atlas_set_quadrant_subdivision(RID p_atlas, int p_quadrant, int p_subdivision) override;
virtual bool shadow_atlas_update_light(RID p_atlas, RID p_light_intance, float p_coverage, uint64_t p_light_version) override;
_FORCE_INLINE_ bool shadow_atlas_owns_light_instance(RID p_atlas, RID p_light_intance) {
ShadowAtlas *atlas = shadow_atlas_owner.getornull(p_atlas);
ERR_FAIL_COND_V(!atlas, false);
return atlas->shadow_owners.has(p_light_intance);
}
_FORCE_INLINE_ RID shadow_atlas_get_texture(RID p_atlas) {
ShadowAtlas *atlas = shadow_atlas_owner.getornull(p_atlas);
ERR_FAIL_COND_V(!atlas, RID());
return atlas->depth;
}
_FORCE_INLINE_ Size2i shadow_atlas_get_size(RID p_atlas) {
ShadowAtlas *atlas = shadow_atlas_owner.getornull(p_atlas);
ERR_FAIL_COND_V(!atlas, Size2i());
return Size2(atlas->size, atlas->size);
}
virtual void directional_shadow_atlas_set_size(int p_size, bool p_16_bits = false) override;
virtual int get_directional_light_shadow_size(RID p_light_intance) override;
virtual void set_directional_shadow_count(int p_count) override;
_FORCE_INLINE_ RID directional_shadow_get_texture() {
return directional_shadow.depth;
}
_FORCE_INLINE_ Size2i directional_shadow_get_size() {
return Size2i(directional_shadow.size, directional_shadow.size);
}
/* SDFGI UPDATE */
virtual void sdfgi_update(RID p_render_buffers, RID p_environment, const Vector3 &p_world_position) override;
virtual int sdfgi_get_pending_region_count(RID p_render_buffers) const override;
virtual AABB sdfgi_get_pending_region_bounds(RID p_render_buffers, int p_region) const override;
virtual uint32_t sdfgi_get_pending_region_cascade(RID p_render_buffers, int p_region) const override;
RID sdfgi_get_ubo() const { return gi.sdfgi_ubo; }
/* SKY API */
virtual RID sky_allocate() override;
virtual void sky_initialize(RID p_rid) override;
virtual void sky_set_radiance_size(RID p_sky, int p_radiance_size) override;
virtual void sky_set_mode(RID p_sky, RS::SkyMode p_mode) override;
virtual void sky_set_material(RID p_sky, RID p_material) override;
virtual Ref<Image> sky_bake_panorama(RID p_sky, float p_energy, bool p_bake_irradiance, const Size2i &p_size) override;
/* ENVIRONMENT API */
virtual RID environment_allocate() override;
virtual void environment_initialize(RID p_rid) override;
virtual void environment_set_background(RID p_env, RS::EnvironmentBG p_bg) override;
virtual void environment_set_sky(RID p_env, RID p_sky) override;
virtual void environment_set_sky_custom_fov(RID p_env, float p_scale) override;
virtual void environment_set_sky_orientation(RID p_env, const Basis &p_orientation) override;
virtual void environment_set_bg_color(RID p_env, const Color &p_color) override;
virtual void environment_set_bg_energy(RID p_env, float p_energy) override;
virtual void environment_set_canvas_max_layer(RID p_env, int p_max_layer) override;
virtual void environment_set_ambient_light(RID p_env, const Color &p_color, RS::EnvironmentAmbientSource p_ambient = RS::ENV_AMBIENT_SOURCE_BG, float p_energy = 1.0, float p_sky_contribution = 0.0, RS::EnvironmentReflectionSource p_reflection_source = RS::ENV_REFLECTION_SOURCE_BG, const Color &p_ao_color = Color()) override;
virtual RS::EnvironmentBG environment_get_background(RID p_env) const override;
RID environment_get_sky(RID p_env) const;
float environment_get_sky_custom_fov(RID p_env) const;
Basis environment_get_sky_orientation(RID p_env) const;
Color environment_get_bg_color(RID p_env) const;
float environment_get_bg_energy(RID p_env) const;
virtual int environment_get_canvas_max_layer(RID p_env) const override;
Color environment_get_ambient_light_color(RID p_env) const;
RS::EnvironmentAmbientSource environment_get_ambient_source(RID p_env) const;
float environment_get_ambient_light_energy(RID p_env) const;
float environment_get_ambient_sky_contribution(RID p_env) const;
RS::EnvironmentReflectionSource environment_get_reflection_source(RID p_env) const;
Color environment_get_ao_color(RID p_env) const;
virtual bool is_environment(RID p_env) const override;
virtual void environment_set_glow(RID p_env, bool p_enable, Vector<float> p_levels, float p_intensity, float p_strength, float p_mix, float p_bloom_threshold, RS::EnvironmentGlowBlendMode p_blend_mode, float p_hdr_bleed_threshold, float p_hdr_bleed_scale, float p_hdr_luminance_cap) override;
virtual void environment_glow_set_use_bicubic_upscale(bool p_enable) override;
virtual void environment_glow_set_use_high_quality(bool p_enable) override;
virtual void environment_set_fog(RID p_env, bool p_enable, const Color &p_light_color, float p_light_energy, float p_sun_scatter, float p_density, float p_height, float p_height_density, float p_aerial_perspective) override;
bool environment_is_fog_enabled(RID p_env) const;
Color environment_get_fog_light_color(RID p_env) const;
float environment_get_fog_light_energy(RID p_env) const;
float environment_get_fog_sun_scatter(RID p_env) const;
float environment_get_fog_density(RID p_env) const;
float environment_get_fog_height(RID p_env) const;
float environment_get_fog_height_density(RID p_env) const;
float environment_get_fog_aerial_perspective(RID p_env) const;
virtual void environment_set_volumetric_fog(RID p_env, bool p_enable, float p_density, const Color &p_light, float p_light_energy, float p_length, float p_detail_spread, float p_gi_inject, bool p_temporal_reprojection, float p_temporal_reprojection_amount) override;
virtual void environment_set_volumetric_fog_volume_size(int p_size, int p_depth) override;
virtual void environment_set_volumetric_fog_filter_active(bool p_enable) override;
virtual void environment_set_ssr(RID p_env, bool p_enable, int p_max_steps, float p_fade_int, float p_fade_out, float p_depth_tolerance) override;
virtual void environment_set_ssao(RID p_env, bool p_enable, float p_radius, float p_intensity, float p_power, float p_detail, float p_horizon, float p_sharpness, float p_light_affect, float p_ao_channel_affect) override;
virtual void environment_set_ssao_quality(RS::EnvironmentSSAOQuality p_quality, bool p_half_size, float p_adaptive_target, int p_blur_passes, float p_fadeout_from, float p_fadeout_to) override;
bool environment_is_ssao_enabled(RID p_env) const;
float environment_get_ssao_ao_affect(RID p_env) const;
float environment_get_ssao_light_affect(RID p_env) const;
bool environment_is_ssr_enabled(RID p_env) const;
bool environment_is_sdfgi_enabled(RID p_env) const;
virtual void environment_set_sdfgi(RID p_env, bool p_enable, RS::EnvironmentSDFGICascades p_cascades, float p_min_cell_size, RS::EnvironmentSDFGIYScale p_y_scale, bool p_use_occlusion, float p_bounce_feedback, bool p_read_sky, float p_energy, float p_normal_bias, float p_probe_bias) override;
virtual void environment_set_sdfgi_ray_count(RS::EnvironmentSDFGIRayCount p_ray_count) override;
virtual void environment_set_sdfgi_frames_to_converge(RS::EnvironmentSDFGIFramesToConverge p_frames) override;
virtual void environment_set_sdfgi_frames_to_update_light(RS::EnvironmentSDFGIFramesToUpdateLight p_update) override;
virtual void environment_set_ssr_roughness_quality(RS::EnvironmentSSRRoughnessQuality p_quality) override;
RS::EnvironmentSSRRoughnessQuality environment_get_ssr_roughness_quality() const;
virtual void environment_set_tonemap(RID p_env, RS::EnvironmentToneMapper p_tone_mapper, float p_exposure, float p_white, bool p_auto_exposure, float p_min_luminance, float p_max_luminance, float p_auto_exp_speed, float p_auto_exp_scale) override;
virtual void environment_set_adjustment(RID p_env, bool p_enable, float p_brightness, float p_contrast, float p_saturation, bool p_use_1d_color_correction, RID p_color_correction) override;
virtual Ref<Image> environment_bake_panorama(RID p_env, bool p_bake_irradiance, const Size2i &p_size) override;
virtual RID camera_effects_allocate() override;
virtual void camera_effects_initialize(RID p_rid) override;
virtual void camera_effects_set_dof_blur_quality(RS::DOFBlurQuality p_quality, bool p_use_jitter) override;
virtual void camera_effects_set_dof_blur_bokeh_shape(RS::DOFBokehShape p_shape) override;
virtual void camera_effects_set_dof_blur(RID p_camera_effects, bool p_far_enable, float p_far_distance, float p_far_transition, bool p_near_enable, float p_near_distance, float p_near_transition, float p_amount) override;
virtual void camera_effects_set_custom_exposure(RID p_camera_effects, bool p_enable, float p_exposure) override;
virtual RID light_instance_create(RID p_light) override;
virtual void light_instance_set_transform(RID p_light_instance, const Transform3D &p_transform) override;
virtual void light_instance_set_aabb(RID p_light_instance, const AABB &p_aabb) override;
virtual void light_instance_set_shadow_transform(RID p_light_instance, const CameraMatrix &p_projection, const Transform3D &p_transform, float p_far, float p_split, int p_pass, float p_shadow_texel_size, float p_bias_scale = 1.0, float p_range_begin = 0, const Vector2 &p_uv_scale = Vector2()) override;
virtual void light_instance_mark_visible(RID p_light_instance) override;
_FORCE_INLINE_ RID light_instance_get_base_light(RID p_light_instance) {
LightInstance *li = light_instance_owner.getornull(p_light_instance);
return li->light;
}
_FORCE_INLINE_ Transform3D light_instance_get_base_transform(RID p_light_instance) {
LightInstance *li = light_instance_owner.getornull(p_light_instance);
return li->transform;
}
_FORCE_INLINE_ Rect2 light_instance_get_shadow_atlas_rect(RID p_light_instance, RID p_shadow_atlas) {
ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_shadow_atlas);
LightInstance *li = light_instance_owner.getornull(p_light_instance);
uint32_t key = shadow_atlas->shadow_owners[li->self];
uint32_t quadrant = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3;
uint32_t shadow = key & ShadowAtlas::SHADOW_INDEX_MASK;
ERR_FAIL_COND_V(shadow >= (uint32_t)shadow_atlas->quadrants[quadrant].shadows.size(), Rect2());
uint32_t atlas_size = shadow_atlas->size;
uint32_t quadrant_size = atlas_size >> 1;
uint32_t x = (quadrant & 1) * quadrant_size;
uint32_t y = (quadrant >> 1) * quadrant_size;
uint32_t shadow_size = (quadrant_size / shadow_atlas->quadrants[quadrant].subdivision);
x += (shadow % shadow_atlas->quadrants[quadrant].subdivision) * shadow_size;
y += (shadow / shadow_atlas->quadrants[quadrant].subdivision) * shadow_size;
uint32_t width = shadow_size;
uint32_t height = shadow_size;
return Rect2(x / float(shadow_atlas->size), y / float(shadow_atlas->size), width / float(shadow_atlas->size), height / float(shadow_atlas->size));
}
_FORCE_INLINE_ CameraMatrix light_instance_get_shadow_camera(RID p_light_instance, int p_index) {
LightInstance *li = light_instance_owner.getornull(p_light_instance);
return li->shadow_transform[p_index].camera;
}
_FORCE_INLINE_ float light_instance_get_shadow_texel_size(RID p_light_instance, RID p_shadow_atlas) {
#ifdef DEBUG_ENABLED
LightInstance *li = light_instance_owner.getornull(p_light_instance);
ERR_FAIL_COND_V(!li->shadow_atlases.has(p_shadow_atlas), 0);
#endif
ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_shadow_atlas);
ERR_FAIL_COND_V(!shadow_atlas, 0);
#ifdef DEBUG_ENABLED
ERR_FAIL_COND_V(!shadow_atlas->shadow_owners.has(p_light_instance), 0);
#endif
uint32_t key = shadow_atlas->shadow_owners[p_light_instance];
uint32_t quadrant = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3;
uint32_t quadrant_size = shadow_atlas->size >> 1;
uint32_t shadow_size = (quadrant_size / shadow_atlas->quadrants[quadrant].subdivision);
return float(1.0) / shadow_size;
}
_FORCE_INLINE_ Transform3D
light_instance_get_shadow_transform(RID p_light_instance, int p_index) {
LightInstance *li = light_instance_owner.getornull(p_light_instance);
return li->shadow_transform[p_index].transform;
}
_FORCE_INLINE_ float light_instance_get_shadow_bias_scale(RID p_light_instance, int p_index) {
LightInstance *li = light_instance_owner.getornull(p_light_instance);
return li->shadow_transform[p_index].bias_scale;
}
_FORCE_INLINE_ float light_instance_get_shadow_range(RID p_light_instance, int p_index) {
LightInstance *li = light_instance_owner.getornull(p_light_instance);
return li->shadow_transform[p_index].farplane;
}
_FORCE_INLINE_ float light_instance_get_shadow_range_begin(RID p_light_instance, int p_index) {
LightInstance *li = light_instance_owner.getornull(p_light_instance);
return li->shadow_transform[p_index].range_begin;
}
_FORCE_INLINE_ Vector2 light_instance_get_shadow_uv_scale(RID p_light_instance, int p_index) {
LightInstance *li = light_instance_owner.getornull(p_light_instance);
return li->shadow_transform[p_index].uv_scale;
}
_FORCE_INLINE_ Rect2 light_instance_get_directional_shadow_atlas_rect(RID p_light_instance, int p_index) {
LightInstance *li = light_instance_owner.getornull(p_light_instance);
return li->shadow_transform[p_index].atlas_rect;
}
_FORCE_INLINE_ float light_instance_get_directional_shadow_split(RID p_light_instance, int p_index) {
LightInstance *li = light_instance_owner.getornull(p_light_instance);
return li->shadow_transform[p_index].split;
}
_FORCE_INLINE_ float light_instance_get_directional_shadow_texel_size(RID p_light_instance, int p_index) {
LightInstance *li = light_instance_owner.getornull(p_light_instance);
return li->shadow_transform[p_index].shadow_texel_size;
}
_FORCE_INLINE_ void light_instance_set_render_pass(RID p_light_instance, uint64_t p_pass) {
LightInstance *li = light_instance_owner.getornull(p_light_instance);
li->last_pass = p_pass;
}
_FORCE_INLINE_ uint64_t light_instance_get_render_pass(RID p_light_instance) {
LightInstance *li = light_instance_owner.getornull(p_light_instance);
return li->last_pass;
}
_FORCE_INLINE_ void light_instance_set_index(RID p_light_instance, uint32_t p_index) {
LightInstance *li = light_instance_owner.getornull(p_light_instance);
li->light_index = p_index;
}
_FORCE_INLINE_ uint32_t light_instance_get_index(RID p_light_instance) {
LightInstance *li = light_instance_owner.getornull(p_light_instance);
return li->light_index;
}
_FORCE_INLINE_ RS::LightType light_instance_get_type(RID p_light_instance) {
LightInstance *li = light_instance_owner.getornull(p_light_instance);
return li->light_type;
}
virtual RID reflection_atlas_create() override;
virtual void reflection_atlas_set_size(RID p_ref_atlas, int p_reflection_size, int p_reflection_count) override;
virtual int reflection_atlas_get_size(RID p_ref_atlas) const override;
_FORCE_INLINE_ RID reflection_atlas_get_texture(RID p_ref_atlas) {
ReflectionAtlas *atlas = reflection_atlas_owner.getornull(p_ref_atlas);
ERR_FAIL_COND_V(!atlas, RID());
return atlas->reflection;
}
virtual RID reflection_probe_instance_create(RID p_probe) override;
virtual void reflection_probe_instance_set_transform(RID p_instance, const Transform3D &p_transform) override;
virtual void reflection_probe_release_atlas_index(RID p_instance) override;
virtual bool reflection_probe_instance_needs_redraw(RID p_instance) override;
virtual bool reflection_probe_instance_has_reflection(RID p_instance) override;
virtual bool reflection_probe_instance_begin_render(RID p_instance, RID p_reflection_atlas) override;
virtual bool reflection_probe_instance_postprocess_step(RID p_instance) override;
uint32_t reflection_probe_instance_get_resolution(RID p_instance);
RID reflection_probe_instance_get_framebuffer(RID p_instance, int p_index);
RID reflection_probe_instance_get_depth_framebuffer(RID p_instance, int p_index);
_FORCE_INLINE_ RID reflection_probe_instance_get_probe(RID p_instance) {
ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
ERR_FAIL_COND_V(!rpi, RID());
return rpi->probe;
}
_FORCE_INLINE_ void reflection_probe_instance_set_render_index(RID p_instance, uint32_t p_render_index) {
ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
ERR_FAIL_COND(!rpi);
rpi->render_index = p_render_index;
}
_FORCE_INLINE_ uint32_t reflection_probe_instance_get_render_index(RID p_instance) {
ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
ERR_FAIL_COND_V(!rpi, 0);
return rpi->render_index;
}
_FORCE_INLINE_ void reflection_probe_instance_set_render_pass(RID p_instance, uint32_t p_render_pass) {
ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
ERR_FAIL_COND(!rpi);
rpi->last_pass = p_render_pass;
}
_FORCE_INLINE_ uint32_t reflection_probe_instance_get_render_pass(RID p_instance) {
ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
ERR_FAIL_COND_V(!rpi, 0);
return rpi->last_pass;
}
_FORCE_INLINE_ Transform3D reflection_probe_instance_get_transform(RID p_instance) {
ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
ERR_FAIL_COND_V(!rpi, Transform3D());
return rpi->transform;
}
_FORCE_INLINE_ int reflection_probe_instance_get_atlas_index(RID p_instance) {
ReflectionProbeInstance *rpi = reflection_probe_instance_owner.getornull(p_instance);
ERR_FAIL_COND_V(!rpi, -1);
return rpi->atlas_index;
}
virtual RID decal_instance_create(RID p_decal) override;
virtual void decal_instance_set_transform(RID p_decal, const Transform3D &p_transform) override;
_FORCE_INLINE_ RID decal_instance_get_base(RID p_decal) const {
DecalInstance *decal = decal_instance_owner.getornull(p_decal);
return decal->decal;
}
_FORCE_INLINE_ Transform3D decal_instance_get_transform(RID p_decal) const {
DecalInstance *decal = decal_instance_owner.getornull(p_decal);
return decal->transform;
}
virtual RID lightmap_instance_create(RID p_lightmap) override;
virtual void lightmap_instance_set_transform(RID p_lightmap, const Transform3D &p_transform) override;
_FORCE_INLINE_ bool lightmap_instance_is_valid(RID p_lightmap_instance) {
return lightmap_instance_owner.getornull(p_lightmap_instance) != nullptr;
}
_FORCE_INLINE_ RID lightmap_instance_get_lightmap(RID p_lightmap_instance) {
LightmapInstance *li = lightmap_instance_owner.getornull(p_lightmap_instance);
return li->lightmap;
}
_FORCE_INLINE_ Transform3D lightmap_instance_get_transform(RID p_lightmap_instance) {
LightmapInstance *li = lightmap_instance_owner.getornull(p_lightmap_instance);
return li->transform;
}
void _fill_instance_indices(const RID *p_omni_light_instances, uint32_t p_omni_light_instance_count, uint32_t *p_omni_light_indices, const RID *p_spot_light_instances, uint32_t p_spot_light_instance_count, uint32_t *p_spot_light_indices, const RID *p_reflection_probe_instances, uint32_t p_reflection_probe_instance_count, uint32_t *p_reflection_probe_indices, const RID *p_decal_instances, uint32_t p_decal_instance_count, uint32_t *p_decal_instance_indices, uint32_t p_layer_mask, uint32_t p_max_dst_words = 2);
/* gi light probes */
virtual RID voxel_gi_instance_create(RID p_base) override;
virtual void voxel_gi_instance_set_transform_to_data(RID p_probe, const Transform3D &p_xform) override;
virtual bool voxel_gi_needs_update(RID p_probe) const override;
virtual void voxel_gi_update(RID p_probe, bool p_update_light_instances, const Vector<RID> &p_light_instances, const PagedArray<RendererSceneRender::GeometryInstance *> &p_dynamic_objects) override;
virtual void voxel_gi_set_quality(RS::VoxelGIQuality p_quality) override { gi.voxel_gi_quality = p_quality; }
/* render buffers */
virtual RID render_buffers_create() override;
virtual void render_buffers_configure(RID p_render_buffers, RID p_render_target, int p_width, int p_height, RS::ViewportMSAA p_msaa, RS::ViewportScreenSpaceAA p_screen_space_aa, bool p_use_debanding, uint32_t p_view_count) override;
virtual void gi_set_use_half_resolution(bool p_enable) override;
RID render_buffers_get_ao_texture(RID p_render_buffers);
RID render_buffers_get_back_buffer_texture(RID p_render_buffers);
RID render_buffers_get_voxel_gi_buffer(RID p_render_buffers);
RID render_buffers_get_default_voxel_gi_buffer();
RID render_buffers_get_gi_ambient_texture(RID p_render_buffers);
RID render_buffers_get_gi_reflection_texture(RID p_render_buffers);
uint32_t render_buffers_get_sdfgi_cascade_count(RID p_render_buffers) const;
bool render_buffers_is_sdfgi_enabled(RID p_render_buffers) const;
RID render_buffers_get_sdfgi_irradiance_probes(RID p_render_buffers) const;
Vector3 render_buffers_get_sdfgi_cascade_offset(RID p_render_buffers, uint32_t p_cascade) const;
Vector3i render_buffers_get_sdfgi_cascade_probe_offset(RID p_render_buffers, uint32_t p_cascade) const;
float render_buffers_get_sdfgi_cascade_probe_size(RID p_render_buffers, uint32_t p_cascade) const;
float render_buffers_get_sdfgi_normal_bias(RID p_render_buffers) const;
uint32_t render_buffers_get_sdfgi_cascade_probe_count(RID p_render_buffers) const;
uint32_t render_buffers_get_sdfgi_cascade_size(RID p_render_buffers) const;
bool render_buffers_is_sdfgi_using_occlusion(RID p_render_buffers) const;
float render_buffers_get_sdfgi_energy(RID p_render_buffers) const;
RID render_buffers_get_sdfgi_occlusion_texture(RID p_render_buffers) const;
bool render_buffers_has_volumetric_fog(RID p_render_buffers) const;
RID render_buffers_get_volumetric_fog_texture(RID p_render_buffers);
RID render_buffers_get_volumetric_fog_sky_uniform_set(RID p_render_buffers);
float render_buffers_get_volumetric_fog_end(RID p_render_buffers);
float render_buffers_get_volumetric_fog_detail_spread(RID p_render_buffers);
virtual void render_scene(RID p_render_buffers, const CameraData *p_camera_data, const PagedArray<GeometryInstance *> &p_instances, const PagedArray<RID> &p_lights, const PagedArray<RID> &p_reflection_probes, const PagedArray<RID> &p_voxel_gi_instances, const PagedArray<RID> &p_decals, const PagedArray<RID> &p_lightmaps, RID p_environment, RID p_camera_effects, RID p_shadow_atlas, RID p_occluder_debug_tex, RID p_reflection_atlas, RID p_reflection_probe, int p_reflection_probe_pass, float p_screen_lod_threshold, const RenderShadowData *p_render_shadows, int p_render_shadow_count, const RenderSDFGIData *p_render_sdfgi_regions, int p_render_sdfgi_region_count, const RenderSDFGIUpdateData *p_sdfgi_update_data = nullptr, RendererScene::RenderInfo *r_render_info = nullptr) override;
virtual void render_material(const Transform3D &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, const PagedArray<GeometryInstance *> &p_instances, RID p_framebuffer, const Rect2i &p_region) override;
virtual void render_particle_collider_heightfield(RID p_collider, const Transform3D &p_transform, const PagedArray<GeometryInstance *> &p_instances) override;
virtual void set_scene_pass(uint64_t p_pass) override {
scene_pass = p_pass;
}
_FORCE_INLINE_ uint64_t get_scene_pass() {
return scene_pass;
}
virtual void screen_space_roughness_limiter_set_active(bool p_enable, float p_amount, float p_limit) override;
virtual bool screen_space_roughness_limiter_is_active() const override;
virtual float screen_space_roughness_limiter_get_amount() const;
virtual float screen_space_roughness_limiter_get_limit() const;
virtual void sub_surface_scattering_set_quality(RS::SubSurfaceScatteringQuality p_quality) override;
RS::SubSurfaceScatteringQuality sub_surface_scattering_get_quality() const;
virtual void sub_surface_scattering_set_scale(float p_scale, float p_depth_scale) override;
virtual void shadows_quality_set(RS::ShadowQuality p_quality) override;
virtual void directional_shadow_quality_set(RS::ShadowQuality p_quality) override;
_FORCE_INLINE_ RS::ShadowQuality shadows_quality_get() const { return shadows_quality; }
_FORCE_INLINE_ RS::ShadowQuality directional_shadow_quality_get() const { return directional_shadow_quality; }
_FORCE_INLINE_ float shadows_quality_radius_get() const { return shadows_quality_radius; }
_FORCE_INLINE_ float directional_shadow_quality_radius_get() const { return directional_shadow_quality_radius; }
_FORCE_INLINE_ float *directional_penumbra_shadow_kernel_get() { return directional_penumbra_shadow_kernel; }
_FORCE_INLINE_ float *directional_soft_shadow_kernel_get() { return directional_soft_shadow_kernel; }
_FORCE_INLINE_ float *penumbra_shadow_kernel_get() { return penumbra_shadow_kernel; }
_FORCE_INLINE_ float *soft_shadow_kernel_get() { return soft_shadow_kernel; }
_FORCE_INLINE_ int directional_penumbra_shadow_samples_get() const { return directional_penumbra_shadow_samples; }
_FORCE_INLINE_ int directional_soft_shadow_samples_get() const { return directional_soft_shadow_samples; }
_FORCE_INLINE_ int penumbra_shadow_samples_get() const { return penumbra_shadow_samples; }
_FORCE_INLINE_ int soft_shadow_samples_get() const { return soft_shadow_samples; }
int get_roughness_layers() const;
bool is_using_radiance_cubemap_array() const;
virtual TypedArray<Image> bake_render_uv2(RID p_base, const Vector<RID> &p_material_overrides, const Size2i &p_image_size) override;
virtual bool free(RID p_rid) override;
virtual void update() override;
virtual void set_debug_draw_mode(RS::ViewportDebugDraw p_debug_draw) override;
_FORCE_INLINE_ RS::ViewportDebugDraw get_debug_draw_mode() const {
return debug_draw;
}
virtual void set_time(double p_time, double p_step) override;
RID get_reflection_probe_buffer();
RID get_omni_light_buffer();
RID get_spot_light_buffer();
RID get_directional_light_buffer();
RID get_decal_buffer();
int get_max_directional_lights() const;
virtual void sdfgi_set_debug_probe_select(const Vector3 &p_position, const Vector3 &p_dir) override;
virtual bool is_dynamic_gi_supported() const;
virtual bool is_clustered_enabled() const;
virtual bool is_volumetric_supported() const;
virtual uint32_t get_max_elements() const;
RendererSceneRenderRD(RendererStorageRD *p_storage);
~RendererSceneRenderRD();
};
#endif // RASTERIZER_SCENE_RD_H