godot/modules/csg/csg_shape.cpp
lawnjelly e06cd3042f Portals - Fix CSG updates on room conversion
Due to a quirk in CSG Shapes, updating is usually deferred to the next frame. This is problematic as we need to read back the geometry on the first frame when converting levels.

This PR adds a function to CSGShape to force immediate updating (if dirty), and calls it during room conversion.
2021-07-29 12:41:23 +01:00

2481 lines
70 KiB
C++

/*************************************************************************/
/* csg_shape.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "csg_shape.h"
#include "scene/3d/path.h"
void CSGShape::set_use_collision(bool p_enable) {
if (use_collision == p_enable) {
return;
}
use_collision = p_enable;
if (!is_inside_tree() || !is_root_shape()) {
return;
}
if (use_collision) {
root_collision_shape.instance();
root_collision_instance = PhysicsServer::get_singleton()->body_create(PhysicsServer::BODY_MODE_STATIC);
PhysicsServer::get_singleton()->body_set_state(root_collision_instance, PhysicsServer::BODY_STATE_TRANSFORM, get_global_transform());
PhysicsServer::get_singleton()->body_add_shape(root_collision_instance, root_collision_shape->get_rid());
PhysicsServer::get_singleton()->body_set_space(root_collision_instance, get_world()->get_space());
PhysicsServer::get_singleton()->body_attach_object_instance_id(root_collision_instance, get_instance_id());
set_collision_layer(collision_layer);
set_collision_mask(collision_mask);
_make_dirty(); //force update
} else {
PhysicsServer::get_singleton()->free(root_collision_instance);
root_collision_instance = RID();
root_collision_shape.unref();
}
_change_notify();
}
bool CSGShape::is_using_collision() const {
return use_collision;
}
void CSGShape::set_collision_layer(uint32_t p_layer) {
collision_layer = p_layer;
if (root_collision_instance.is_valid()) {
PhysicsServer::get_singleton()->body_set_collision_layer(root_collision_instance, p_layer);
}
}
uint32_t CSGShape::get_collision_layer() const {
return collision_layer;
}
void CSGShape::set_collision_mask(uint32_t p_mask) {
collision_mask = p_mask;
if (root_collision_instance.is_valid()) {
PhysicsServer::get_singleton()->body_set_collision_mask(root_collision_instance, p_mask);
}
}
uint32_t CSGShape::get_collision_mask() const {
return collision_mask;
}
void CSGShape::set_collision_mask_bit(int p_bit, bool p_value) {
ERR_FAIL_INDEX_MSG(p_bit, 32, "Collision mask bit must be between 0 and 31 inclusive.");
uint32_t mask = get_collision_mask();
if (p_value) {
mask |= 1 << p_bit;
} else {
mask &= ~(1 << p_bit);
}
set_collision_mask(mask);
}
bool CSGShape::get_collision_mask_bit(int p_bit) const {
ERR_FAIL_INDEX_V_MSG(p_bit, 32, false, "Collision mask bit must be between 0 and 31 inclusive.");
return get_collision_mask() & (1 << p_bit);
}
void CSGShape::set_collision_layer_bit(int p_bit, bool p_value) {
ERR_FAIL_INDEX_MSG(p_bit, 32, "Collision layer bit must be between 0 and 31 inclusive.");
uint32_t layer = get_collision_layer();
if (p_value) {
layer |= 1 << p_bit;
} else {
layer &= ~(1 << p_bit);
}
set_collision_layer(layer);
}
bool CSGShape::get_collision_layer_bit(int p_bit) const {
ERR_FAIL_INDEX_V_MSG(p_bit, 32, false, "Collision layer bit must be between 0 and 31 inclusive.");
return get_collision_layer() & (1 << p_bit);
}
bool CSGShape::is_root_shape() const {
return !parent;
}
void CSGShape::set_snap(float p_snap) {
snap = p_snap;
}
float CSGShape::get_snap() const {
return snap;
}
void CSGShape::_make_dirty() {
if (!is_inside_tree()) {
return;
}
if (parent) {
parent->_make_dirty();
} else if (!dirty) {
call_deferred("_update_shape");
}
dirty = true;
}
CSGBrush *CSGShape::_get_brush() {
if (dirty) {
if (brush) {
memdelete(brush);
}
brush = nullptr;
CSGBrush *n = _build_brush();
for (int i = 0; i < get_child_count(); i++) {
CSGShape *child = Object::cast_to<CSGShape>(get_child(i));
if (!child) {
continue;
}
if (!child->is_visible_in_tree()) {
continue;
}
CSGBrush *n2 = child->_get_brush();
if (!n2) {
continue;
}
if (!n) {
n = memnew(CSGBrush);
n->copy_from(*n2, child->get_transform());
} else {
CSGBrush *nn = memnew(CSGBrush);
CSGBrush *nn2 = memnew(CSGBrush);
nn2->copy_from(*n2, child->get_transform());
CSGBrushOperation bop;
switch (child->get_operation()) {
case CSGShape::OPERATION_UNION:
bop.merge_brushes(CSGBrushOperation::OPERATION_UNION, *n, *nn2, *nn, snap);
break;
case CSGShape::OPERATION_INTERSECTION:
bop.merge_brushes(CSGBrushOperation::OPERATION_INTERSECTION, *n, *nn2, *nn, snap);
break;
case CSGShape::OPERATION_SUBTRACTION:
bop.merge_brushes(CSGBrushOperation::OPERATION_SUBSTRACTION, *n, *nn2, *nn, snap);
break;
}
memdelete(n);
memdelete(nn2);
n = nn;
}
}
if (n) {
AABB aabb;
for (int i = 0; i < n->faces.size(); i++) {
for (int j = 0; j < 3; j++) {
if (i == 0 && j == 0) {
aabb.position = n->faces[i].vertices[j];
} else {
aabb.expand_to(n->faces[i].vertices[j]);
}
}
}
node_aabb = aabb;
} else {
node_aabb = AABB();
}
brush = n;
dirty = false;
}
return brush;
}
int CSGShape::mikktGetNumFaces(const SMikkTSpaceContext *pContext) {
ShapeUpdateSurface &surface = *((ShapeUpdateSurface *)pContext->m_pUserData);
return surface.vertices.size() / 3;
}
int CSGShape::mikktGetNumVerticesOfFace(const SMikkTSpaceContext *pContext, const int iFace) {
// always 3
return 3;
}
void CSGShape::mikktGetPosition(const SMikkTSpaceContext *pContext, float fvPosOut[], const int iFace, const int iVert) {
ShapeUpdateSurface &surface = *((ShapeUpdateSurface *)pContext->m_pUserData);
Vector3 v = surface.verticesw[iFace * 3 + iVert];
fvPosOut[0] = v.x;
fvPosOut[1] = v.y;
fvPosOut[2] = v.z;
}
void CSGShape::mikktGetNormal(const SMikkTSpaceContext *pContext, float fvNormOut[], const int iFace, const int iVert) {
ShapeUpdateSurface &surface = *((ShapeUpdateSurface *)pContext->m_pUserData);
Vector3 n = surface.normalsw[iFace * 3 + iVert];
fvNormOut[0] = n.x;
fvNormOut[1] = n.y;
fvNormOut[2] = n.z;
}
void CSGShape::mikktGetTexCoord(const SMikkTSpaceContext *pContext, float fvTexcOut[], const int iFace, const int iVert) {
ShapeUpdateSurface &surface = *((ShapeUpdateSurface *)pContext->m_pUserData);
Vector2 t = surface.uvsw[iFace * 3 + iVert];
fvTexcOut[0] = t.x;
fvTexcOut[1] = t.y;
}
void CSGShape::mikktSetTSpaceDefault(const SMikkTSpaceContext *pContext, const float fvTangent[], const float fvBiTangent[], const float fMagS, const float fMagT,
const tbool bIsOrientationPreserving, const int iFace, const int iVert) {
ShapeUpdateSurface &surface = *((ShapeUpdateSurface *)pContext->m_pUserData);
int i = iFace * 3 + iVert;
Vector3 normal = surface.normalsw[i];
Vector3 tangent = Vector3(fvTangent[0], fvTangent[1], fvTangent[2]);
Vector3 bitangent = Vector3(-fvBiTangent[0], -fvBiTangent[1], -fvBiTangent[2]); // for some reason these are reversed, something with the coordinate system in Godot
float d = bitangent.dot(normal.cross(tangent));
i *= 4;
surface.tansw[i++] = tangent.x;
surface.tansw[i++] = tangent.y;
surface.tansw[i++] = tangent.z;
surface.tansw[i++] = d < 0 ? -1 : 1;
}
void CSGShape::_update_shape() {
if (parent) {
return;
}
set_base(RID());
root_mesh.unref(); //byebye root mesh
CSGBrush *n = _get_brush();
ERR_FAIL_COND_MSG(!n, "Cannot get CSGBrush.");
OAHashMap<Vector3, Vector3> vec_map;
Vector<int> face_count;
face_count.resize(n->materials.size() + 1);
for (int i = 0; i < face_count.size(); i++) {
face_count.write[i] = 0;
}
for (int i = 0; i < n->faces.size(); i++) {
int mat = n->faces[i].material;
ERR_CONTINUE(mat < -1 || mat >= face_count.size());
int idx = mat == -1 ? face_count.size() - 1 : mat;
Plane p(n->faces[i].vertices[0], n->faces[i].vertices[1], n->faces[i].vertices[2]);
for (int j = 0; j < 3; j++) {
Vector3 v = n->faces[i].vertices[j];
Vector3 add;
if (vec_map.lookup(v, add)) {
add += p.normal;
} else {
add = p.normal;
}
vec_map.set(v, add);
}
face_count.write[idx]++;
}
Vector<ShapeUpdateSurface> surfaces;
surfaces.resize(face_count.size());
//create arrays
for (int i = 0; i < surfaces.size(); i++) {
surfaces.write[i].vertices.resize(face_count[i] * 3);
surfaces.write[i].normals.resize(face_count[i] * 3);
surfaces.write[i].uvs.resize(face_count[i] * 3);
if (calculate_tangents) {
surfaces.write[i].tans.resize(face_count[i] * 3 * 4);
}
surfaces.write[i].last_added = 0;
if (i != surfaces.size() - 1) {
surfaces.write[i].material = n->materials[i];
}
surfaces.write[i].verticesw = surfaces.write[i].vertices.write();
surfaces.write[i].normalsw = surfaces.write[i].normals.write();
surfaces.write[i].uvsw = surfaces.write[i].uvs.write();
if (calculate_tangents) {
surfaces.write[i].tansw = surfaces.write[i].tans.write();
}
}
// Update collision faces.
if (root_collision_shape.is_valid()) {
PoolVector<Vector3> physics_faces;
physics_faces.resize(n->faces.size() * 3);
PoolVector<Vector3>::Write physicsw = physics_faces.write();
for (int i = 0; i < n->faces.size(); i++) {
int order[3] = { 0, 1, 2 };
if (n->faces[i].invert) {
SWAP(order[1], order[2]);
}
physicsw[i * 3 + 0] = n->faces[i].vertices[order[0]];
physicsw[i * 3 + 1] = n->faces[i].vertices[order[1]];
physicsw[i * 3 + 2] = n->faces[i].vertices[order[2]];
}
root_collision_shape->set_faces(physics_faces);
}
//fill arrays
{
for (int i = 0; i < n->faces.size(); i++) {
int order[3] = { 0, 1, 2 };
if (n->faces[i].invert) {
SWAP(order[1], order[2]);
}
int mat = n->faces[i].material;
ERR_CONTINUE(mat < -1 || mat >= face_count.size());
int idx = mat == -1 ? face_count.size() - 1 : mat;
int last = surfaces[idx].last_added;
Plane p(n->faces[i].vertices[0], n->faces[i].vertices[1], n->faces[i].vertices[2]);
for (int j = 0; j < 3; j++) {
Vector3 v = n->faces[i].vertices[j];
Vector3 normal = p.normal;
if (n->faces[i].smooth && vec_map.lookup(v, normal)) {
normal.normalize();
}
if (n->faces[i].invert) {
normal = -normal;
}
int k = last + order[j];
surfaces[idx].verticesw[k] = v;
surfaces[idx].uvsw[k] = n->faces[i].uvs[j];
surfaces[idx].normalsw[k] = normal;
if (calculate_tangents) {
// zero out our tangents for now
k *= 4;
surfaces[idx].tansw[k++] = 0.0;
surfaces[idx].tansw[k++] = 0.0;
surfaces[idx].tansw[k++] = 0.0;
surfaces[idx].tansw[k++] = 0.0;
}
}
surfaces.write[idx].last_added += 3;
}
}
root_mesh.instance();
//create surfaces
for (int i = 0; i < surfaces.size(); i++) {
// calculate tangents for this surface
bool have_tangents = calculate_tangents;
if (have_tangents) {
SMikkTSpaceInterface mkif;
mkif.m_getNormal = mikktGetNormal;
mkif.m_getNumFaces = mikktGetNumFaces;
mkif.m_getNumVerticesOfFace = mikktGetNumVerticesOfFace;
mkif.m_getPosition = mikktGetPosition;
mkif.m_getTexCoord = mikktGetTexCoord;
mkif.m_setTSpace = mikktSetTSpaceDefault;
mkif.m_setTSpaceBasic = nullptr;
SMikkTSpaceContext msc;
msc.m_pInterface = &mkif;
msc.m_pUserData = &surfaces.write[i];
have_tangents = genTangSpaceDefault(&msc);
}
// unset write access
surfaces.write[i].verticesw.release();
surfaces.write[i].normalsw.release();
surfaces.write[i].uvsw.release();
surfaces.write[i].tansw.release();
if (surfaces[i].last_added == 0) {
continue;
}
// and convert to surface array
Array array;
array.resize(Mesh::ARRAY_MAX);
array[Mesh::ARRAY_VERTEX] = surfaces[i].vertices;
array[Mesh::ARRAY_NORMAL] = surfaces[i].normals;
array[Mesh::ARRAY_TEX_UV] = surfaces[i].uvs;
if (have_tangents) {
array[Mesh::ARRAY_TANGENT] = surfaces[i].tans;
}
int idx = root_mesh->get_surface_count();
root_mesh->add_surface_from_arrays(Mesh::PRIMITIVE_TRIANGLES, array);
root_mesh->surface_set_material(idx, surfaces[i].material);
}
set_base(root_mesh->get_rid());
}
AABB CSGShape::get_aabb() const {
return node_aabb;
}
PoolVector<Vector3> CSGShape::get_brush_faces() {
ERR_FAIL_COND_V(!is_inside_tree(), PoolVector<Vector3>());
CSGBrush *b = _get_brush();
if (!b) {
return PoolVector<Vector3>();
}
PoolVector<Vector3> faces;
int fc = b->faces.size();
faces.resize(fc * 3);
{
PoolVector<Vector3>::Write w = faces.write();
for (int i = 0; i < fc; i++) {
w[i * 3 + 0] = b->faces[i].vertices[0];
w[i * 3 + 1] = b->faces[i].vertices[1];
w[i * 3 + 2] = b->faces[i].vertices[2];
}
}
return faces;
}
PoolVector<Face3> CSGShape::get_faces(uint32_t p_usage_flags) const {
return PoolVector<Face3>();
}
void CSGShape::_notification(int p_what) {
if (p_what == NOTIFICATION_ENTER_TREE) {
Node *parentn = get_parent();
if (parentn) {
parent = Object::cast_to<CSGShape>(parentn);
if (parent) {
set_base(RID());
root_mesh.unref();
}
}
if (use_collision && is_root_shape()) {
root_collision_shape.instance();
root_collision_instance = PhysicsServer::get_singleton()->body_create(PhysicsServer::BODY_MODE_STATIC);
PhysicsServer::get_singleton()->body_set_state(root_collision_instance, PhysicsServer::BODY_STATE_TRANSFORM, get_global_transform());
PhysicsServer::get_singleton()->body_add_shape(root_collision_instance, root_collision_shape->get_rid());
PhysicsServer::get_singleton()->body_set_space(root_collision_instance, get_world()->get_space());
PhysicsServer::get_singleton()->body_attach_object_instance_id(root_collision_instance, get_instance_id());
set_collision_layer(collision_layer);
set_collision_mask(collision_mask);
}
_make_dirty();
}
if (p_what == NOTIFICATION_TRANSFORM_CHANGED) {
if (use_collision && is_root_shape() && root_collision_instance.is_valid()) {
PhysicsServer::get_singleton()->body_set_state(root_collision_instance, PhysicsServer::BODY_STATE_TRANSFORM, get_global_transform());
}
}
if (p_what == NOTIFICATION_LOCAL_TRANSFORM_CHANGED) {
if (parent) {
parent->_make_dirty();
}
}
if (p_what == NOTIFICATION_VISIBILITY_CHANGED) {
if (parent) {
parent->_make_dirty();
}
}
if (p_what == NOTIFICATION_EXIT_TREE) {
if (parent) {
parent->_make_dirty();
}
parent = nullptr;
if (use_collision && is_root_shape() && root_collision_instance.is_valid()) {
PhysicsServer::get_singleton()->free(root_collision_instance);
root_collision_instance = RID();
root_collision_shape.unref();
}
_make_dirty();
}
}
void CSGShape::set_operation(Operation p_operation) {
operation = p_operation;
_make_dirty();
update_gizmo();
}
CSGShape::Operation CSGShape::get_operation() const {
return operation;
}
void CSGShape::set_calculate_tangents(bool p_calculate_tangents) {
calculate_tangents = p_calculate_tangents;
_make_dirty();
}
bool CSGShape::is_calculating_tangents() const {
return calculate_tangents;
}
void CSGShape::_validate_property(PropertyInfo &property) const {
bool is_collision_prefixed = property.name.begins_with("collision_");
if ((is_collision_prefixed || property.name.begins_with("use_collision")) && is_inside_tree() && !is_root_shape()) {
//hide collision if not root
property.usage = PROPERTY_USAGE_NOEDITOR;
} else if (is_collision_prefixed && !bool(get("use_collision"))) {
property.usage = PROPERTY_USAGE_NOEDITOR | PROPERTY_USAGE_INTERNAL;
}
}
// Calling _make_dirty() normally calls a deferred _update_shape.
// This is problematic if we need to read the geometry immediately.
// This function provides a means to make sure the shape is updated
// immediately. It should only be used where necessary to prevent
// updating CSGs multiple times per frame. Use _make_dirty in preference.
void CSGShape::force_update_shape() {
if (dirty) {
_update_shape();
}
}
Array CSGShape::get_meshes() const {
if (root_mesh.is_valid()) {
Array arr;
arr.resize(2);
arr[0] = Transform();
arr[1] = root_mesh;
return arr;
}
return Array();
}
void CSGShape::_bind_methods() {
ClassDB::bind_method(D_METHOD("_update_shape"), &CSGShape::_update_shape);
ClassDB::bind_method(D_METHOD("is_root_shape"), &CSGShape::is_root_shape);
ClassDB::bind_method(D_METHOD("set_operation", "operation"), &CSGShape::set_operation);
ClassDB::bind_method(D_METHOD("get_operation"), &CSGShape::get_operation);
ClassDB::bind_method(D_METHOD("set_snap", "snap"), &CSGShape::set_snap);
ClassDB::bind_method(D_METHOD("get_snap"), &CSGShape::get_snap);
ClassDB::bind_method(D_METHOD("set_use_collision", "operation"), &CSGShape::set_use_collision);
ClassDB::bind_method(D_METHOD("is_using_collision"), &CSGShape::is_using_collision);
ClassDB::bind_method(D_METHOD("set_collision_layer", "layer"), &CSGShape::set_collision_layer);
ClassDB::bind_method(D_METHOD("get_collision_layer"), &CSGShape::get_collision_layer);
ClassDB::bind_method(D_METHOD("set_collision_mask", "mask"), &CSGShape::set_collision_mask);
ClassDB::bind_method(D_METHOD("get_collision_mask"), &CSGShape::get_collision_mask);
ClassDB::bind_method(D_METHOD("set_collision_mask_bit", "bit", "value"), &CSGShape::set_collision_mask_bit);
ClassDB::bind_method(D_METHOD("get_collision_mask_bit", "bit"), &CSGShape::get_collision_mask_bit);
ClassDB::bind_method(D_METHOD("set_collision_layer_bit", "bit", "value"), &CSGShape::set_collision_layer_bit);
ClassDB::bind_method(D_METHOD("get_collision_layer_bit", "bit"), &CSGShape::get_collision_layer_bit);
ClassDB::bind_method(D_METHOD("set_calculate_tangents", "enabled"), &CSGShape::set_calculate_tangents);
ClassDB::bind_method(D_METHOD("is_calculating_tangents"), &CSGShape::is_calculating_tangents);
ClassDB::bind_method(D_METHOD("get_meshes"), &CSGShape::get_meshes);
ADD_PROPERTY(PropertyInfo(Variant::INT, "operation", PROPERTY_HINT_ENUM, "Union,Intersection,Subtraction"), "set_operation", "get_operation");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "snap", PROPERTY_HINT_RANGE, "0.0001,1,0.001"), "set_snap", "get_snap");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "calculate_tangents"), "set_calculate_tangents", "is_calculating_tangents");
ADD_GROUP("Collision", "collision_");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "use_collision"), "set_use_collision", "is_using_collision");
ADD_PROPERTY(PropertyInfo(Variant::INT, "collision_layer", PROPERTY_HINT_LAYERS_3D_PHYSICS), "set_collision_layer", "get_collision_layer");
ADD_PROPERTY(PropertyInfo(Variant::INT, "collision_mask", PROPERTY_HINT_LAYERS_3D_PHYSICS), "set_collision_mask", "get_collision_mask");
BIND_ENUM_CONSTANT(OPERATION_UNION);
BIND_ENUM_CONSTANT(OPERATION_INTERSECTION);
BIND_ENUM_CONSTANT(OPERATION_SUBTRACTION);
}
CSGShape::CSGShape() {
operation = OPERATION_UNION;
parent = nullptr;
brush = nullptr;
dirty = false;
snap = 0.001;
use_collision = false;
collision_layer = 1;
collision_mask = 1;
calculate_tangents = true;
set_notify_local_transform(true);
}
CSGShape::~CSGShape() {
if (brush) {
memdelete(brush);
brush = nullptr;
}
}
//////////////////////////////////
CSGBrush *CSGCombiner::_build_brush() {
return memnew(CSGBrush); //does not build anything
}
CSGCombiner::CSGCombiner() {
}
/////////////////////
CSGBrush *CSGPrimitive::_create_brush_from_arrays(const PoolVector<Vector3> &p_vertices, const PoolVector<Vector2> &p_uv, const PoolVector<bool> &p_smooth, const PoolVector<Ref<Material>> &p_materials) {
CSGBrush *brush = memnew(CSGBrush);
PoolVector<bool> invert;
invert.resize(p_vertices.size() / 3);
{
int ic = invert.size();
PoolVector<bool>::Write w = invert.write();
for (int i = 0; i < ic; i++) {
w[i] = invert_faces;
}
}
brush->build_from_faces(p_vertices, p_uv, p_smooth, p_materials, invert);
return brush;
}
void CSGPrimitive::_bind_methods() {
ClassDB::bind_method(D_METHOD("set_invert_faces", "invert_faces"), &CSGPrimitive::set_invert_faces);
ClassDB::bind_method(D_METHOD("is_inverting_faces"), &CSGPrimitive::is_inverting_faces);
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "invert_faces"), "set_invert_faces", "is_inverting_faces");
}
void CSGPrimitive::set_invert_faces(bool p_invert) {
if (invert_faces == p_invert) {
return;
}
invert_faces = p_invert;
_make_dirty();
}
bool CSGPrimitive::is_inverting_faces() {
return invert_faces;
}
CSGPrimitive::CSGPrimitive() {
invert_faces = false;
}
/////////////////////
CSGBrush *CSGMesh::_build_brush() {
if (!mesh.is_valid()) {
return memnew(CSGBrush);
}
PoolVector<Vector3> vertices;
PoolVector<bool> smooth;
PoolVector<Ref<Material>> materials;
PoolVector<Vector2> uvs;
Ref<Material> material = get_material();
for (int i = 0; i < mesh->get_surface_count(); i++) {
if (mesh->surface_get_primitive_type(i) != Mesh::PRIMITIVE_TRIANGLES) {
continue;
}
Array arrays = mesh->surface_get_arrays(i);
if (arrays.size() == 0) {
_make_dirty();
ERR_FAIL_COND_V(arrays.size() == 0, memnew(CSGBrush));
}
PoolVector<Vector3> avertices = arrays[Mesh::ARRAY_VERTEX];
if (avertices.size() == 0) {
continue;
}
PoolVector<Vector3>::Read vr = avertices.read();
PoolVector<Vector3> anormals = arrays[Mesh::ARRAY_NORMAL];
PoolVector<Vector3>::Read nr;
bool nr_used = false;
if (anormals.size()) {
nr = anormals.read();
nr_used = true;
}
PoolVector<Vector2> auvs = arrays[Mesh::ARRAY_TEX_UV];
PoolVector<Vector2>::Read uvr;
bool uvr_used = false;
if (auvs.size()) {
uvr = auvs.read();
uvr_used = true;
}
Ref<Material> mat;
if (material.is_valid()) {
mat = material;
} else {
mat = mesh->surface_get_material(i);
}
PoolVector<int> aindices = arrays[Mesh::ARRAY_INDEX];
if (aindices.size()) {
int as = vertices.size();
int is = aindices.size();
vertices.resize(as + is);
smooth.resize((as + is) / 3);
materials.resize((as + is) / 3);
uvs.resize(as + is);
PoolVector<Vector3>::Write vw = vertices.write();
PoolVector<bool>::Write sw = smooth.write();
PoolVector<Vector2>::Write uvw = uvs.write();
PoolVector<Ref<Material>>::Write mw = materials.write();
PoolVector<int>::Read ir = aindices.read();
for (int j = 0; j < is; j += 3) {
Vector3 vertex[3];
Vector3 normal[3];
Vector2 uv[3];
for (int k = 0; k < 3; k++) {
int idx = ir[j + k];
vertex[k] = vr[idx];
if (nr_used) {
normal[k] = nr[idx];
}
if (uvr_used) {
uv[k] = uvr[idx];
}
}
bool flat = normal[0].distance_to(normal[1]) < CMP_EPSILON && normal[0].distance_to(normal[2]) < CMP_EPSILON;
vw[as + j + 0] = vertex[0];
vw[as + j + 1] = vertex[1];
vw[as + j + 2] = vertex[2];
uvw[as + j + 0] = uv[0];
uvw[as + j + 1] = uv[1];
uvw[as + j + 2] = uv[2];
sw[(as + j) / 3] = !flat;
mw[(as + j) / 3] = mat;
}
} else {
int as = vertices.size();
int is = avertices.size();
vertices.resize(as + is);
smooth.resize((as + is) / 3);
uvs.resize(as + is);
materials.resize((as + is) / 3);
PoolVector<Vector3>::Write vw = vertices.write();
PoolVector<bool>::Write sw = smooth.write();
PoolVector<Vector2>::Write uvw = uvs.write();
PoolVector<Ref<Material>>::Write mw = materials.write();
for (int j = 0; j < is; j += 3) {
Vector3 vertex[3];
Vector3 normal[3];
Vector2 uv[3];
for (int k = 0; k < 3; k++) {
vertex[k] = vr[j + k];
if (nr_used) {
normal[k] = nr[j + k];
}
if (uvr_used) {
uv[k] = uvr[j + k];
}
}
bool flat = normal[0].distance_to(normal[1]) < CMP_EPSILON && normal[0].distance_to(normal[2]) < CMP_EPSILON;
vw[as + j + 0] = vertex[0];
vw[as + j + 1] = vertex[1];
vw[as + j + 2] = vertex[2];
uvw[as + j + 0] = uv[0];
uvw[as + j + 1] = uv[1];
uvw[as + j + 2] = uv[2];
sw[(as + j) / 3] = !flat;
mw[(as + j) / 3] = mat;
}
}
}
if (vertices.size() == 0) {
return memnew(CSGBrush);
}
return _create_brush_from_arrays(vertices, uvs, smooth, materials);
}
void CSGMesh::_mesh_changed() {
_make_dirty();
update_gizmo();
}
void CSGMesh::set_material(const Ref<Material> &p_material) {
if (material == p_material) {
return;
}
material = p_material;
_make_dirty();
}
Ref<Material> CSGMesh::get_material() const {
return material;
}
void CSGMesh::_bind_methods() {
ClassDB::bind_method(D_METHOD("set_mesh", "mesh"), &CSGMesh::set_mesh);
ClassDB::bind_method(D_METHOD("get_mesh"), &CSGMesh::get_mesh);
ClassDB::bind_method(D_METHOD("_mesh_changed"), &CSGMesh::_mesh_changed);
ClassDB::bind_method(D_METHOD("set_material", "material"), &CSGMesh::set_material);
ClassDB::bind_method(D_METHOD("get_material"), &CSGMesh::get_material);
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "mesh", PROPERTY_HINT_RESOURCE_TYPE, "Mesh"), "set_mesh", "get_mesh");
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "material", PROPERTY_HINT_RESOURCE_TYPE, "SpatialMaterial,ShaderMaterial"), "set_material", "get_material");
}
void CSGMesh::set_mesh(const Ref<Mesh> &p_mesh) {
if (mesh == p_mesh) {
return;
}
if (mesh.is_valid()) {
mesh->disconnect("changed", this, "_mesh_changed");
}
mesh = p_mesh;
if (mesh.is_valid()) {
mesh->connect("changed", this, "_mesh_changed");
}
_mesh_changed();
}
Ref<Mesh> CSGMesh::get_mesh() {
return mesh;
}
////////////////////////////////
CSGBrush *CSGSphere::_build_brush() {
// set our bounding box
CSGBrush *brush = memnew(CSGBrush);
int face_count = rings * radial_segments * 2 - radial_segments * 2;
bool invert_val = is_inverting_faces();
Ref<Material> material = get_material();
PoolVector<Vector3> faces;
PoolVector<Vector2> uvs;
PoolVector<bool> smooth;
PoolVector<Ref<Material>> materials;
PoolVector<bool> invert;
faces.resize(face_count * 3);
uvs.resize(face_count * 3);
smooth.resize(face_count);
materials.resize(face_count);
invert.resize(face_count);
{
PoolVector<Vector3>::Write facesw = faces.write();
PoolVector<Vector2>::Write uvsw = uvs.write();
PoolVector<bool>::Write smoothw = smooth.write();
PoolVector<Ref<Material>>::Write materialsw = materials.write();
PoolVector<bool>::Write invertw = invert.write();
// We want to follow an order that's convenient for UVs.
// For latitude step we start at the top and move down like in an image.
const double latitude_step = -Math_PI / rings;
const double longitude_step = Math_TAU / radial_segments;
int face = 0;
for (int i = 0; i < rings; i++) {
double latitude0 = latitude_step * i + Math_TAU / 4;
double cos0 = Math::cos(latitude0);
double sin0 = Math::sin(latitude0);
double v0 = double(i) / rings;
double latitude1 = latitude_step * (i + 1) + Math_TAU / 4;
double cos1 = Math::cos(latitude1);
double sin1 = Math::sin(latitude1);
double v1 = double(i + 1) / rings;
for (int j = 0; j < radial_segments; j++) {
double longitude0 = longitude_step * j;
// We give sin to X and cos to Z on purpose.
// This allows UVs to be CCW on +X so it maps to images well.
double x0 = Math::sin(longitude0);
double z0 = Math::cos(longitude0);
double u0 = double(j) / radial_segments;
double longitude1 = longitude_step * (j + 1);
double x1 = Math::sin(longitude1);
double z1 = Math::cos(longitude1);
double u1 = double(j + 1) / radial_segments;
Vector3 v[4] = {
Vector3(x0 * cos0, sin0, z0 * cos0) * radius,
Vector3(x1 * cos0, sin0, z1 * cos0) * radius,
Vector3(x1 * cos1, sin1, z1 * cos1) * radius,
Vector3(x0 * cos1, sin1, z0 * cos1) * radius,
};
Vector2 u[4] = {
Vector2(u0, v0),
Vector2(u1, v0),
Vector2(u1, v1),
Vector2(u0, v1),
};
// Draw the first face, but skip this at the north pole (i == 0).
if (i > 0) {
facesw[face * 3 + 0] = v[0];
facesw[face * 3 + 1] = v[1];
facesw[face * 3 + 2] = v[2];
uvsw[face * 3 + 0] = u[0];
uvsw[face * 3 + 1] = u[1];
uvsw[face * 3 + 2] = u[2];
smoothw[face] = smooth_faces;
invertw[face] = invert_val;
materialsw[face] = material;
face++;
}
// Draw the second face, but skip this at the south pole (i == rings - 1).
if (i < rings - 1) {
facesw[face * 3 + 0] = v[2];
facesw[face * 3 + 1] = v[3];
facesw[face * 3 + 2] = v[0];
uvsw[face * 3 + 0] = u[2];
uvsw[face * 3 + 1] = u[3];
uvsw[face * 3 + 2] = u[0];
smoothw[face] = smooth_faces;
invertw[face] = invert_val;
materialsw[face] = material;
face++;
}
}
}
if (face != face_count) {
ERR_PRINT("Face mismatch bug! fix code");
}
}
brush->build_from_faces(faces, uvs, smooth, materials, invert);
return brush;
}
void CSGSphere::_bind_methods() {
ClassDB::bind_method(D_METHOD("set_radius", "radius"), &CSGSphere::set_radius);
ClassDB::bind_method(D_METHOD("get_radius"), &CSGSphere::get_radius);
ClassDB::bind_method(D_METHOD("set_radial_segments", "radial_segments"), &CSGSphere::set_radial_segments);
ClassDB::bind_method(D_METHOD("get_radial_segments"), &CSGSphere::get_radial_segments);
ClassDB::bind_method(D_METHOD("set_rings", "rings"), &CSGSphere::set_rings);
ClassDB::bind_method(D_METHOD("get_rings"), &CSGSphere::get_rings);
ClassDB::bind_method(D_METHOD("set_smooth_faces", "smooth_faces"), &CSGSphere::set_smooth_faces);
ClassDB::bind_method(D_METHOD("get_smooth_faces"), &CSGSphere::get_smooth_faces);
ClassDB::bind_method(D_METHOD("set_material", "material"), &CSGSphere::set_material);
ClassDB::bind_method(D_METHOD("get_material"), &CSGSphere::get_material);
ADD_PROPERTY(PropertyInfo(Variant::REAL, "radius", PROPERTY_HINT_RANGE, "0.001,100.0,0.001"), "set_radius", "get_radius");
ADD_PROPERTY(PropertyInfo(Variant::INT, "radial_segments", PROPERTY_HINT_RANGE, "1,100,1"), "set_radial_segments", "get_radial_segments");
ADD_PROPERTY(PropertyInfo(Variant::INT, "rings", PROPERTY_HINT_RANGE, "1,100,1"), "set_rings", "get_rings");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "smooth_faces"), "set_smooth_faces", "get_smooth_faces");
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "material", PROPERTY_HINT_RESOURCE_TYPE, "SpatialMaterial,ShaderMaterial"), "set_material", "get_material");
}
void CSGSphere::set_radius(const float p_radius) {
ERR_FAIL_COND(p_radius <= 0);
radius = p_radius;
_make_dirty();
update_gizmo();
_change_notify("radius");
}
float CSGSphere::get_radius() const {
return radius;
}
void CSGSphere::set_radial_segments(const int p_radial_segments) {
radial_segments = p_radial_segments > 4 ? p_radial_segments : 4;
_make_dirty();
update_gizmo();
}
int CSGSphere::get_radial_segments() const {
return radial_segments;
}
void CSGSphere::set_rings(const int p_rings) {
rings = p_rings > 1 ? p_rings : 1;
_make_dirty();
update_gizmo();
}
int CSGSphere::get_rings() const {
return rings;
}
void CSGSphere::set_smooth_faces(const bool p_smooth_faces) {
smooth_faces = p_smooth_faces;
_make_dirty();
}
bool CSGSphere::get_smooth_faces() const {
return smooth_faces;
}
void CSGSphere::set_material(const Ref<Material> &p_material) {
material = p_material;
_make_dirty();
}
Ref<Material> CSGSphere::get_material() const {
return material;
}
CSGSphere::CSGSphere() {
// defaults
radius = 1.0;
radial_segments = 12;
rings = 6;
smooth_faces = true;
}
///////////////
CSGBrush *CSGBox::_build_brush() {
// set our bounding box
CSGBrush *brush = memnew(CSGBrush);
int face_count = 12; //it's a cube..
bool invert_val = is_inverting_faces();
Ref<Material> material = get_material();
PoolVector<Vector3> faces;
PoolVector<Vector2> uvs;
PoolVector<bool> smooth;
PoolVector<Ref<Material>> materials;
PoolVector<bool> invert;
faces.resize(face_count * 3);
uvs.resize(face_count * 3);
smooth.resize(face_count);
materials.resize(face_count);
invert.resize(face_count);
{
PoolVector<Vector3>::Write facesw = faces.write();
PoolVector<Vector2>::Write uvsw = uvs.write();
PoolVector<bool>::Write smoothw = smooth.write();
PoolVector<Ref<Material>>::Write materialsw = materials.write();
PoolVector<bool>::Write invertw = invert.write();
int face = 0;
Vector3 vertex_mul(width * 0.5, height * 0.5, depth * 0.5);
{
for (int i = 0; i < 6; i++) {
Vector3 face_points[4];
float uv_points[8] = { 0, 0, 0, 1, 1, 1, 1, 0 };
for (int j = 0; j < 4; j++) {
float v[3];
v[0] = 1.0;
v[1] = 1 - 2 * ((j >> 1) & 1);
v[2] = v[1] * (1 - 2 * (j & 1));
for (int k = 0; k < 3; k++) {
if (i < 3) {
face_points[j][(i + k) % 3] = v[k];
} else {
face_points[3 - j][(i + k) % 3] = -v[k];
}
}
}
Vector2 u[4];
for (int j = 0; j < 4; j++) {
u[j] = Vector2(uv_points[j * 2 + 0], uv_points[j * 2 + 1]);
}
//face 1
facesw[face * 3 + 0] = face_points[0] * vertex_mul;
facesw[face * 3 + 1] = face_points[1] * vertex_mul;
facesw[face * 3 + 2] = face_points[2] * vertex_mul;
uvsw[face * 3 + 0] = u[0];
uvsw[face * 3 + 1] = u[1];
uvsw[face * 3 + 2] = u[2];
smoothw[face] = false;
invertw[face] = invert_val;
materialsw[face] = material;
face++;
//face 1
facesw[face * 3 + 0] = face_points[2] * vertex_mul;
facesw[face * 3 + 1] = face_points[3] * vertex_mul;
facesw[face * 3 + 2] = face_points[0] * vertex_mul;
uvsw[face * 3 + 0] = u[2];
uvsw[face * 3 + 1] = u[3];
uvsw[face * 3 + 2] = u[0];
smoothw[face] = false;
invertw[face] = invert_val;
materialsw[face] = material;
face++;
}
}
if (face != face_count) {
ERR_PRINT("Face mismatch bug! fix code");
}
}
brush->build_from_faces(faces, uvs, smooth, materials, invert);
return brush;
}
void CSGBox::_bind_methods() {
ClassDB::bind_method(D_METHOD("set_width", "width"), &CSGBox::set_width);
ClassDB::bind_method(D_METHOD("get_width"), &CSGBox::get_width);
ClassDB::bind_method(D_METHOD("set_height", "height"), &CSGBox::set_height);
ClassDB::bind_method(D_METHOD("get_height"), &CSGBox::get_height);
ClassDB::bind_method(D_METHOD("set_depth", "depth"), &CSGBox::set_depth);
ClassDB::bind_method(D_METHOD("get_depth"), &CSGBox::get_depth);
ClassDB::bind_method(D_METHOD("set_material", "material"), &CSGBox::set_material);
ClassDB::bind_method(D_METHOD("get_material"), &CSGBox::get_material);
ADD_PROPERTY(PropertyInfo(Variant::REAL, "width", PROPERTY_HINT_EXP_RANGE, "0.001,1000.0,0.001,or_greater"), "set_width", "get_width");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "height", PROPERTY_HINT_EXP_RANGE, "0.001,1000.0,0.001,or_greater"), "set_height", "get_height");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "depth", PROPERTY_HINT_EXP_RANGE, "0.001,1000.0,0.001,or_greater"), "set_depth", "get_depth");
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "material", PROPERTY_HINT_RESOURCE_TYPE, "SpatialMaterial,ShaderMaterial"), "set_material", "get_material");
}
void CSGBox::set_width(const float p_width) {
width = p_width;
_make_dirty();
update_gizmo();
_change_notify("width");
}
float CSGBox::get_width() const {
return width;
}
void CSGBox::set_height(const float p_height) {
height = p_height;
_make_dirty();
update_gizmo();
_change_notify("height");
}
float CSGBox::get_height() const {
return height;
}
void CSGBox::set_depth(const float p_depth) {
depth = p_depth;
_make_dirty();
update_gizmo();
_change_notify("depth");
}
float CSGBox::get_depth() const {
return depth;
}
void CSGBox::set_material(const Ref<Material> &p_material) {
material = p_material;
_make_dirty();
update_gizmo();
}
Ref<Material> CSGBox::get_material() const {
return material;
}
CSGBox::CSGBox() {
// defaults
width = 2.0;
height = 2.0;
depth = 2.0;
}
///////////////
CSGBrush *CSGCylinder::_build_brush() {
// set our bounding box
CSGBrush *brush = memnew(CSGBrush);
int face_count = sides * (cone ? 1 : 2) + sides + (cone ? 0 : sides);
bool invert_val = is_inverting_faces();
Ref<Material> material = get_material();
PoolVector<Vector3> faces;
PoolVector<Vector2> uvs;
PoolVector<bool> smooth;
PoolVector<Ref<Material>> materials;
PoolVector<bool> invert;
faces.resize(face_count * 3);
uvs.resize(face_count * 3);
smooth.resize(face_count);
materials.resize(face_count);
invert.resize(face_count);
{
PoolVector<Vector3>::Write facesw = faces.write();
PoolVector<Vector2>::Write uvsw = uvs.write();
PoolVector<bool>::Write smoothw = smooth.write();
PoolVector<Ref<Material>>::Write materialsw = materials.write();
PoolVector<bool>::Write invertw = invert.write();
int face = 0;
Vector3 vertex_mul(radius, height * 0.5, radius);
{
for (int i = 0; i < sides; i++) {
float inc = float(i) / sides;
float inc_n = float((i + 1)) / sides;
float ang = inc * Math_PI * 2.0;
float ang_n = inc_n * Math_PI * 2.0;
Vector3 base(Math::cos(ang), 0, Math::sin(ang));
Vector3 base_n(Math::cos(ang_n), 0, Math::sin(ang_n));
Vector3 face_points[4] = {
base + Vector3(0, -1, 0),
base_n + Vector3(0, -1, 0),
base_n * (cone ? 0.0 : 1.0) + Vector3(0, 1, 0),
base * (cone ? 0.0 : 1.0) + Vector3(0, 1, 0),
};
Vector2 u[4] = {
Vector2(inc, 0),
Vector2(inc_n, 0),
Vector2(inc_n, 1),
Vector2(inc, 1),
};
//side face 1
facesw[face * 3 + 0] = face_points[0] * vertex_mul;
facesw[face * 3 + 1] = face_points[1] * vertex_mul;
facesw[face * 3 + 2] = face_points[2] * vertex_mul;
uvsw[face * 3 + 0] = u[0];
uvsw[face * 3 + 1] = u[1];
uvsw[face * 3 + 2] = u[2];
smoothw[face] = smooth_faces;
invertw[face] = invert_val;
materialsw[face] = material;
face++;
if (!cone) {
//side face 2
facesw[face * 3 + 0] = face_points[2] * vertex_mul;
facesw[face * 3 + 1] = face_points[3] * vertex_mul;
facesw[face * 3 + 2] = face_points[0] * vertex_mul;
uvsw[face * 3 + 0] = u[2];
uvsw[face * 3 + 1] = u[3];
uvsw[face * 3 + 2] = u[0];
smoothw[face] = smooth_faces;
invertw[face] = invert_val;
materialsw[face] = material;
face++;
}
//bottom face 1
facesw[face * 3 + 0] = face_points[1] * vertex_mul;
facesw[face * 3 + 1] = face_points[0] * vertex_mul;
facesw[face * 3 + 2] = Vector3(0, -1, 0) * vertex_mul;
uvsw[face * 3 + 0] = Vector2(face_points[1].x, face_points[1].y) * 0.5 + Vector2(0.5, 0.5);
uvsw[face * 3 + 1] = Vector2(face_points[0].x, face_points[0].y) * 0.5 + Vector2(0.5, 0.5);
uvsw[face * 3 + 2] = Vector2(0.5, 0.5);
smoothw[face] = false;
invertw[face] = invert_val;
materialsw[face] = material;
face++;
if (!cone) {
//top face 1
facesw[face * 3 + 0] = face_points[3] * vertex_mul;
facesw[face * 3 + 1] = face_points[2] * vertex_mul;
facesw[face * 3 + 2] = Vector3(0, 1, 0) * vertex_mul;
uvsw[face * 3 + 0] = Vector2(face_points[1].x, face_points[1].y) * 0.5 + Vector2(0.5, 0.5);
uvsw[face * 3 + 1] = Vector2(face_points[0].x, face_points[0].y) * 0.5 + Vector2(0.5, 0.5);
uvsw[face * 3 + 2] = Vector2(0.5, 0.5);
smoothw[face] = false;
invertw[face] = invert_val;
materialsw[face] = material;
face++;
}
}
}
if (face != face_count) {
ERR_PRINT("Face mismatch bug! fix code");
}
}
brush->build_from_faces(faces, uvs, smooth, materials, invert);
return brush;
}
void CSGCylinder::_bind_methods() {
ClassDB::bind_method(D_METHOD("set_radius", "radius"), &CSGCylinder::set_radius);
ClassDB::bind_method(D_METHOD("get_radius"), &CSGCylinder::get_radius);
ClassDB::bind_method(D_METHOD("set_height", "height"), &CSGCylinder::set_height);
ClassDB::bind_method(D_METHOD("get_height"), &CSGCylinder::get_height);
ClassDB::bind_method(D_METHOD("set_sides", "sides"), &CSGCylinder::set_sides);
ClassDB::bind_method(D_METHOD("get_sides"), &CSGCylinder::get_sides);
ClassDB::bind_method(D_METHOD("set_cone", "cone"), &CSGCylinder::set_cone);
ClassDB::bind_method(D_METHOD("is_cone"), &CSGCylinder::is_cone);
ClassDB::bind_method(D_METHOD("set_material", "material"), &CSGCylinder::set_material);
ClassDB::bind_method(D_METHOD("get_material"), &CSGCylinder::get_material);
ClassDB::bind_method(D_METHOD("set_smooth_faces", "smooth_faces"), &CSGCylinder::set_smooth_faces);
ClassDB::bind_method(D_METHOD("get_smooth_faces"), &CSGCylinder::get_smooth_faces);
ADD_PROPERTY(PropertyInfo(Variant::REAL, "radius", PROPERTY_HINT_EXP_RANGE, "0.001,1000.0,0.001,or_greater"), "set_radius", "get_radius");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "height", PROPERTY_HINT_EXP_RANGE, "0.001,1000.0,0.001,or_greater"), "set_height", "get_height");
ADD_PROPERTY(PropertyInfo(Variant::INT, "sides", PROPERTY_HINT_RANGE, "3,64,1"), "set_sides", "get_sides");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "cone"), "set_cone", "is_cone");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "smooth_faces"), "set_smooth_faces", "get_smooth_faces");
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "material", PROPERTY_HINT_RESOURCE_TYPE, "SpatialMaterial,ShaderMaterial"), "set_material", "get_material");
}
void CSGCylinder::set_radius(const float p_radius) {
radius = p_radius;
_make_dirty();
update_gizmo();
_change_notify("radius");
}
float CSGCylinder::get_radius() const {
return radius;
}
void CSGCylinder::set_height(const float p_height) {
height = p_height;
_make_dirty();
update_gizmo();
_change_notify("height");
}
float CSGCylinder::get_height() const {
return height;
}
void CSGCylinder::set_sides(const int p_sides) {
ERR_FAIL_COND(p_sides < 3);
sides = p_sides;
_make_dirty();
update_gizmo();
}
int CSGCylinder::get_sides() const {
return sides;
}
void CSGCylinder::set_cone(const bool p_cone) {
cone = p_cone;
_make_dirty();
update_gizmo();
}
bool CSGCylinder::is_cone() const {
return cone;
}
void CSGCylinder::set_smooth_faces(const bool p_smooth_faces) {
smooth_faces = p_smooth_faces;
_make_dirty();
}
bool CSGCylinder::get_smooth_faces() const {
return smooth_faces;
}
void CSGCylinder::set_material(const Ref<Material> &p_material) {
material = p_material;
_make_dirty();
}
Ref<Material> CSGCylinder::get_material() const {
return material;
}
CSGCylinder::CSGCylinder() {
// defaults
radius = 1.0;
height = 1.0;
sides = 8;
cone = false;
smooth_faces = true;
}
///////////////
CSGBrush *CSGTorus::_build_brush() {
// set our bounding box
float min_radius = inner_radius;
float max_radius = outer_radius;
if (min_radius == max_radius) {
return memnew(CSGBrush); //sorry, can't
}
if (min_radius > max_radius) {
SWAP(min_radius, max_radius);
}
float radius = (max_radius - min_radius) * 0.5;
CSGBrush *brush = memnew(CSGBrush);
int face_count = ring_sides * sides * 2;
bool invert_val = is_inverting_faces();
Ref<Material> material = get_material();
PoolVector<Vector3> faces;
PoolVector<Vector2> uvs;
PoolVector<bool> smooth;
PoolVector<Ref<Material>> materials;
PoolVector<bool> invert;
faces.resize(face_count * 3);
uvs.resize(face_count * 3);
smooth.resize(face_count);
materials.resize(face_count);
invert.resize(face_count);
{
PoolVector<Vector3>::Write facesw = faces.write();
PoolVector<Vector2>::Write uvsw = uvs.write();
PoolVector<bool>::Write smoothw = smooth.write();
PoolVector<Ref<Material>>::Write materialsw = materials.write();
PoolVector<bool>::Write invertw = invert.write();
int face = 0;
{
for (int i = 0; i < sides; i++) {
float inci = float(i) / sides;
float inci_n = float((i + 1)) / sides;
float angi = inci * Math_PI * 2.0;
float angi_n = inci_n * Math_PI * 2.0;
Vector3 normali = Vector3(Math::cos(angi), 0, Math::sin(angi));
Vector3 normali_n = Vector3(Math::cos(angi_n), 0, Math::sin(angi_n));
for (int j = 0; j < ring_sides; j++) {
float incj = float(j) / ring_sides;
float incj_n = float((j + 1)) / ring_sides;
float angj = incj * Math_PI * 2.0;
float angj_n = incj_n * Math_PI * 2.0;
Vector2 normalj = Vector2(Math::cos(angj), Math::sin(angj)) * radius + Vector2(min_radius + radius, 0);
Vector2 normalj_n = Vector2(Math::cos(angj_n), Math::sin(angj_n)) * radius + Vector2(min_radius + radius, 0);
Vector3 face_points[4] = {
Vector3(normali.x * normalj.x, normalj.y, normali.z * normalj.x),
Vector3(normali.x * normalj_n.x, normalj_n.y, normali.z * normalj_n.x),
Vector3(normali_n.x * normalj_n.x, normalj_n.y, normali_n.z * normalj_n.x),
Vector3(normali_n.x * normalj.x, normalj.y, normali_n.z * normalj.x)
};
Vector2 u[4] = {
Vector2(inci, incj),
Vector2(inci, incj_n),
Vector2(inci_n, incj_n),
Vector2(inci_n, incj),
};
// face 1
facesw[face * 3 + 0] = face_points[0];
facesw[face * 3 + 1] = face_points[2];
facesw[face * 3 + 2] = face_points[1];
uvsw[face * 3 + 0] = u[0];
uvsw[face * 3 + 1] = u[2];
uvsw[face * 3 + 2] = u[1];
smoothw[face] = smooth_faces;
invertw[face] = invert_val;
materialsw[face] = material;
face++;
//face 2
facesw[face * 3 + 0] = face_points[3];
facesw[face * 3 + 1] = face_points[2];
facesw[face * 3 + 2] = face_points[0];
uvsw[face * 3 + 0] = u[3];
uvsw[face * 3 + 1] = u[2];
uvsw[face * 3 + 2] = u[0];
smoothw[face] = smooth_faces;
invertw[face] = invert_val;
materialsw[face] = material;
face++;
}
}
}
if (face != face_count) {
ERR_PRINT("Face mismatch bug! fix code");
}
}
brush->build_from_faces(faces, uvs, smooth, materials, invert);
return brush;
}
void CSGTorus::_bind_methods() {
ClassDB::bind_method(D_METHOD("set_inner_radius", "radius"), &CSGTorus::set_inner_radius);
ClassDB::bind_method(D_METHOD("get_inner_radius"), &CSGTorus::get_inner_radius);
ClassDB::bind_method(D_METHOD("set_outer_radius", "radius"), &CSGTorus::set_outer_radius);
ClassDB::bind_method(D_METHOD("get_outer_radius"), &CSGTorus::get_outer_radius);
ClassDB::bind_method(D_METHOD("set_sides", "sides"), &CSGTorus::set_sides);
ClassDB::bind_method(D_METHOD("get_sides"), &CSGTorus::get_sides);
ClassDB::bind_method(D_METHOD("set_ring_sides", "sides"), &CSGTorus::set_ring_sides);
ClassDB::bind_method(D_METHOD("get_ring_sides"), &CSGTorus::get_ring_sides);
ClassDB::bind_method(D_METHOD("set_material", "material"), &CSGTorus::set_material);
ClassDB::bind_method(D_METHOD("get_material"), &CSGTorus::get_material);
ClassDB::bind_method(D_METHOD("set_smooth_faces", "smooth_faces"), &CSGTorus::set_smooth_faces);
ClassDB::bind_method(D_METHOD("get_smooth_faces"), &CSGTorus::get_smooth_faces);
ADD_PROPERTY(PropertyInfo(Variant::REAL, "inner_radius", PROPERTY_HINT_EXP_RANGE, "0.001,1000.0,0.001,or_greater"), "set_inner_radius", "get_inner_radius");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "outer_radius", PROPERTY_HINT_EXP_RANGE, "0.001,1000.0,0.001,or_greater"), "set_outer_radius", "get_outer_radius");
ADD_PROPERTY(PropertyInfo(Variant::INT, "sides", PROPERTY_HINT_RANGE, "3,64,1"), "set_sides", "get_sides");
ADD_PROPERTY(PropertyInfo(Variant::INT, "ring_sides", PROPERTY_HINT_RANGE, "3,64,1"), "set_ring_sides", "get_ring_sides");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "smooth_faces"), "set_smooth_faces", "get_smooth_faces");
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "material", PROPERTY_HINT_RESOURCE_TYPE, "SpatialMaterial,ShaderMaterial"), "set_material", "get_material");
}
void CSGTorus::set_inner_radius(const float p_inner_radius) {
inner_radius = p_inner_radius;
_make_dirty();
update_gizmo();
_change_notify("inner_radius");
}
float CSGTorus::get_inner_radius() const {
return inner_radius;
}
void CSGTorus::set_outer_radius(const float p_outer_radius) {
outer_radius = p_outer_radius;
_make_dirty();
update_gizmo();
_change_notify("outer_radius");
}
float CSGTorus::get_outer_radius() const {
return outer_radius;
}
void CSGTorus::set_sides(const int p_sides) {
ERR_FAIL_COND(p_sides < 3);
sides = p_sides;
_make_dirty();
update_gizmo();
}
int CSGTorus::get_sides() const {
return sides;
}
void CSGTorus::set_ring_sides(const int p_ring_sides) {
ERR_FAIL_COND(p_ring_sides < 3);
ring_sides = p_ring_sides;
_make_dirty();
update_gizmo();
}
int CSGTorus::get_ring_sides() const {
return ring_sides;
}
void CSGTorus::set_smooth_faces(const bool p_smooth_faces) {
smooth_faces = p_smooth_faces;
_make_dirty();
}
bool CSGTorus::get_smooth_faces() const {
return smooth_faces;
}
void CSGTorus::set_material(const Ref<Material> &p_material) {
material = p_material;
_make_dirty();
}
Ref<Material> CSGTorus::get_material() const {
return material;
}
CSGTorus::CSGTorus() {
// defaults
inner_radius = 2.0;
outer_radius = 3.0;
sides = 8;
ring_sides = 6;
smooth_faces = true;
}
///////////////
CSGBrush *CSGPolygon::_build_brush() {
// set our bounding box
if (polygon.size() < 3) {
return memnew(CSGBrush);
}
Vector<Point2> final_polygon = polygon;
if (Triangulate::get_area(final_polygon) > 0) {
final_polygon.invert();
}
Vector<int> triangles = Geometry::triangulate_polygon(final_polygon);
if (triangles.size() < 3) {
return memnew(CSGBrush);
}
Path *path = nullptr;
Ref<Curve3D> curve;
// get bounds for our polygon
Vector2 final_polygon_min;
Vector2 final_polygon_max;
for (int i = 0; i < final_polygon.size(); i++) {
Vector2 p = final_polygon[i];
if (i == 0) {
final_polygon_min = p;
final_polygon_max = final_polygon_min;
} else {
if (p.x < final_polygon_min.x) {
final_polygon_min.x = p.x;
}
if (p.y < final_polygon_min.y) {
final_polygon_min.y = p.y;
}
if (p.x > final_polygon_max.x) {
final_polygon_max.x = p.x;
}
if (p.y > final_polygon_max.y) {
final_polygon_max.y = p.y;
}
}
}
Vector2 final_polygon_size = final_polygon_max - final_polygon_min;
if (mode == MODE_PATH) {
if (!has_node(path_node)) {
return memnew(CSGBrush);
}
Node *n = get_node(path_node);
if (!n) {
return memnew(CSGBrush);
}
path = Object::cast_to<Path>(n);
if (!path) {
return memnew(CSGBrush);
}
if (path != path_cache) {
if (path_cache) {
path_cache->disconnect("tree_exited", this, "_path_exited");
path_cache->disconnect("curve_changed", this, "_path_changed");
path_cache = nullptr;
}
path_cache = path;
path_cache->connect("tree_exited", this, "_path_exited");
path_cache->connect("curve_changed", this, "_path_changed");
}
curve = path->get_curve();
if (curve.is_null()) {
return memnew(CSGBrush);
}
if (curve->get_baked_length() <= 0) {
return memnew(CSGBrush);
}
}
CSGBrush *brush = memnew(CSGBrush);
int face_count = 0;
switch (mode) {
case MODE_DEPTH:
face_count = triangles.size() * 2 / 3 + (final_polygon.size()) * 2;
break;
case MODE_SPIN:
face_count = (spin_degrees < 360 ? triangles.size() * 2 / 3 : 0) + (final_polygon.size()) * 2 * spin_sides;
break;
case MODE_PATH: {
float bl = curve->get_baked_length();
int splits = MAX(2, Math::ceil(bl / path_interval));
if (path_joined) {
face_count = splits * final_polygon.size() * 2;
} else {
face_count = triangles.size() * 2 / 3 + splits * final_polygon.size() * 2;
}
} break;
}
bool invert_val = is_inverting_faces();
Ref<Material> material = get_material();
PoolVector<Vector3> faces;
PoolVector<Vector2> uvs;
PoolVector<bool> smooth;
PoolVector<Ref<Material>> materials;
PoolVector<bool> invert;
faces.resize(face_count * 3);
uvs.resize(face_count * 3);
smooth.resize(face_count);
materials.resize(face_count);
invert.resize(face_count);
AABB aabb; //must be computed
{
PoolVector<Vector3>::Write facesw = faces.write();
PoolVector<Vector2>::Write uvsw = uvs.write();
PoolVector<bool>::Write smoothw = smooth.write();
PoolVector<Ref<Material>>::Write materialsw = materials.write();
PoolVector<bool>::Write invertw = invert.write();
int face = 0;
switch (mode) {
case MODE_DEPTH: {
//add triangles, front and back
for (int i = 0; i < 2; i++) {
for (int j = 0; j < triangles.size(); j += 3) {
for (int k = 0; k < 3; k++) {
int src[3] = { 0, i == 0 ? 1 : 2, i == 0 ? 2 : 1 };
Vector2 p = final_polygon[triangles[j + src[k]]];
Vector3 v = Vector3(p.x, p.y, 0);
if (i == 0) {
v.z -= depth;
}
facesw[face * 3 + k] = v;
uvsw[face * 3 + k] = (p - final_polygon_min) / final_polygon_size;
if (i == 0) {
uvsw[face * 3 + k].x = 1.0 - uvsw[face * 3 + k].x; /* flip x */
}
}
smoothw[face] = false;
materialsw[face] = material;
invertw[face] = invert_val;
face++;
}
}
//add triangles for depth
for (int i = 0; i < final_polygon.size(); i++) {
int i_n = (i + 1) % final_polygon.size();
Vector3 v[4] = {
Vector3(final_polygon[i].x, final_polygon[i].y, -depth),
Vector3(final_polygon[i_n].x, final_polygon[i_n].y, -depth),
Vector3(final_polygon[i_n].x, final_polygon[i_n].y, 0),
Vector3(final_polygon[i].x, final_polygon[i].y, 0),
};
Vector2 u[4] = {
Vector2(0, 0),
Vector2(0, 1),
Vector2(1, 1),
Vector2(1, 0)
};
// face 1
facesw[face * 3 + 0] = v[0];
facesw[face * 3 + 1] = v[1];
facesw[face * 3 + 2] = v[2];
uvsw[face * 3 + 0] = u[0];
uvsw[face * 3 + 1] = u[1];
uvsw[face * 3 + 2] = u[2];
smoothw[face] = smooth_faces;
invertw[face] = invert_val;
materialsw[face] = material;
face++;
// face 2
facesw[face * 3 + 0] = v[2];
facesw[face * 3 + 1] = v[3];
facesw[face * 3 + 2] = v[0];
uvsw[face * 3 + 0] = u[2];
uvsw[face * 3 + 1] = u[3];
uvsw[face * 3 + 2] = u[0];
smoothw[face] = smooth_faces;
invertw[face] = invert_val;
materialsw[face] = material;
face++;
}
} break;
case MODE_SPIN: {
for (int i = 0; i < spin_sides; i++) {
float inci = float(i) / spin_sides;
float inci_n = float((i + 1)) / spin_sides;
float angi = -(inci * spin_degrees / 360.0) * Math_PI * 2.0;
float angi_n = -(inci_n * spin_degrees / 360.0) * Math_PI * 2.0;
Vector3 normali = Vector3(Math::cos(angi), 0, Math::sin(angi));
Vector3 normali_n = Vector3(Math::cos(angi_n), 0, Math::sin(angi_n));
//add triangles for depth
for (int j = 0; j < final_polygon.size(); j++) {
int j_n = (j + 1) % final_polygon.size();
Vector3 v[4] = {
Vector3(normali.x * final_polygon[j].x, final_polygon[j].y, normali.z * final_polygon[j].x),
Vector3(normali.x * final_polygon[j_n].x, final_polygon[j_n].y, normali.z * final_polygon[j_n].x),
Vector3(normali_n.x * final_polygon[j_n].x, final_polygon[j_n].y, normali_n.z * final_polygon[j_n].x),
Vector3(normali_n.x * final_polygon[j].x, final_polygon[j].y, normali_n.z * final_polygon[j].x),
};
Vector2 u[4] = {
Vector2(0, 0),
Vector2(0, 1),
Vector2(1, 1),
Vector2(1, 0)
};
// face 1
facesw[face * 3 + 0] = v[0];
facesw[face * 3 + 1] = v[2];
facesw[face * 3 + 2] = v[1];
uvsw[face * 3 + 0] = u[0];
uvsw[face * 3 + 1] = u[2];
uvsw[face * 3 + 2] = u[1];
smoothw[face] = smooth_faces;
invertw[face] = invert_val;
materialsw[face] = material;
face++;
// face 2
facesw[face * 3 + 0] = v[2];
facesw[face * 3 + 1] = v[0];
facesw[face * 3 + 2] = v[3];
uvsw[face * 3 + 0] = u[2];
uvsw[face * 3 + 1] = u[0];
uvsw[face * 3 + 2] = u[3];
smoothw[face] = smooth_faces;
invertw[face] = invert_val;
materialsw[face] = material;
face++;
}
if (i == 0 && spin_degrees < 360) {
for (int j = 0; j < triangles.size(); j += 3) {
for (int k = 0; k < 3; k++) {
int src[3] = { 0, 2, 1 };
Vector2 p = final_polygon[triangles[j + src[k]]];
Vector3 v = Vector3(p.x, p.y, 0);
facesw[face * 3 + k] = v;
uvsw[face * 3 + k] = (p - final_polygon_min) / final_polygon_size;
}
smoothw[face] = false;
materialsw[face] = material;
invertw[face] = invert_val;
face++;
}
}
if (i == spin_sides - 1 && spin_degrees < 360) {
for (int j = 0; j < triangles.size(); j += 3) {
for (int k = 0; k < 3; k++) {
int src[3] = { 0, 1, 2 };
Vector2 p = final_polygon[triangles[j + src[k]]];
Vector3 v = Vector3(normali_n.x * p.x, p.y, normali_n.z * p.x);
facesw[face * 3 + k] = v;
uvsw[face * 3 + k] = (p - final_polygon_min) / final_polygon_size;
uvsw[face * 3 + k].x = 1.0 - uvsw[face * 3 + k].x; /* flip x */
}
smoothw[face] = false;
materialsw[face] = material;
invertw[face] = invert_val;
face++;
}
}
}
} break;
case MODE_PATH: {
float bl = curve->get_baked_length();
int splits = MAX(2, Math::ceil(bl / path_interval));
float u1 = 0.0;
float u2 = path_continuous_u ? 0.0 : 1.0;
Transform path_to_this;
if (!path_local) {
// center on paths origin
path_to_this = get_global_transform().affine_inverse() * path->get_global_transform();
}
Transform prev_xf;
Vector3 lookat_dir;
if (path_rotation == PATH_ROTATION_POLYGON) {
lookat_dir = (path->get_global_transform().affine_inverse() * get_global_transform()).xform(Vector3(0, 0, -1));
} else {
Vector3 p1, p2;
p1 = curve->interpolate_baked(0);
p2 = curve->interpolate_baked(0.1);
lookat_dir = (p2 - p1).normalized();
}
for (int i = 0; i <= splits; i++) {
float ofs = i * path_interval;
if (ofs > bl) {
ofs = bl;
}
if (i == splits && path_joined) {
ofs = 0.0;
}
Transform xf;
xf.origin = curve->interpolate_baked(ofs);
Vector3 local_dir;
if (path_rotation == PATH_ROTATION_PATH_FOLLOW && ofs > 0) {
//before end
Vector3 p1 = curve->interpolate_baked(ofs - 0.1);
Vector3 p2 = curve->interpolate_baked(ofs);
local_dir = (p2 - p1).normalized();
} else {
local_dir = lookat_dir;
}
xf = xf.looking_at(xf.origin + local_dir, Vector3(0, 1, 0));
Basis rot(Vector3(0, 0, 1), curve->interpolate_baked_tilt(ofs));
xf = xf * rot; //post mult
xf = path_to_this * xf;
if (i > 0) {
if (path_continuous_u) {
u1 = u2;
u2 += (prev_xf.origin - xf.origin).length();
};
//put triangles where they belong
//add triangles for depth
for (int j = 0; j < final_polygon.size(); j++) {
int j_n = (j + 1) % final_polygon.size();
Vector3 v[4] = {
prev_xf.xform(Vector3(final_polygon[j].x, final_polygon[j].y, 0)),
prev_xf.xform(Vector3(final_polygon[j_n].x, final_polygon[j_n].y, 0)),
xf.xform(Vector3(final_polygon[j_n].x, final_polygon[j_n].y, 0)),
xf.xform(Vector3(final_polygon[j].x, final_polygon[j].y, 0)),
};
Vector2 u[4] = {
Vector2(u1, 1),
Vector2(u1, 0),
Vector2(u2, 0),
Vector2(u2, 1)
};
// face 1
facesw[face * 3 + 0] = v[0];
facesw[face * 3 + 1] = v[1];
facesw[face * 3 + 2] = v[2];
uvsw[face * 3 + 0] = u[0];
uvsw[face * 3 + 1] = u[1];
uvsw[face * 3 + 2] = u[2];
smoothw[face] = smooth_faces;
invertw[face] = invert_val;
materialsw[face] = material;
face++;
// face 2
facesw[face * 3 + 0] = v[2];
facesw[face * 3 + 1] = v[3];
facesw[face * 3 + 2] = v[0];
uvsw[face * 3 + 0] = u[2];
uvsw[face * 3 + 1] = u[3];
uvsw[face * 3 + 2] = u[0];
smoothw[face] = smooth_faces;
invertw[face] = invert_val;
materialsw[face] = material;
face++;
}
}
if (i == 0 && !path_joined) {
for (int j = 0; j < triangles.size(); j += 3) {
for (int k = 0; k < 3; k++) {
int src[3] = { 0, 1, 2 };
Vector2 p = final_polygon[triangles[j + src[k]]];
Vector3 v = Vector3(p.x, p.y, 0);
facesw[face * 3 + k] = xf.xform(v);
uvsw[face * 3 + k] = (p - final_polygon_min) / final_polygon_size;
}
smoothw[face] = false;
materialsw[face] = material;
invertw[face] = invert_val;
face++;
}
}
if (i == splits && !path_joined) {
for (int j = 0; j < triangles.size(); j += 3) {
for (int k = 0; k < 3; k++) {
int src[3] = { 0, 2, 1 };
Vector2 p = final_polygon[triangles[j + src[k]]];
Vector3 v = Vector3(p.x, p.y, 0);
facesw[face * 3 + k] = xf.xform(v);
uvsw[face * 3 + k] = (p - final_polygon_min) / final_polygon_size;
uvsw[face * 3 + k].x = 1.0 - uvsw[face * 3 + k].x; /* flip x */
}
smoothw[face] = false;
materialsw[face] = material;
invertw[face] = invert_val;
face++;
}
}
prev_xf = xf;
}
} break;
}
if (face != face_count) {
ERR_PRINT("Face mismatch bug! fix code");
}
for (int i = 0; i < face_count * 3; i++) {
if (i == 0) {
aabb.position = facesw[i];
} else {
aabb.expand_to(facesw[i]);
}
// invert UVs on the Y-axis OpenGL = upside down
uvsw[i].y = 1.0 - uvsw[i].y;
}
}
brush->build_from_faces(faces, uvs, smooth, materials, invert);
return brush;
}
void CSGPolygon::_notification(int p_what) {
if (p_what == NOTIFICATION_EXIT_TREE) {
if (path_cache) {
path_cache->disconnect("tree_exited", this, "_path_exited");
path_cache->disconnect("curve_changed", this, "_path_changed");
path_cache = nullptr;
}
}
}
void CSGPolygon::_validate_property(PropertyInfo &property) const {
if (property.name.begins_with("spin") && mode != MODE_SPIN) {
property.usage = 0;
}
if (property.name.begins_with("path") && mode != MODE_PATH) {
property.usage = 0;
}
if (property.name == "depth" && mode != MODE_DEPTH) {
property.usage = 0;
}
CSGShape::_validate_property(property);
}
void CSGPolygon::_path_changed() {
_make_dirty();
update_gizmo();
}
void CSGPolygon::_path_exited() {
path_cache = nullptr;
}
void CSGPolygon::_bind_methods() {
ClassDB::bind_method(D_METHOD("set_polygon", "polygon"), &CSGPolygon::set_polygon);
ClassDB::bind_method(D_METHOD("get_polygon"), &CSGPolygon::get_polygon);
ClassDB::bind_method(D_METHOD("set_mode", "mode"), &CSGPolygon::set_mode);
ClassDB::bind_method(D_METHOD("get_mode"), &CSGPolygon::get_mode);
ClassDB::bind_method(D_METHOD("set_depth", "depth"), &CSGPolygon::set_depth);
ClassDB::bind_method(D_METHOD("get_depth"), &CSGPolygon::get_depth);
ClassDB::bind_method(D_METHOD("set_spin_degrees", "degrees"), &CSGPolygon::set_spin_degrees);
ClassDB::bind_method(D_METHOD("get_spin_degrees"), &CSGPolygon::get_spin_degrees);
ClassDB::bind_method(D_METHOD("set_spin_sides", "spin_sides"), &CSGPolygon::set_spin_sides);
ClassDB::bind_method(D_METHOD("get_spin_sides"), &CSGPolygon::get_spin_sides);
ClassDB::bind_method(D_METHOD("set_path_node", "path"), &CSGPolygon::set_path_node);
ClassDB::bind_method(D_METHOD("get_path_node"), &CSGPolygon::get_path_node);
ClassDB::bind_method(D_METHOD("set_path_interval", "distance"), &CSGPolygon::set_path_interval);
ClassDB::bind_method(D_METHOD("get_path_interval"), &CSGPolygon::get_path_interval);
ClassDB::bind_method(D_METHOD("set_path_rotation", "mode"), &CSGPolygon::set_path_rotation);
ClassDB::bind_method(D_METHOD("get_path_rotation"), &CSGPolygon::get_path_rotation);
ClassDB::bind_method(D_METHOD("set_path_local", "enable"), &CSGPolygon::set_path_local);
ClassDB::bind_method(D_METHOD("is_path_local"), &CSGPolygon::is_path_local);
ClassDB::bind_method(D_METHOD("set_path_continuous_u", "enable"), &CSGPolygon::set_path_continuous_u);
ClassDB::bind_method(D_METHOD("is_path_continuous_u"), &CSGPolygon::is_path_continuous_u);
ClassDB::bind_method(D_METHOD("set_path_joined", "enable"), &CSGPolygon::set_path_joined);
ClassDB::bind_method(D_METHOD("is_path_joined"), &CSGPolygon::is_path_joined);
ClassDB::bind_method(D_METHOD("set_material", "material"), &CSGPolygon::set_material);
ClassDB::bind_method(D_METHOD("get_material"), &CSGPolygon::get_material);
ClassDB::bind_method(D_METHOD("set_smooth_faces", "smooth_faces"), &CSGPolygon::set_smooth_faces);
ClassDB::bind_method(D_METHOD("get_smooth_faces"), &CSGPolygon::get_smooth_faces);
ClassDB::bind_method(D_METHOD("_is_editable_3d_polygon"), &CSGPolygon::_is_editable_3d_polygon);
ClassDB::bind_method(D_METHOD("_has_editable_3d_polygon_no_depth"), &CSGPolygon::_has_editable_3d_polygon_no_depth);
ClassDB::bind_method(D_METHOD("_path_exited"), &CSGPolygon::_path_exited);
ClassDB::bind_method(D_METHOD("_path_changed"), &CSGPolygon::_path_changed);
ADD_PROPERTY(PropertyInfo(Variant::POOL_VECTOR2_ARRAY, "polygon"), "set_polygon", "get_polygon");
ADD_PROPERTY(PropertyInfo(Variant::INT, "mode", PROPERTY_HINT_ENUM, "Depth,Spin,Path"), "set_mode", "get_mode");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "depth", PROPERTY_HINT_EXP_RANGE, "0.001,1000.0,0.001,or_greater"), "set_depth", "get_depth");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "spin_degrees", PROPERTY_HINT_RANGE, "1,360,0.1"), "set_spin_degrees", "get_spin_degrees");
ADD_PROPERTY(PropertyInfo(Variant::INT, "spin_sides", PROPERTY_HINT_RANGE, "3,64,1"), "set_spin_sides", "get_spin_sides");
ADD_PROPERTY(PropertyInfo(Variant::NODE_PATH, "path_node", PROPERTY_HINT_NODE_PATH_VALID_TYPES, "Path"), "set_path_node", "get_path_node");
ADD_PROPERTY(PropertyInfo(Variant::REAL, "path_interval", PROPERTY_HINT_EXP_RANGE, "0.001,1000.0,0.001,or_greater"), "set_path_interval", "get_path_interval");
ADD_PROPERTY(PropertyInfo(Variant::INT, "path_rotation", PROPERTY_HINT_ENUM, "Polygon,Path,PathFollow"), "set_path_rotation", "get_path_rotation");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "path_local"), "set_path_local", "is_path_local");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "path_continuous_u"), "set_path_continuous_u", "is_path_continuous_u");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "path_joined"), "set_path_joined", "is_path_joined");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "smooth_faces"), "set_smooth_faces", "get_smooth_faces");
ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "material", PROPERTY_HINT_RESOURCE_TYPE, "SpatialMaterial,ShaderMaterial"), "set_material", "get_material");
BIND_ENUM_CONSTANT(MODE_DEPTH);
BIND_ENUM_CONSTANT(MODE_SPIN);
BIND_ENUM_CONSTANT(MODE_PATH);
BIND_ENUM_CONSTANT(PATH_ROTATION_POLYGON);
BIND_ENUM_CONSTANT(PATH_ROTATION_PATH);
BIND_ENUM_CONSTANT(PATH_ROTATION_PATH_FOLLOW);
}
void CSGPolygon::set_polygon(const Vector<Vector2> &p_polygon) {
polygon = p_polygon;
_make_dirty();
update_gizmo();
}
Vector<Vector2> CSGPolygon::get_polygon() const {
return polygon;
}
void CSGPolygon::set_mode(Mode p_mode) {
mode = p_mode;
_make_dirty();
update_gizmo();
_change_notify();
}
CSGPolygon::Mode CSGPolygon::get_mode() const {
return mode;
}
void CSGPolygon::set_depth(const float p_depth) {
ERR_FAIL_COND(p_depth < 0.001);
depth = p_depth;
_make_dirty();
update_gizmo();
}
float CSGPolygon::get_depth() const {
return depth;
}
void CSGPolygon::set_path_continuous_u(bool p_enable) {
path_continuous_u = p_enable;
_make_dirty();
}
bool CSGPolygon::is_path_continuous_u() const {
return path_continuous_u;
}
void CSGPolygon::set_spin_degrees(const float p_spin_degrees) {
ERR_FAIL_COND(p_spin_degrees < 0.01 || p_spin_degrees > 360);
spin_degrees = p_spin_degrees;
_make_dirty();
update_gizmo();
}
float CSGPolygon::get_spin_degrees() const {
return spin_degrees;
}
void CSGPolygon::set_spin_sides(const int p_spin_sides) {
ERR_FAIL_COND(p_spin_sides < 3);
spin_sides = p_spin_sides;
_make_dirty();
update_gizmo();
}
int CSGPolygon::get_spin_sides() const {
return spin_sides;
}
void CSGPolygon::set_path_node(const NodePath &p_path) {
path_node = p_path;
_make_dirty();
update_gizmo();
}
NodePath CSGPolygon::get_path_node() const {
return path_node;
}
void CSGPolygon::set_path_interval(float p_interval) {
ERR_FAIL_COND_MSG(p_interval < 0.001, "Path interval cannot be smaller than 0.001.");
path_interval = p_interval;
_make_dirty();
update_gizmo();
}
float CSGPolygon::get_path_interval() const {
return path_interval;
}
void CSGPolygon::set_path_rotation(PathRotation p_rotation) {
path_rotation = p_rotation;
_make_dirty();
update_gizmo();
}
CSGPolygon::PathRotation CSGPolygon::get_path_rotation() const {
return path_rotation;
}
void CSGPolygon::set_path_local(bool p_enable) {
path_local = p_enable;
_make_dirty();
update_gizmo();
}
bool CSGPolygon::is_path_local() const {
return path_local;
}
void CSGPolygon::set_path_joined(bool p_enable) {
path_joined = p_enable;
_make_dirty();
update_gizmo();
}
bool CSGPolygon::is_path_joined() const {
return path_joined;
}
void CSGPolygon::set_smooth_faces(const bool p_smooth_faces) {
smooth_faces = p_smooth_faces;
_make_dirty();
}
bool CSGPolygon::get_smooth_faces() const {
return smooth_faces;
}
void CSGPolygon::set_material(const Ref<Material> &p_material) {
material = p_material;
_make_dirty();
}
Ref<Material> CSGPolygon::get_material() const {
return material;
}
bool CSGPolygon::_is_editable_3d_polygon() const {
return true;
}
bool CSGPolygon::_has_editable_3d_polygon_no_depth() const {
return true;
}
CSGPolygon::CSGPolygon() {
// defaults
mode = MODE_DEPTH;
polygon.push_back(Vector2(0, 0));
polygon.push_back(Vector2(0, 1));
polygon.push_back(Vector2(1, 1));
polygon.push_back(Vector2(1, 0));
depth = 1.0;
spin_degrees = 360;
spin_sides = 8;
smooth_faces = false;
path_interval = 1;
path_rotation = PATH_ROTATION_PATH;
path_local = false;
path_continuous_u = false;
path_joined = false;
path_cache = nullptr;
}