From cc5375a0dd4de17669e5a7eb349eac814da18de4 Mon Sep 17 00:00:00 2001 From: Dirkjan Ochtman Date: Thu, 18 Mar 2021 16:49:48 +0100 Subject: [PATCH] py: add some comments --- instant-distance-py/src/lib.rs | 31 +++++++++++++++++++++++++++++++ 1 file changed, 31 insertions(+) diff --git a/instant-distance-py/src/lib.rs b/instant-distance-py/src/lib.rs index 2adb4a9..428b156 100644 --- a/instant-distance-py/src/lib.rs +++ b/instant-distance-py/src/lib.rs @@ -21,6 +21,10 @@ fn instant_distance(_: Python, m: &PyModule) -> PyResult<()> { Ok(()) } +/// An instance of hierarchical navigable small worlds +/// +/// For now, this is specialized to only support 300-element (32-bit) float vectors +/// with a squared Euclidean distance metric. #[pyclass] struct Hnsw { inner: instant_distance::Hnsw, @@ -28,6 +32,7 @@ struct Hnsw { #[pymethods] impl Hnsw { + /// Build the index #[staticmethod] fn build(input: &PyList, config: &Config) -> PyResult<(Self, Vec)> { let points = input @@ -40,6 +45,7 @@ impl Hnsw { Ok((Self { inner }, ids)) } + /// Load an index from the given file name #[staticmethod] fn load(fname: &str) -> PyResult { let hnsw = bincode::deserialize_from::<_, instant_distance::Hnsw>( @@ -49,6 +55,7 @@ impl Hnsw { Ok(Self { inner: hnsw }) } + /// Dump the index to the given file name fn dump(&self, fname: &str) -> PyResult<()> { let f = BufWriter::with_capacity(32 * 1024 * 1024, File::create(fname)?); bincode::serialize_into(f, &self.inner) @@ -56,6 +63,13 @@ impl Hnsw { Ok(()) } + /// Search the index for points neighboring the given point + /// + /// The `search` object contains buffers used for searching. When the search completes, + /// iterate over the `Search` to get the results. The number of results should be equal + /// to the `ef_search` parameter set in the index's `config`. + /// + /// For best performance, reusing `Search` objects is recommended. fn search(&self, point: &PyAny, search: &mut Search) -> PyResult<()> { let point = FloatArray::try_from(point)?; let _ = self.inner.search(&point, &mut search.inner); @@ -64,6 +78,7 @@ impl Hnsw { } } +/// Search buffer and result set #[pyclass] struct Search { inner: instant_distance::Search, @@ -72,6 +87,7 @@ struct Search { #[pymethods] impl Search { + /// Initialize an empty search buffer #[new] fn new() -> Self { Self { @@ -87,6 +103,7 @@ impl PyIterProtocol for Search { slf } + /// Return the next closest point fn __next__(mut slf: PyRefMut) -> Option { let idx = match &slf.cur { Some(idx) => *idx, @@ -109,14 +126,24 @@ impl PyIterProtocol for Search { #[pyclass] #[derive(Copy, Clone, Default)] struct Config { + /// Number of nearest neighbors to cache during the search #[pyo3(get, set)] ef_search: usize, + /// Number of nearest neighbors to cache during construction #[pyo3(get, set)] ef_construction: usize, + /// Parameter to control the number of layers #[pyo3(get, set)] ml: f32, + /// Random seed used to randomize the order of points + /// + /// This can be useful if you want to have fully deterministic results. #[pyo3(get, set)] seed: u64, + /// Whether to use the heuristic search algorithm + /// + /// This will prioritize neighbors that are farther away from other, closer neighbors, + /// in order to get better results on clustered data points. #[pyo3(get, set)] heuristic: Option, } @@ -159,8 +186,12 @@ impl From<&Config> for instant_distance::Builder { #[pyclass] #[derive(Copy, Clone)] struct Heuristic { + /// Whether to extend the candidate set before selecting results + /// + /// This is only useful only for extremely clustered data. #[pyo3(get, set)] extend_candidates: bool, + /// Whether to keep pruned neighbors to make the neighbor set size constant #[pyo3(get, set)] keep_pruned: bool, }