instant-epp/src/client.rs

295 lines
9.7 KiB
Rust

use std::time::Duration;
#[cfg(feature = "rustls")]
use rustls_pki_types::{CertificateDer, PrivateKeyDer};
use tracing::{debug, error};
use crate::common::NoExtension;
pub use crate::connection::Connector;
use crate::connection::EppConnection;
use crate::error::Error;
use crate::hello::{Greeting, Hello};
use crate::request::{Command, CommandWrapper, Extension, Transaction};
use crate::response::{Response, ResponseStatus};
use crate::xml;
/// An `EppClient` provides an interface to sending EPP requests to a registry
///
/// Once initialized, the EppClient instance can serialize EPP requests to XML and send them
/// to the registry and deserialize the XML responses from the registry to local types.
///
/// # Examples
///
/// ```no_run
/// # use std::collections::HashMap;
/// # use std::net::ToSocketAddrs;
/// # use std::time::Duration;
/// #
/// use instant_epp::EppClient;
/// use instant_epp::domain::DomainCheck;
/// use instant_epp::common::NoExtension;
///
/// # #[cfg(feature = "rustls")]
/// # #[tokio::main]
/// # async fn main() {
/// // Create an instance of EppClient
/// let timeout = Duration::from_secs(5);
/// let mut client = match EppClient::connect("registry_name".to_string(), ("example.com".to_owned(), 7000), None, timeout).await {
/// Ok(client) => client,
/// Err(e) => panic!("Failed to create EppClient: {}", e)
/// };
///
/// // Make a EPP Hello call to the registry
/// let greeting = client.hello().await.unwrap();
/// println!("{:?}", greeting);
///
/// // Execute an EPP Command against the registry with distinct request and response objects
/// let domain_check = DomainCheck { domains: &["eppdev.com", "eppdev.net"] };
/// let response = client.transact(&domain_check, "transaction-id").await.unwrap();
/// response
/// .res_data()
/// .unwrap()
/// .list
/// .iter()
/// .for_each(|chk| println!("Domain: {}, Available: {}", chk.inner.id, chk.inner.available));
/// # }
/// #
/// # #[cfg(not(feature = "rustls"))]
/// # fn main() {}
/// ```
///
/// The output would look like this:
///
/// ```text
/// Domain: eppdev.com, Available: 1
/// Domain: eppdev.net, Available: 1
/// ```
pub struct EppClient<C: Connector> {
connection: EppConnection<C>,
}
#[cfg(feature = "rustls")]
impl EppClient<RustlsConnector> {
/// Connect to the specified `addr` and `hostname` over TLS
///
/// The `registry` is used as a name in internal logging; `host` provides the host name
/// and port to connect to), `hostname` is sent as the TLS server name indication and
/// `identity` provides optional TLS client authentication (using) rustls as the TLS
/// implementation. The `timeout` limits the time spent on any underlying network operations.
///
/// Alternatively, use `EppClient::new()` with any established `AsyncRead + AsyncWrite + Unpin`
/// implementation.
pub async fn connect(
registry: String,
server: (String, u16),
identity: Option<(Vec<CertificateDer<'static>>, PrivateKeyDer<'static>)>,
timeout: Duration,
) -> Result<Self, Error> {
let connector = RustlsConnector::new(server, identity).await?;
Self::new(connector, registry, timeout).await
}
}
impl<C: Connector> EppClient<C> {
/// Create an `EppClient` from an already established connection
pub async fn new(connector: C, registry: String, timeout: Duration) -> Result<Self, Error> {
Ok(Self {
connection: EppConnection::new(connector, registry, timeout).await?,
})
}
/// Executes an EPP Hello call and returns the response as a `Greeting`
pub async fn hello(&mut self) -> Result<Greeting, Error> {
let xml = xml::serialize(Hello)?;
debug!("{}: hello: {}", self.connection.registry, &xml);
let response = self.connection.transact(&xml)?.await?;
debug!("{}: greeting: {}", self.connection.registry, &response);
xml::deserialize::<Greeting>(&response)
}
pub async fn transact<'c, 'e, Cmd, Ext>(
&mut self,
data: impl Into<RequestData<'c, 'e, Cmd, Ext>>,
id: &str,
) -> Result<Response<Cmd::Response, Ext::Response>, Error>
where
Cmd: Transaction<Ext> + Command + 'c,
Ext: Extension + 'e,
{
let data = data.into();
let document = CommandWrapper::new(data.command, data.extension, id);
let xml = xml::serialize(&document)?;
debug!("{}: request: {}", self.connection.registry, &xml);
let response = self.connection.transact(&xml)?.await?;
debug!("{}: response: {}", self.connection.registry, &response);
let rsp = match xml::deserialize::<Response<Cmd::Response, Ext::Response>>(&response) {
Ok(rsp) => rsp,
Err(e) => {
error!(%response, "failed to deserialize response for transaction: {e}");
return Err(e);
}
};
if rsp.result.code.is_success() {
return Ok(rsp);
}
let err = crate::error::Error::Command(Box::new(ResponseStatus {
result: rsp.result,
tr_ids: rsp.tr_ids,
}));
Err(err)
}
/// Accepts raw EPP XML and returns the raw EPP XML response to it.
/// Not recommended for direct use but sometimes can be useful for debugging
pub async fn transact_xml(&mut self, xml: &str) -> Result<String, Error> {
self.connection.transact(xml)?.await
}
/// Returns the greeting received on establishment of the connection in raw xml form
pub fn xml_greeting(&self) -> String {
String::from(&self.connection.greeting)
}
/// Returns the greeting received on establishment of the connection as an `Greeting`
pub fn greeting(&self) -> Result<Greeting, Error> {
xml::deserialize::<Greeting>(&self.connection.greeting)
}
pub async fn reconnect(&mut self) -> Result<(), Error> {
self.connection.reconnect().await
}
pub async fn shutdown(mut self) -> Result<(), Error> {
self.connection.shutdown().await
}
}
#[derive(Debug)]
pub struct RequestData<'c, 'e, C, E> {
pub(crate) command: &'c C,
pub(crate) extension: Option<&'e E>,
}
impl<'c, C: Command> From<&'c C> for RequestData<'c, 'static, C, NoExtension> {
fn from(command: &'c C) -> Self {
Self {
command,
extension: None,
}
}
}
impl<'c, 'e, C: Command, E: Extension> From<(&'c C, &'e E)> for RequestData<'c, 'e, C, E> {
fn from((command, extension): (&'c C, &'e E)) -> Self {
Self {
command,
extension: Some(extension),
}
}
}
// Manual impl because this does not depend on whether `C` and `E` are `Clone`
impl<'c, 'e, C, E> Clone for RequestData<'c, 'e, C, E> {
fn clone(&self) -> Self {
*self
}
}
// Manual impl because this does not depend on whether `C` and `E` are `Copy`
impl<'c, 'e, C, E> Copy for RequestData<'c, 'e, C, E> {}
#[cfg(feature = "rustls")]
pub use rustls_connector::RustlsConnector;
#[cfg(feature = "rustls")]
mod rustls_connector {
use std::io;
use std::sync::Arc;
use std::time::Duration;
use async_trait::async_trait;
use rustls_pki_types::{CertificateDer, PrivateKeyDer, ServerName};
use tokio::net::lookup_host;
use tokio::net::TcpStream;
use tokio_rustls::client::TlsStream;
use tokio_rustls::rustls::{ClientConfig, RootCertStore};
use tokio_rustls::TlsConnector;
use tracing::info;
use crate::connection::{self, Connector};
use crate::error::Error;
pub struct RustlsConnector {
inner: TlsConnector,
domain: ServerName<'static>,
server: (String, u16),
}
impl RustlsConnector {
pub async fn new(
server: (String, u16),
identity: Option<(Vec<CertificateDer<'static>>, PrivateKeyDer<'static>)>,
) -> Result<Self, Error> {
let mut roots = RootCertStore::empty();
for cert in rustls_native_certs::load_native_certs()? {
roots.add(cert).map_err(|err| {
Box::new(err) as Box<dyn std::error::Error + Send + Sync + 'static>
})?;
}
let builder = ClientConfig::builder().with_root_certificates(roots);
let config = match identity {
Some((certs, key)) => builder
.with_client_auth_cert(certs, key)
.map_err(|e| Error::Other(e.into()))?,
None => builder.with_no_client_auth(),
};
let domain = ServerName::try_from(server.0.as_str())
.map_err(|_| {
io::Error::new(
io::ErrorKind::InvalidInput,
format!("invalid domain: {}", server.0),
)
})?
.to_owned();
Ok(Self {
inner: TlsConnector::from(Arc::new(config)),
domain,
server,
})
}
}
#[async_trait]
impl Connector for RustlsConnector {
type Connection = TlsStream<TcpStream>;
async fn connect(&self, timeout: Duration) -> Result<Self::Connection, Error> {
info!("Connecting to server: {}:{}", self.server.0, self.server.1);
let addr = match lookup_host(&self.server).await?.next() {
Some(addr) => addr,
None => {
return Err(Error::Io(io::Error::new(
io::ErrorKind::InvalidInput,
format!("Invalid host: {}", &self.server.0),
)))
}
};
let stream = TcpStream::connect(addr).await?;
let future = self.inner.connect(self.domain.clone(), stream);
connection::timeout(timeout, future).await
}
}
}