Add Rust code to process ngram data

This commit is contained in:
Dirkjan Ochtman 2021-06-01 15:14:01 +02:00
parent cc95d39063
commit fcf24c7543
2 changed files with 261 additions and 0 deletions

View File

@ -23,6 +23,7 @@ serde = { version = "1.0.123", features = ["derive"], optional = true }
[dev-dependencies]
bencher = "0.1.5"
once_cell = "1.4"
rayon = "1.5.1"
[[bench]]
name = "bench"

View File

@ -0,0 +1,260 @@
//! Merge downloaded data to synthesize test data files
//!
//! This is not actually an example, but a tool to help recreate the required
//! data files from publicly available sources. See the README in `/data`.
use std::cmp::Reverse;
use std::fs::File;
use std::io::Write;
use std::io::{BufRead, BufReader, BufWriter};
use std::str::FromStr;
use ahash::{AHashMap as HashMap, AHashSet as HashSet};
use rayon::iter::{IntoParallelIterator, ParallelIterator};
use smartstring::alias::String as SmartString;
fn main() {
let word_list = read_word_list();
process_unigrams(&word_list);
process_bigrams(&word_list);
}
/// Read bigrams from the input file parts, filter them, and write to file
fn process_bigrams(word_list: &HashSet<SmartString>) {
let bigrams = (0..BIGRAM_PARTS)
.into_par_iter()
.map(|part| {
let fname = format!("data/cache/eng-2-{:05}-{:05}.txt", part, BIGRAM_PARTS);
let f = File::open(&fname).unwrap();
let mut reader = BufReader::with_capacity(4 * 1024 * 1024, f);
let mut ln = String::new();
let mut bigrams = HashMap::new();
loop {
// Example line: `using pozzolan 1925,1,1 1947,2,2 1948,2,2 (...)\n`
// Tab-separated line. The first column contains two words, separated by a space.
// Other columns contain a comma-separated triple of (year, match count, volume
// count).
ln.clear();
match reader.read_line(&mut ln) {
Ok(0) => break,
Err(e) => {
eprintln!("error: {:?}", e);
break;
}
_ => {}
}
let mut iter = ln.trim().split('\t');
let words = match iter.next() {
Some(word) => word,
None => continue,
};
let mut word_iter = words.split(' ');
let word1 = match word_iter.next() {
Some(word) => word,
_ => continue,
};
let word1 = match normalize(word1, word_list) {
Some(word) => word,
_ => continue,
};
let word2 = match word_iter.next() {
Some(word) if word_list.contains(word) => word,
_ => continue,
};
let word2 = match normalize(word2, word_list) {
Some(word) => word,
_ => continue,
};
let mut matches = 0;
for year_data in iter {
let mut parts = year_data.split(',');
if parts.next().unwrap() < START_YEAR {
continue;
}
matches += usize::from_str(parts.next().unwrap()).unwrap();
}
if bigrams.capacity() == 0 {
// While it's not uncommon for a part to result in 0 words, the average for
// parts that contain more than 0 is about 300k, median is about 350k. Allocate
// a decent chunk immediately to avoid too many intermediate reallocations.
bigrams.reserve(256 * 1024)
}
*bigrams.entry((word1, word2)).or_default() += matches;
}
eprintln!("extracted {} bigrams from part {}", bigrams.len(), part);
bigrams
})
.reduce(
HashMap::<(SmartString, SmartString), usize>::new,
|mut left, right| {
for (k, v) in right.into_iter() {
*left.entry(k).or_default() += v;
}
left
},
);
let f = File::create("data/en-bigrams.txt").unwrap();
let mut writer = BufWriter::with_capacity(4 * 1024 * 1024, f);
let mut bigrams = bigrams.into_iter().collect::<Vec<_>>();
bigrams.sort_by_key(|(_, freq)| Reverse(*freq));
for (i, ((left, right), freq)) in bigrams.into_iter().enumerate() {
if i == MAX_BIGRAMS {
break;
}
writeln!(writer, "{} {}\t{}", left, right, freq).unwrap();
}
}
/// Read unigrams from the input file parts, filter them, and write to file
fn process_unigrams(word_list: &HashSet<SmartString>) {
let unigrams = (0..UNIGRAM_PARTS)
.into_par_iter()
.map(|part| {
let fname = format!("data/cache/eng-1-{:05}-{:05}.txt", part, UNIGRAM_PARTS);
let f = File::open(&fname).unwrap();
let mut reader = BufReader::with_capacity(4 * 1024 * 1024, f);
let mut ln = String::new();
let mut unigrams = HashMap::with_capacity(8 * 1024);
loop {
// Example line: `ephedrins 1924,1,1 1928,1,1 1931,2,1 (...)\n`
// Tab-separated line. The first column contains the word. All later columns
// contain a comma-separated triple of (year, match count, volume count).
ln.clear();
match reader.read_line(&mut ln) {
Ok(0) => break,
Err(e) => {
eprintln!("error: {:?}", e);
break;
}
_ => {}
}
let mut iter = ln.trim().split('\t');
let word = match iter.next() {
Some(word) => word,
_ => continue,
};
let word = match normalize(word, word_list) {
Some(word) => word,
_ => continue,
};
let mut matches = 0;
for year_data in iter {
let mut parts = year_data.split(',');
if parts.next().unwrap() < START_YEAR {
continue;
}
matches += usize::from_str(parts.next().unwrap()).unwrap();
}
*unigrams.entry(word).or_default() += matches;
}
eprintln!("extracted {} unigrams from part {}", unigrams.len(), part);
unigrams
})
.reduce(HashMap::<SmartString, usize>::new, |mut left, right| {
for (k, v) in right.into_iter() {
*left.entry(k).or_default() += v;
}
left
});
let mut unigrams = unigrams.into_iter().collect::<Vec<_>>();
unigrams.sort_by_key(|(_, freq)| Reverse(*freq));
let f = File::create("data/en-unigrams.txt").unwrap();
let mut writer = BufWriter::with_capacity(4 * 1024 * 1024, f);
for (i, (word, freq)) in unigrams.into_iter().enumerate() {
if i == MAX_UNIGRAMS {
break;
}
writeln!(writer, "{}\t{}", word, freq).unwrap();
}
}
/// Read the word list and gather it up into a hash set for easy lookups
///
/// We use this to filter crappy words out of the (pretty noisy) ngram data.
/// Considering the way we want to [`normalize()`], we'll filter for
/// only-letter contents but keep any uppercase characters intact.
fn read_word_list() -> HashSet<SmartString> {
const AVERAGE_WORD_LIST_LINE_LEN: usize = 9;
let f = File::open("data/cache/eng-wordlist.txt").unwrap();
let size = f.metadata().unwrap().len() as usize;
let mut reader = BufReader::with_capacity(4 * 1024 * 1024, f);
eprintln!("read word list...");
let mut word_list = HashSet::with_capacity(size / AVERAGE_WORD_LIST_LINE_LEN);
let mut ln = String::new();
loop {
// Example line: `A\n` (`BufRead::read_line()` includes the trailing newline character)
ln.clear();
match reader.read_line(&mut ln) {
Ok(0) => break,
Err(e) => {
eprintln!("error: {:?}", e);
break;
}
_ => {}
}
let word = ln.trim_end(); // Need to remove the trailing newlines here
if word.as_bytes().iter().all(|b| b.is_ascii_alphabetic()) {
word_list.insert(word.into());
}
}
eprintln!("read {} words from word list", word_list.len());
word_list
}
/// Normalize the input word and filter it
///
/// The order in which we do things here matters quite a bit. First we trim
/// the word to get rid of surrounding whitespace (which can make the word list
/// lookup fail). Then we check if the word consists of only letters -- we
/// disregard any words with digits or punctuation for our purposes. Only then
/// we lowercase the word.
///
/// This has to happen last so that we get the correct match counts from the
/// ngram data. For example, the word 'Spain' is usually capitalized, and only
/// the capitalized version is in the word list. For our purposes though, we
/// want to operate on lowercased words, so we'll do that after filtering.
fn normalize(word: &str, list: &HashSet<SmartString>) -> Option<SmartString> {
let word = word.trim();
if !word.as_bytes().iter().all(|b| b.is_ascii_alphabetic()) || !list.contains(word) {
return None;
}
let mut word = SmartString::from(word);
word.make_ascii_lowercase();
Some(word)
}
const MAX_UNIGRAMS: usize = 256 * 1024;
const MAX_BIGRAMS: usize = 256 * 1024;
const UNIGRAM_PARTS: usize = 24;
const BIGRAM_PARTS: usize = 589;
const START_YEAR: &str = "2000";