Fast approximate nearest neighbor searching in Rust, based on HNSW index
Go to file
Nicholas Rempel bad1f757ce Add LICENSE 2021-08-18 22:05:57 +02:00
.cargo Initial version of Python bindings 2021-03-18 12:59:39 +01:00
.github Upgrade to GitHub-native Dependabot 2021-04-30 09:54:12 +02:00
.vscode First cut of python bindings update 2021-05-21 17:34:33 +02:00
instant-distance Fix clippy suggestions from Rust 1.54 2021-07-30 08:41:33 +02:00
instant-distance-py Update pyo3 requirement from 0.13.2 to 0.14.1 2021-07-05 15:22:58 +02:00
.gitignore Ignore .DS_Store cruft 2021-05-17 13:37:11 +02:00
Cargo.toml Initial version of Python bindings 2021-03-18 12:59:39 +01:00
LICENSE Add LICENSE 2021-08-18 22:05:57 +02:00
Makefile Add Makefile to help with testing 2021-03-18 12:59:39 +01:00
README.md Fix crate name in README.md 2021-06-12 07:13:53 +02:00
cover.svg Add files via upload 2021-04-20 11:07:03 -07:00
deny.toml Add configuration for cargo-deny 2020-12-16 10:17:29 +01:00

README.md

Cover logo

Instant Distance: fast HNSW indexing

Build status License: MIT License: Apache 2.0

Instance Distance is a fast pure-Rust implementation of the Hierarchical Navigable Small Worlds paper by Malkov and Yashunin for finding approximate nearest neighbors. This implementation powers the InstantDomainSearch.com backend services used for word vector indexing.

What it does

Instant Distance is an implementation of a fast approximate nearest neighbor search algorithm. The algorithm is used to find the closest point(s) to a given point in a set.

Using the library

Rust

[dependencies]
instant-distance = "0.5.0"

Example

use instant_distance::{Builder, Search};

fn main() {
    let points = vec![Point(255, 0, 0), Point(255, 0, 0), Point(255, 0, 0)];
    let values = vec!["red", "green", "blue"];

    let map = Builder::default().build(points, values);
    let mut search = Search::default();

    let cambridge_blue = Point(163, 193, 173);

    let closest_point = map.search(&cambridge_blue, &mut search).next().unwrap();

    println!("{:?}", closest_point.value);
}

#[derive(Clone, Copy, Debug)]
struct Point(isize, isize, isize);

impl instant_distance::Point for Point {
    fn distance(&self, other: &Self) -> f32 {
        // Euclidean distance metric
        (((self.0 - other.0).pow(2) + (self.1 - other.1).pow(2) + (self.2 - other.2).pow(2)) as f32)
            .sqrt()
    }
}

Testing

Rust:

cargo t -p instant-distance --all-features

Python:

make test-python