Fast approximate nearest neighbor searching in Rust, based on HNSW index
Go to file
Dirkjan Ochtman 1155390973 py: extend Cargo metadata 2021-09-06 16:25:43 +02:00
.cargo Initial version of Python bindings 2021-03-18 12:59:39 +01:00
.github Upgrade to GitHub-native Dependabot 2021-04-30 09:54:12 +02:00
.vscode First cut of python bindings update 2021-05-21 17:34:33 +02:00
instant-distance Update links to new GitHub org 2021-09-06 16:23:58 +02:00
instant-distance-py py: extend Cargo metadata 2021-09-06 16:25:43 +02:00
.gitignore Ignore .DS_Store cruft 2021-05-17 13:37:11 +02:00
Cargo.toml Initial version of Python bindings 2021-03-18 12:59:39 +01:00
Makefile Add Makefile to help with testing 2021-03-18 12:59:39 +01:00
README.md Link to translation article 2021-09-06 16:25:14 +02:00
cover.svg Add files via upload 2021-04-20 11:07:03 -07:00
deny.toml Add configuration for cargo-deny 2020-12-16 10:17:29 +01:00

README.md

Cover logo

Instant Distance: fast HNSW indexing

Build status License: MIT License: Apache 2.0

Instance Distance is a fast pure-Rust implementation of the Hierarchical Navigable Small Worlds paper by Malkov and Yashunin for finding approximate nearest neighbors. This implementation powers the InstantDomainSearch.com backend services used for word vector indexing.

What it does

Instant Distance is an implementation of a fast approximate nearest neighbor search algorithm. The algorithm is used to find the closest point(s) to a given point in a set. As one example, it can be used to make simple translations.

Using the library

Rust

[dependencies]
instant-distance = "0.5.0"

Example

use instant_distance::{Builder, Search};

fn main() {
    let points = vec![Point(255, 0, 0), Point(255, 0, 0), Point(255, 0, 0)];
    let values = vec!["red", "green", "blue"];

    let map = Builder::default().build(points, values);
    let mut search = Search::default();

    let cambridge_blue = Point(163, 193, 173);

    let closest_point = map.search(&cambridge_blue, &mut search).next().unwrap();

    println!("{:?}", closest_point.value);
}

#[derive(Clone, Copy, Debug)]
struct Point(isize, isize, isize);

impl instant_distance::Point for Point {
    fn distance(&self, other: &Self) -> f32 {
        // Euclidean distance metric
        (((self.0 - other.0).pow(2) + (self.1 - other.1).pow(2) + (self.2 - other.2).pow(2)) as f32)
            .sqrt()
    }
}

Testing

Rust:

cargo t -p instant-distance --all-features

Python:

make test-python