2023-01-05 12:25:55 +00:00
/**************************************************************************/
/* rendering_device.h */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
2019-06-22 16:34:26 +00:00
2019-06-07 16:07:57 +00:00
# ifndef RENDERING_DEVICE_H
# define RENDERING_DEVICE_H
2020-11-07 22:33:38 +00:00
# include "core/object/class_db.h"
2023-12-19 11:48:02 +00:00
# include "core/object/worker_thread_pool.h"
# include "core/os/thread_safe.h"
# include "core/templates/local_vector.h"
# include "core/templates/oa_hash_map.h"
# include "core/templates/rid_owner.h"
2020-11-07 22:33:38 +00:00
# include "core/variant/typed_array.h"
2020-03-04 01:51:12 +00:00
# include "servers/display_server.h"
2023-12-19 11:48:02 +00:00
# include "servers/rendering/rendering_device.h"
# include "servers/rendering/rendering_device_commons.h"
# include "servers/rendering/rendering_device_driver.h"
2019-06-07 16:07:57 +00:00
2020-04-20 02:19:21 +00:00
class RDTextureFormat ;
class RDTextureView ;
2020-04-21 15:16:45 +00:00
class RDAttachmentFormat ;
2020-04-20 02:19:21 +00:00
class RDSamplerState ;
2020-04-21 15:16:45 +00:00
class RDVertexAttribute ;
2020-04-20 02:19:21 +00:00
class RDShaderSource ;
Implement Binary Shader Compilation
* Added an extra stage before compiling shader, which is generating a binary blob.
* On Vulkan, this allows caching the SPIRV reflection information, which is expensive to parse.
* On other (future) RenderingDevices, it allows caching converted binary data, such as DXIL or MSL.
This PR makes the shader cache include the reflection information, hence editor startup times are significantly improved.
I tested this well and it appears to work, and I added a lot of consistency checks, but because it includes writing and reading binary information, rare bugs may pop up, so be aware.
There was not much of a choice for storing the reflection information, given shaders can be a lot, take a lot of space and take time to parse.
2021-07-25 14:22:55 +00:00
class RDShaderSPIRV ;
2022-08-31 17:24:04 +00:00
class RDUniform ;
2020-04-20 02:19:21 +00:00
class RDPipelineRasterizationState ;
class RDPipelineMultisampleState ;
class RDPipelineDepthStencilState ;
class RDPipelineColorBlendState ;
2021-06-24 13:58:36 +00:00
class RDFramebufferPass ;
2021-07-09 19:48:28 +00:00
class RDPipelineSpecializationConstant ;
2020-04-20 02:19:21 +00:00
2023-12-19 11:48:02 +00:00
class RenderingDevice : public RenderingDeviceCommons {
2019-06-07 16:07:57 +00:00
GDCLASS ( RenderingDevice , Object )
2023-12-19 11:48:02 +00:00
_THREAD_SAFE_CLASS_
2019-07-28 22:58:32 +00:00
public :
2021-03-22 10:04:55 +00:00
enum DeviceFamily {
DEVICE_UNKNOWN ,
DEVICE_OPENGL ,
DEVICE_VULKAN ,
2023-12-19 11:48:02 +00:00
DEVICE_DIRECTX ,
2019-07-28 22:58:32 +00:00
} ;
enum ShaderLanguage {
SHADER_LANGUAGE_GLSL ,
SHADER_LANGUAGE_HLSL
} ;
2021-03-22 10:04:55 +00:00
enum SubgroupOperations {
SUBGROUP_BASIC_BIT = 1 ,
SUBGROUP_VOTE_BIT = 2 ,
SUBGROUP_ARITHMETIC_BIT = 4 ,
SUBGROUP_BALLOT_BIT = 8 ,
SUBGROUP_SHUFFLE_BIT = 16 ,
SUBGROUP_SHUFFLE_RELATIVE_BIT = 32 ,
SUBGROUP_CLUSTERED_BIT = 64 ,
SUBGROUP_QUAD_BIT = 128 ,
} ;
struct Capabilities {
// main device info
DeviceFamily device_family = DEVICE_UNKNOWN ;
2023-12-19 11:48:02 +00:00
uint32_t version_major = 1 ;
uint32_t version_minor = 0 ;
2021-03-22 10:04:55 +00:00
} ;
2022-02-11 11:33:54 +00:00
typedef String ( * ShaderSPIRVGetCacheKeyFunction ) ( const RenderingDevice * p_render_device ) ;
typedef Vector < uint8_t > ( * ShaderCompileToSPIRVFunction ) ( ShaderStage p_stage , const String & p_source_code , ShaderLanguage p_language , String * r_error , const RenderingDevice * p_render_device ) ;
2020-02-17 21:06:54 +00:00
typedef Vector < uint8_t > ( * ShaderCacheFunction ) ( ShaderStage p_stage , const String & p_source_code , ShaderLanguage p_language ) ;
2019-07-28 22:58:32 +00:00
2022-08-05 09:59:58 +00:00
typedef void ( * InvalidationCallback ) ( void * ) ;
2019-07-28 22:58:32 +00:00
private :
Implement Binary Shader Compilation
* Added an extra stage before compiling shader, which is generating a binary blob.
* On Vulkan, this allows caching the SPIRV reflection information, which is expensive to parse.
* On other (future) RenderingDevices, it allows caching converted binary data, such as DXIL or MSL.
This PR makes the shader cache include the reflection information, hence editor startup times are significantly improved.
I tested this well and it appears to work, and I added a lot of consistency checks, but because it includes writing and reading binary information, rare bugs may pop up, so be aware.
There was not much of a choice for storing the reflection information, given shaders can be a lot, take a lot of space and take time to parse.
2021-07-25 14:22:55 +00:00
static ShaderCompileToSPIRVFunction compile_to_spirv_function ;
2019-07-28 22:58:32 +00:00
static ShaderCacheFunction cache_function ;
Implement Binary Shader Compilation
* Added an extra stage before compiling shader, which is generating a binary blob.
* On Vulkan, this allows caching the SPIRV reflection information, which is expensive to parse.
* On other (future) RenderingDevices, it allows caching converted binary data, such as DXIL or MSL.
This PR makes the shader cache include the reflection information, hence editor startup times are significantly improved.
I tested this well and it appears to work, and I added a lot of consistency checks, but because it includes writing and reading binary information, rare bugs may pop up, so be aware.
There was not much of a choice for storing the reflection information, given shaders can be a lot, take a lot of space and take time to parse.
2021-07-25 14:22:55 +00:00
static ShaderSPIRVGetCacheKeyFunction get_spirv_cache_key_function ;
2019-06-16 02:45:24 +00:00
static RenderingDevice * singleton ;
2019-06-19 20:03:19 +00:00
2023-12-19 11:48:02 +00:00
Capabilities device_capabilities ;
RenderingDeviceDriver * driver = nullptr ; // Owned by the context.
2020-04-20 02:19:21 +00:00
protected :
static void _bind_methods ( ) ;
2023-08-02 12:45:44 +00:00
# ifndef DISABLE_DEPRECATED
RID _shader_create_from_bytecode_bind_compat_79606 ( const Vector < uint8_t > & p_shader_binary ) ;
static void _bind_compatibility_methods ( ) ;
# endif
2023-12-19 11:48:02 +00:00
/***************************/
/**** ID INFRASTRUCTURE ****/
/***************************/
2019-06-07 16:07:57 +00:00
public :
//base numeric ID for all types
enum {
2020-04-20 02:19:21 +00:00
INVALID_FORMAT_ID = - 1
2019-06-07 16:07:57 +00:00
} ;
2023-12-19 11:48:02 +00:00
enum IDType {
ID_TYPE_FRAMEBUFFER_FORMAT ,
ID_TYPE_VERTEX_FORMAT ,
ID_TYPE_DRAW_LIST ,
ID_TYPE_SPLIT_DRAW_LIST ,
ID_TYPE_COMPUTE_LIST ,
ID_TYPE_MAX ,
ID_BASE_SHIFT = 58 , // 5 bits for ID types.
ID_MASK = ( ID_BASE_SHIFT - 1 ) ,
2019-06-07 16:07:57 +00:00
} ;
2023-12-19 11:48:02 +00:00
private :
HashMap < RID , HashSet < RID > > dependency_map ; // IDs to IDs that depend on it.
HashMap < RID , HashSet < RID > > reverse_dependency_map ; // Same as above, but in reverse.
void _add_dependency ( RID p_id , RID p_depends_on ) ;
void _free_dependencies ( RID p_id ) ;
2019-06-07 16:07:57 +00:00
2021-01-26 00:52:58 +00:00
/*****************/
/**** BARRIER ****/
/*****************/
2023-12-19 11:48:02 +00:00
public :
2021-01-26 00:52:58 +00:00
enum BarrierMask {
2023-05-24 04:00:00 +00:00
BARRIER_MASK_VERTEX = 1 ,
2023-07-26 02:07:36 +00:00
BARRIER_MASK_FRAGMENT = 8 ,
BARRIER_MASK_COMPUTE = 2 ,
BARRIER_MASK_TRANSFER = 4 ,
2023-05-24 04:00:00 +00:00
2023-07-26 02:07:36 +00:00
BARRIER_MASK_RASTER = BARRIER_MASK_VERTEX | BARRIER_MASK_FRAGMENT , // 9,
BARRIER_MASK_ALL_BARRIERS = 0x7FFF , // all flags set
BARRIER_MASK_NO_BARRIER = 0x8000 ,
2021-01-26 00:52:58 +00:00
} ;
2023-12-19 11:48:02 +00:00
private :
void _full_barrier ( bool p_sync_with_draw ) ;
/***************************/
/**** BUFFER MANAGEMENT ****/
/***************************/
// These are temporary buffers on CPU memory that hold
// the information until the CPU fetches it and places it
// either on GPU buffers, or images (textures). It ensures
// updates are properly synchronized with whatever the
// GPU is doing.
//
// The logic here is as follows, only 3 of these
// blocks are created at the beginning (one per frame)
// they can each belong to a frame (assigned to current when
// used) and they can only be reused after the same frame is
// recycled.
//
// When CPU requires to allocate more than what is available,
// more of these buffers are created. If a limit is reached,
// then a fence will ensure will wait for blocks allocated
// in previous frames are processed. If that fails, then
// another fence will ensure everything pending for the current
// frame is processed (effectively stalling).
//
// See the comments in the code to understand better how it works.
struct StagingBufferBlock {
RDD : : BufferID driver_id ;
uint64_t frame_used = 0 ;
uint32_t fill_amount = 0 ;
2019-06-07 16:07:57 +00:00
} ;
2023-12-19 11:48:02 +00:00
Vector < StagingBufferBlock > staging_buffer_blocks ;
int staging_buffer_current = 0 ;
uint32_t staging_buffer_block_size = 0 ;
uint64_t staging_buffer_max_size = 0 ;
bool staging_buffer_used = false ;
2019-06-07 16:07:57 +00:00
2023-12-19 11:48:02 +00:00
Error _staging_buffer_allocate ( uint32_t p_amount , uint32_t p_required_align , uint32_t & r_alloc_offset , uint32_t & r_alloc_size , bool p_can_segment = true ) ;
Error _insert_staging_block ( ) ;
2019-06-07 16:07:57 +00:00
2023-12-19 11:48:02 +00:00
struct Buffer {
RDD : : BufferID driver_id ;
uint32_t size = 0 ;
BitField < RDD : : BufferUsageBits > usage ;
2019-06-07 16:07:57 +00:00
} ;
2023-12-19 11:48:02 +00:00
Buffer * _get_buffer_from_owner ( RID p_buffer , BitField < RDD : : PipelineStageBits > & r_stages , BitField < RDD : : BarrierAccessBits > & r_access , BitField < BarrierMask > p_post_barrier ) ;
Error _buffer_update ( Buffer * p_buffer , size_t p_offset , const uint8_t * p_data , size_t p_data_size , bool p_use_draw_command_buffer = false , uint32_t p_required_align = 32 ) ;
2019-06-07 16:07:57 +00:00
2023-12-19 11:48:02 +00:00
RID_Owner < Buffer > uniform_buffer_owner ;
RID_Owner < Buffer > storage_buffer_owner ;
RID_Owner < Buffer > texture_buffer_owner ;
2022-08-04 08:40:39 +00:00
2023-12-19 11:48:02 +00:00
public :
Error buffer_copy ( RID p_src_buffer , RID p_dst_buffer , uint32_t p_src_offset , uint32_t p_dst_offset , uint32_t p_size , BitField < BarrierMask > p_post_barrier = BARRIER_MASK_ALL_BARRIERS ) ;
Error buffer_update ( RID p_buffer , uint32_t p_offset , uint32_t p_size , const void * p_data , BitField < BarrierMask > p_post_barrier = BARRIER_MASK_ALL_BARRIERS ) ;
Error buffer_clear ( RID p_buffer , uint32_t p_offset , uint32_t p_size , BitField < BarrierMask > p_post_barrier = BARRIER_MASK_ALL_BARRIERS ) ;
Vector < uint8_t > buffer_get_data ( RID p_buffer , uint32_t p_offset = 0 , uint32_t p_size = 0 ) ; // This causes stall, only use to retrieve large buffers for saving.
/*****************/
/**** TEXTURE ****/
/*****************/
// In modern APIs, the concept of textures may not exist;
// instead there is the image (the memory pretty much,
// the view (how the memory is interpreted) and the
// sampler (how it's sampled from the shader).
//
// Texture here includes the first two stages, but
// It's possible to create textures sharing the image
// but with different views. The main use case for this
// is textures that can be read as both SRGB/Linear,
// or slices of a texture (a mipmap, a layer, a 3D slice)
// for a framebuffer to render into it.
struct Texture {
RDD : : TextureID driver_id ;
TextureType type = TEXTURE_TYPE_MAX ;
DataFormat format = DATA_FORMAT_MAX ;
TextureSamples samples = TEXTURE_SAMPLES_MAX ;
uint32_t width = 0 ;
uint32_t height = 0 ;
uint32_t depth = 0 ;
uint32_t layers = 0 ;
uint32_t mipmaps = 0 ;
uint32_t usage_flags = 0 ;
uint32_t base_mipmap = 0 ;
uint32_t base_layer = 0 ;
Vector < DataFormat > allowed_shared_formats ;
RDD : : TextureLayout layout = RDD : : TEXTURE_LAYOUT_UNDEFINED ;
uint64_t used_in_frame = 0 ;
bool used_in_transfer = false ;
bool used_in_raster = false ;
bool used_in_compute = false ;
bool is_resolve_buffer = false ;
BitField < RDD : : TextureAspectBits > read_aspect_flags ;
BitField < RDD : : TextureAspectBits > barrier_aspect_flags ;
bool bound = false ; // Bound to framebffer.
RID owner ;
2019-06-07 16:07:57 +00:00
} ;
2023-12-19 11:48:02 +00:00
RID_Owner < Texture > texture_owner ;
uint32_t texture_upload_region_size_px = 0 ;
Vector < uint8_t > _texture_get_data ( Texture * tex , uint32_t p_layer , bool p_2d = false ) ;
Error _texture_update ( RID p_texture , uint32_t p_layer , const Vector < uint8_t > & p_data , BitField < BarrierMask > p_post_barrier , bool p_use_setup_queue ) ;
public :
2019-06-07 16:07:57 +00:00
struct TextureView {
2023-12-19 11:48:02 +00:00
DataFormat format_override = DATA_FORMAT_MAX ; // // Means, use same as format.
TextureSwizzle swizzle_r = TEXTURE_SWIZZLE_R ;
TextureSwizzle swizzle_g = TEXTURE_SWIZZLE_G ;
TextureSwizzle swizzle_b = TEXTURE_SWIZZLE_B ;
TextureSwizzle swizzle_a = TEXTURE_SWIZZLE_A ;
bool operator = = ( const TextureView & p_other ) const {
if ( format_override ! = p_other . format_override ) {
2023-09-22 21:38:02 +00:00
return false ;
2023-12-19 11:48:02 +00:00
} else if ( swizzle_r ! = p_other . swizzle_r ) {
2023-09-22 21:38:02 +00:00
return false ;
2023-12-19 11:48:02 +00:00
} else if ( swizzle_g ! = p_other . swizzle_g ) {
2023-09-22 21:38:02 +00:00
return false ;
2023-12-19 11:48:02 +00:00
} else if ( swizzle_b ! = p_other . swizzle_b ) {
2023-09-22 21:38:02 +00:00
return false ;
2023-12-19 11:48:02 +00:00
} else if ( swizzle_a ! = p_other . swizzle_a ) {
2023-09-22 21:38:02 +00:00
return false ;
} else {
return true ;
}
}
2019-06-07 16:07:57 +00:00
} ;
2023-12-19 11:48:02 +00:00
RID texture_create ( const TextureFormat & p_format , const TextureView & p_view , const Vector < Vector < uint8_t > > & p_data = Vector < Vector < uint8_t > > ( ) ) ;
RID texture_create_shared ( const TextureView & p_view , RID p_with_texture ) ;
RID texture_create_from_extension ( TextureType p_type , DataFormat p_format , TextureSamples p_samples , BitField < RenderingDevice : : TextureUsageBits > p_usage , uint64_t p_image , uint64_t p_width , uint64_t p_height , uint64_t p_depth , uint64_t p_layers ) ;
RID texture_create_shared_from_slice ( const TextureView & p_view , RID p_with_texture , uint32_t p_layer , uint32_t p_mipmap , uint32_t p_mipmaps = 1 , TextureSliceType p_slice_type = TEXTURE_SLICE_2D , uint32_t p_layers = 0 ) ;
Error texture_update ( RID p_texture , uint32_t p_layer , const Vector < uint8_t > & p_data , BitField < BarrierMask > p_post_barrier = BARRIER_MASK_ALL_BARRIERS ) ;
Vector < uint8_t > texture_get_data ( RID p_texture , uint32_t p_layer ) ; // CPU textures will return immediately, while GPU textures will most likely force a flush
bool texture_is_format_supported_for_usage ( DataFormat p_format , BitField < TextureUsageBits > p_usage ) const ;
bool texture_is_shared ( RID p_texture ) ;
bool texture_is_valid ( RID p_texture ) ;
TextureFormat texture_get_format ( RID p_texture ) ;
Size2i texture_size ( RID p_texture ) ;
# ifndef DISABLE_DEPRECATED
uint64_t texture_get_native_handle ( RID p_texture ) ;
# endif
2019-08-26 20:43:58 +00:00
2023-12-19 11:48:02 +00:00
Error texture_copy ( RID p_from_texture , RID p_to_texture , const Vector3 & p_from , const Vector3 & p_to , const Vector3 & p_size , uint32_t p_src_mipmap , uint32_t p_dst_mipmap , uint32_t p_src_layer , uint32_t p_dst_layer , BitField < BarrierMask > p_post_barrier = BARRIER_MASK_ALL_BARRIERS ) ;
Error texture_clear ( RID p_texture , const Color & p_color , uint32_t p_base_mipmap , uint32_t p_mipmaps , uint32_t p_base_layer , uint32_t p_layers , BitField < BarrierMask > p_post_barrier = BARRIER_MASK_ALL_BARRIERS ) ;
Error texture_resolve_multisample ( RID p_from_texture , RID p_to_texture , BitField < BarrierMask > p_post_barrier = BARRIER_MASK_ALL_BARRIERS ) ;
2019-07-10 20:44:55 +00:00
2023-12-19 11:48:02 +00:00
/************************/
/**** DRAW LISTS (I) ****/
/************************/
2019-06-07 16:07:57 +00:00
2023-12-19 11:48:02 +00:00
enum InitialAction {
INITIAL_ACTION_CLEAR , // Start rendering and clear the whole framebuffer.
INITIAL_ACTION_CLEAR_REGION , // Start rendering and clear the framebuffer in the specified region.
INITIAL_ACTION_CLEAR_REGION_CONTINUE , // Continue rendering and clear the framebuffer in the specified region. Framebuffer must have been left in `FINAL_ACTION_CONTINUE` state as the final action previously.
INITIAL_ACTION_KEEP , // Start rendering, but keep attached color texture contents. If the framebuffer was previously used to read in a shader, this will automatically insert a layout transition.
INITIAL_ACTION_DROP , // Start rendering, ignore what is there; write above it. In general, this is the fastest option when you will be writing every single pixel and you don't need a clear color.
INITIAL_ACTION_CONTINUE , // Continue rendering. Framebuffer must have been left in `FINAL_ACTION_CONTINUE` state as the final action previously.
INITIAL_ACTION_MAX
} ;
2019-06-07 16:07:57 +00:00
2023-12-19 11:48:02 +00:00
enum FinalAction {
FINAL_ACTION_READ , // Store the texture for reading and make it read-only if it has the `TEXTURE_USAGE_SAMPLING_BIT` bit (only applies to color, depth and stencil attachments).
FINAL_ACTION_DISCARD , // Discard the texture data and make it read-only if it has the `TEXTURE_USAGE_SAMPLING_BIT` bit (only applies to color, depth and stencil attachments).
FINAL_ACTION_CONTINUE , // Store the texture and continue for further processing. Similar to `FINAL_ACTION_READ`, but does not make the texture read-only if it has the `TEXTURE_USAGE_SAMPLING_BIT` bit.
FINAL_ACTION_MAX
} ;
2019-10-03 20:39:08 +00:00
2019-06-07 16:07:57 +00:00
/*********************/
/**** FRAMEBUFFER ****/
/*********************/
2023-12-19 11:48:02 +00:00
// In modern APIs, generally, framebuffers work similar to how they
// do in OpenGL, with the exception that
// the "format" (RDD::RenderPassID) is not dynamic
// and must be more or less the same as the one
// used for the render pipelines.
2019-06-07 16:07:57 +00:00
struct AttachmentFormat {
2022-02-17 09:56:22 +00:00
enum { UNUSED_ATTACHMENT = 0xFFFFFFFF } ;
2019-06-07 16:07:57 +00:00
DataFormat format ;
TextureSamples samples ;
uint32_t usage_flags ;
2019-07-12 13:12:48 +00:00
AttachmentFormat ( ) {
2019-07-27 13:23:24 +00:00
format = DATA_FORMAT_R8G8B8A8_UNORM ;
samples = TEXTURE_SAMPLES_1 ;
usage_flags = 0 ;
2019-07-12 13:12:48 +00:00
}
2019-06-07 16:07:57 +00:00
} ;
2021-06-24 13:58:36 +00:00
struct FramebufferPass {
Vector < int32_t > color_attachments ;
Vector < int32_t > input_attachments ;
Vector < int32_t > resolve_attachments ;
Vector < int32_t > preserve_attachments ;
int32_t depth_attachment = ATTACHMENT_UNUSED ;
2022-02-11 11:33:54 +00:00
int32_t vrs_attachment = ATTACHMENT_UNUSED ; // density map for VRS, only used if supported
2021-06-24 13:58:36 +00:00
} ;
2023-12-19 11:48:02 +00:00
typedef int64_t FramebufferFormatID ;
2019-06-07 16:07:57 +00:00
2023-12-19 11:48:02 +00:00
private :
struct FramebufferFormatKey {
Vector < AttachmentFormat > attachments ;
Vector < FramebufferPass > passes ;
uint32_t view_count = 1 ;
bool operator < ( const FramebufferFormatKey & p_key ) const {
if ( view_count ! = p_key . view_count ) {
return view_count < p_key . view_count ;
}
2019-06-07 16:07:57 +00:00
2023-12-19 11:48:02 +00:00
uint32_t pass_size = passes . size ( ) ;
uint32_t key_pass_size = p_key . passes . size ( ) ;
if ( pass_size ! = key_pass_size ) {
return pass_size < key_pass_size ;
}
const FramebufferPass * pass_ptr = passes . ptr ( ) ;
const FramebufferPass * key_pass_ptr = p_key . passes . ptr ( ) ;
for ( uint32_t i = 0 ; i < pass_size ; i + + ) {
{ // Compare color attachments.
uint32_t attachment_size = pass_ptr [ i ] . color_attachments . size ( ) ;
uint32_t key_attachment_size = key_pass_ptr [ i ] . color_attachments . size ( ) ;
if ( attachment_size ! = key_attachment_size ) {
return attachment_size < key_attachment_size ;
}
const int32_t * pass_attachment_ptr = pass_ptr [ i ] . color_attachments . ptr ( ) ;
const int32_t * key_pass_attachment_ptr = key_pass_ptr [ i ] . color_attachments . ptr ( ) ;
for ( uint32_t j = 0 ; j < attachment_size ; j + + ) {
if ( pass_attachment_ptr [ j ] ! = key_pass_attachment_ptr [ j ] ) {
return pass_attachment_ptr [ j ] < key_pass_attachment_ptr [ j ] ;
}
}
}
{ // Compare input attachments.
uint32_t attachment_size = pass_ptr [ i ] . input_attachments . size ( ) ;
uint32_t key_attachment_size = key_pass_ptr [ i ] . input_attachments . size ( ) ;
if ( attachment_size ! = key_attachment_size ) {
return attachment_size < key_attachment_size ;
}
const int32_t * pass_attachment_ptr = pass_ptr [ i ] . input_attachments . ptr ( ) ;
const int32_t * key_pass_attachment_ptr = key_pass_ptr [ i ] . input_attachments . ptr ( ) ;
for ( uint32_t j = 0 ; j < attachment_size ; j + + ) {
if ( pass_attachment_ptr [ j ] ! = key_pass_attachment_ptr [ j ] ) {
return pass_attachment_ptr [ j ] < key_pass_attachment_ptr [ j ] ;
}
}
}
{ // Compare resolve attachments.
uint32_t attachment_size = pass_ptr [ i ] . resolve_attachments . size ( ) ;
uint32_t key_attachment_size = key_pass_ptr [ i ] . resolve_attachments . size ( ) ;
if ( attachment_size ! = key_attachment_size ) {
return attachment_size < key_attachment_size ;
}
const int32_t * pass_attachment_ptr = pass_ptr [ i ] . resolve_attachments . ptr ( ) ;
const int32_t * key_pass_attachment_ptr = key_pass_ptr [ i ] . resolve_attachments . ptr ( ) ;
for ( uint32_t j = 0 ; j < attachment_size ; j + + ) {
if ( pass_attachment_ptr [ j ] ! = key_pass_attachment_ptr [ j ] ) {
return pass_attachment_ptr [ j ] < key_pass_attachment_ptr [ j ] ;
}
}
}
{ // Compare preserve attachments.
uint32_t attachment_size = pass_ptr [ i ] . preserve_attachments . size ( ) ;
uint32_t key_attachment_size = key_pass_ptr [ i ] . preserve_attachments . size ( ) ;
if ( attachment_size ! = key_attachment_size ) {
return attachment_size < key_attachment_size ;
}
const int32_t * pass_attachment_ptr = pass_ptr [ i ] . preserve_attachments . ptr ( ) ;
const int32_t * key_pass_attachment_ptr = key_pass_ptr [ i ] . preserve_attachments . ptr ( ) ;
for ( uint32_t j = 0 ; j < attachment_size ; j + + ) {
if ( pass_attachment_ptr [ j ] ! = key_pass_attachment_ptr [ j ] ) {
return pass_attachment_ptr [ j ] < key_pass_attachment_ptr [ j ] ;
}
}
}
if ( pass_ptr [ i ] . depth_attachment ! = key_pass_ptr [ i ] . depth_attachment ) {
return pass_ptr [ i ] . depth_attachment < key_pass_ptr [ i ] . depth_attachment ;
}
}
2019-06-07 16:07:57 +00:00
2023-12-19 11:48:02 +00:00
int as = attachments . size ( ) ;
int bs = p_key . attachments . size ( ) ;
if ( as ! = bs ) {
return as < bs ;
}
2019-06-07 16:07:57 +00:00
2023-12-19 11:48:02 +00:00
const AttachmentFormat * af_a = attachments . ptr ( ) ;
const AttachmentFormat * af_b = p_key . attachments . ptr ( ) ;
for ( int i = 0 ; i < as ; i + + ) {
const AttachmentFormat & a = af_a [ i ] ;
const AttachmentFormat & b = af_b [ i ] ;
if ( a . format ! = b . format ) {
return a . format < b . format ;
}
if ( a . samples ! = b . samples ) {
return a . samples < b . samples ;
}
if ( a . usage_flags ! = b . usage_flags ) {
return a . usage_flags < b . usage_flags ;
}
}
2019-06-07 16:07:57 +00:00
2023-12-19 11:48:02 +00:00
return false ; // Equal.
}
2019-06-07 16:07:57 +00:00
} ;
2023-12-19 11:48:02 +00:00
RDD : : RenderPassID _render_pass_create ( const Vector < AttachmentFormat > & p_attachments , const Vector < FramebufferPass > & p_passes , InitialAction p_initial_action , FinalAction p_final_action , InitialAction p_initial_depth_action , FinalAction p_final_depth_action , uint32_t p_view_count = 1 , Vector < TextureSamples > * r_samples = nullptr ) ;
// This is a cache and it's never freed, it ensures
// IDs for a given format are always unique.
RBMap < FramebufferFormatKey , FramebufferFormatID > framebuffer_format_cache ;
struct FramebufferFormat {
const RBMap < FramebufferFormatKey , FramebufferFormatID > : : Element * E ;
RDD : : RenderPassID render_pass ; // Here for constructing shaders, never used, see section (7.2. Render Pass Compatibility from Vulkan spec).
Vector < TextureSamples > pass_samples ;
uint32_t view_count = 1 ; // Number of views.
2019-06-07 16:07:57 +00:00
} ;
2023-12-19 11:48:02 +00:00
HashMap < FramebufferFormatID , FramebufferFormat > framebuffer_formats ;
struct Framebuffer {
FramebufferFormatID format_id ;
struct VersionKey {
InitialAction initial_color_action ;
FinalAction final_color_action ;
InitialAction initial_depth_action ;
FinalAction final_depth_action ;
uint32_t view_count ;
bool operator < ( const VersionKey & p_key ) const {
if ( initial_color_action = = p_key . initial_color_action ) {
if ( final_color_action = = p_key . final_color_action ) {
if ( initial_depth_action = = p_key . initial_depth_action ) {
if ( final_depth_action = = p_key . final_depth_action ) {
return view_count < p_key . view_count ;
} else {
return final_depth_action < p_key . final_depth_action ;
}
} else {
return initial_depth_action < p_key . initial_depth_action ;
}
} else {
return final_color_action < p_key . final_color_action ;
}
} else {
return initial_color_action < p_key . initial_color_action ;
}
}
} ;
uint32_t storage_mask = 0 ;
Vector < RID > texture_ids ;
InvalidationCallback invalidated_callback = nullptr ;
void * invalidated_callback_userdata = nullptr ;
struct Version {
RDD : : FramebufferID framebuffer ;
RDD : : RenderPassID render_pass ; // This one is owned.
uint32_t subpass_count = 1 ;
} ;
RBMap < VersionKey , Version > framebuffers ;
Size2 size ;
uint32_t view_count ;
2019-06-07 16:07:57 +00:00
} ;
2023-12-19 11:48:02 +00:00
RID_Owner < Framebuffer > framebuffer_owner ;
public :
// This ID is warranted to be unique for the same formats, does not need to be freed
FramebufferFormatID framebuffer_format_create ( const Vector < AttachmentFormat > & p_format , uint32_t p_view_count = 1 ) ;
FramebufferFormatID framebuffer_format_create_multipass ( const Vector < AttachmentFormat > & p_attachments , const Vector < FramebufferPass > & p_passes , uint32_t p_view_count = 1 ) ;
FramebufferFormatID framebuffer_format_create_empty ( TextureSamples p_samples = TEXTURE_SAMPLES_1 ) ;
TextureSamples framebuffer_format_get_texture_samples ( FramebufferFormatID p_format , uint32_t p_pass = 0 ) ;
RID framebuffer_create ( const Vector < RID > & p_texture_attachments , FramebufferFormatID p_format_check = INVALID_ID , uint32_t p_view_count = 1 ) ;
RID framebuffer_create_multipass ( const Vector < RID > & p_texture_attachments , const Vector < FramebufferPass > & p_passes , FramebufferFormatID p_format_check = INVALID_ID , uint32_t p_view_count = 1 ) ;
RID framebuffer_create_empty ( const Size2i & p_size , TextureSamples p_samples = TEXTURE_SAMPLES_1 , FramebufferFormatID p_format_check = INVALID_ID ) ;
bool framebuffer_is_valid ( RID p_framebuffer ) const ;
void framebuffer_set_invalidation_callback ( RID p_framebuffer , InvalidationCallback p_callback , void * p_userdata ) ;
FramebufferFormatID framebuffer_get_format ( RID p_framebuffer ) ;
/*****************/
/**** SAMPLER ****/
/*****************/
private :
RID_Owner < RDD : : SamplerID > sampler_owner ;
public :
RID sampler_create ( const SamplerState & p_state ) ;
bool sampler_is_format_supported_for_filter ( DataFormat p_format , SamplerFilter p_sampler_filter ) const ;
2019-06-07 16:07:57 +00:00
/**********************/
/**** VERTEX ARRAY ****/
/**********************/
2023-12-19 11:48:02 +00:00
typedef int64_t VertexFormatID ;
private :
// Vertex buffers in Vulkan are similar to how
// they work in OpenGL, except that instead of
// an attribute index, there is a buffer binding
// index (for binding the buffers in real-time)
// and a location index (what is used in the shader).
//
// This mapping is done here internally, and it's not
// exposed.
RID_Owner < Buffer > vertex_buffer_owner ;
struct VertexDescriptionKey {
Vector < VertexAttribute > vertex_formats ;
bool operator = = ( const VertexDescriptionKey & p_key ) const {
int vdc = vertex_formats . size ( ) ;
int vdck = p_key . vertex_formats . size ( ) ;
if ( vdc ! = vdck ) {
return false ;
} else {
const VertexAttribute * a_ptr = vertex_formats . ptr ( ) ;
const VertexAttribute * b_ptr = p_key . vertex_formats . ptr ( ) ;
for ( int i = 0 ; i < vdc ; i + + ) {
const VertexAttribute & a = a_ptr [ i ] ;
const VertexAttribute & b = b_ptr [ i ] ;
if ( a . location ! = b . location ) {
return false ;
}
if ( a . offset ! = b . offset ) {
return false ;
}
if ( a . format ! = b . format ) {
return false ;
}
if ( a . stride ! = b . stride ) {
return false ;
}
if ( a . frequency ! = b . frequency ) {
return false ;
}
}
return true ; // They are equal.
}
}
uint32_t hash ( ) const {
int vdc = vertex_formats . size ( ) ;
uint32_t h = hash_murmur3_one_32 ( vdc ) ;
const VertexAttribute * ptr = vertex_formats . ptr ( ) ;
for ( int i = 0 ; i < vdc ; i + + ) {
const VertexAttribute & vd = ptr [ i ] ;
h = hash_murmur3_one_32 ( vd . location , h ) ;
h = hash_murmur3_one_32 ( vd . offset , h ) ;
h = hash_murmur3_one_32 ( vd . format , h ) ;
h = hash_murmur3_one_32 ( vd . stride , h ) ;
h = hash_murmur3_one_32 ( vd . frequency , h ) ;
}
return hash_fmix32 ( h ) ;
}
2019-06-07 16:07:57 +00:00
} ;
2023-12-19 11:48:02 +00:00
struct VertexDescriptionHash {
static _FORCE_INLINE_ uint32_t hash ( const VertexDescriptionKey & p_key ) {
return p_key . hash ( ) ;
2019-06-07 16:07:57 +00:00
}
} ;
2019-06-10 17:12:24 +00:00
2023-12-19 11:48:02 +00:00
// This is a cache and it's never freed, it ensures that
// ID used for a specific format always remain the same.
HashMap < VertexDescriptionKey , VertexFormatID , VertexDescriptionHash > vertex_format_cache ;
2019-06-07 16:07:57 +00:00
2023-12-19 11:48:02 +00:00
struct VertexDescriptionCache {
Vector < VertexAttribute > vertex_formats ;
RDD : : VertexFormatID driver_id ;
} ;
2019-06-07 16:07:57 +00:00
2023-12-19 11:48:02 +00:00
HashMap < VertexFormatID , VertexDescriptionCache > vertex_formats ;
struct VertexArray {
RID buffer ;
VertexFormatID description ;
int vertex_count = 0 ;
uint32_t max_instances_allowed = 0 ;
Vector < RDD : : BufferID > buffers ; // Not owned, just referenced.
Vector < uint64_t > offsets ;
2019-06-07 16:07:57 +00:00
} ;
2023-12-19 11:48:02 +00:00
RID_Owner < VertexArray > vertex_array_owner ;
struct IndexBuffer : public Buffer {
uint32_t max_index = 0 ; // Used for validation.
uint32_t index_count = 0 ;
IndexBufferFormat format = INDEX_BUFFER_FORMAT_UINT16 ;
bool supports_restart_indices = false ;
} ;
RID_Owner < IndexBuffer > index_buffer_owner ;
struct IndexArray {
uint32_t max_index = 0 ; // Remember the maximum index here too, for validation.
RDD : : BufferID driver_id ; // Not owned, inherited from index buffer.
uint32_t offset = 0 ;
uint32_t indices = 0 ;
IndexBufferFormat format = INDEX_BUFFER_FORMAT_UINT16 ;
bool supports_restart_indices = false ;
} ;
RID_Owner < IndexArray > index_array_owner ;
public :
RID vertex_buffer_create ( uint32_t p_size_bytes , const Vector < uint8_t > & p_data = Vector < uint8_t > ( ) , bool p_use_as_storage = false ) ;
// This ID is warranted to be unique for the same formats, does not need to be freed
VertexFormatID vertex_format_create ( const Vector < VertexAttribute > & p_vertex_descriptions ) ;
RID vertex_array_create ( uint32_t p_vertex_count , VertexFormatID p_vertex_format , const Vector < RID > & p_src_buffers , const Vector < uint64_t > & p_offsets = Vector < uint64_t > ( ) ) ;
RID index_buffer_create ( uint32_t p_size_indices , IndexBufferFormat p_format , const Vector < uint8_t > & p_data = Vector < uint8_t > ( ) , bool p_use_restart_indices = false ) ;
RID index_array_create ( RID p_index_buffer , uint32_t p_index_offset , uint32_t p_index_count ) ;
2019-06-07 16:07:57 +00:00
/****************/
/**** SHADER ****/
/****************/
2023-12-19 11:48:02 +00:00
// Some APIs (e.g., Vulkan) specifies a really complex behavior for the application
// in order to tell when descriptor sets need to be re-bound (or not).
// "When binding a descriptor set (see Descriptor Set Binding) to set
// number N, if the previously bound descriptor sets for sets zero
// through N-1 were all bound using compatible pipeline layouts,
// then performing this binding does not disturb any of the lower numbered sets.
// If, additionally, the previous bound descriptor set for set N was
// bound using a pipeline layout compatible for set N, then the bindings
// in sets numbered greater than N are also not disturbed."
// As a result, we need to figure out quickly when something is no longer "compatible".
// in order to avoid costly rebinds.
2021-03-22 10:04:55 +00:00
2023-12-19 11:48:02 +00:00
private :
struct UniformSetFormat {
Vector < ShaderUniform > uniforms ;
_FORCE_INLINE_ bool operator < ( const UniformSetFormat & p_other ) const {
if ( uniforms . size ( ) ! = p_other . uniforms . size ( ) ) {
return uniforms . size ( ) < p_other . uniforms . size ( ) ;
}
for ( int i = 0 ; i < uniforms . size ( ) ; i + + ) {
if ( uniforms [ i ] < p_other . uniforms [ i ] ) {
return true ;
} else if ( p_other . uniforms [ i ] < uniforms [ i ] ) {
return false ;
}
}
return false ;
}
} ;
// Always grows, never shrinks, ensuring unique IDs, but we assume
// the amount of formats will never be a problem, as the amount of shaders
// in a game is limited.
RBMap < UniformSetFormat , uint32_t > uniform_set_format_cache ;
// Shaders in Vulkan are just pretty much
// precompiled blocks of SPIR-V bytecode. They
// are most likely not really compiled to host
// assembly until a pipeline is created.
//
// When supplying the shaders, this implementation
// will use the reflection abilities of glslang to
// understand and cache everything required to
// create and use the descriptor sets (Vulkan's
// biggest pain).
//
// Additionally, hashes are created for every set
// to do quick validation and ensuring the user
// does not submit something invalid.
struct Shader : public ShaderDescription {
String name ; // Used for debug.
RDD : : ShaderID driver_id ;
uint32_t layout_hash = 0 ;
Vector < uint32_t > set_formats ;
2022-02-11 11:33:54 +00:00
} ;
2023-12-19 11:48:02 +00:00
String _shader_uniform_debug ( RID p_shader , int p_set = - 1 ) ;
RID_Owner < Shader > shader_owner ;
# ifndef DISABLE_DEPRECATED
BitField < BarrierMask > _convert_barrier_mask_81356 ( BitField < BarrierMask > p_old_barrier ) ;
void _draw_list_end_bind_compat_81356 ( BitField < BarrierMask > p_post_barrier ) ;
void _compute_list_end_bind_compat_81356 ( BitField < BarrierMask > p_post_barrier ) ;
void _barrier_bind_compat_81356 ( BitField < BarrierMask > p_from , BitField < BarrierMask > p_to ) ;
# endif
public :
ApiContextRD * get_context ( ) const { return context ; }
const Capabilities * get_device_capabilities ( ) const { return & device_capabilities ; } ;
bool has_feature ( const Features p_feature ) const ;
Vector < uint8_t > shader_compile_spirv_from_source ( ShaderStage p_stage , const String & p_source_code , ShaderLanguage p_language = SHADER_LANGUAGE_GLSL , String * r_error = nullptr , bool p_allow_cache = true ) ;
String shader_get_spirv_cache_key ( ) const ;
2019-06-07 16:07:57 +00:00
Implement Binary Shader Compilation
* Added an extra stage before compiling shader, which is generating a binary blob.
* On Vulkan, this allows caching the SPIRV reflection information, which is expensive to parse.
* On other (future) RenderingDevices, it allows caching converted binary data, such as DXIL or MSL.
This PR makes the shader cache include the reflection information, hence editor startup times are significantly improved.
I tested this well and it appears to work, and I added a lot of consistency checks, but because it includes writing and reading binary information, rare bugs may pop up, so be aware.
There was not much of a choice for storing the reflection information, given shaders can be a lot, take a lot of space and take time to parse.
2021-07-25 14:22:55 +00:00
static void shader_set_compile_to_spirv_function ( ShaderCompileToSPIRVFunction p_function ) ;
static void shader_set_spirv_cache_function ( ShaderCacheFunction p_function ) ;
static void shader_set_get_cache_key_function ( ShaderSPIRVGetCacheKeyFunction p_function ) ;
2019-07-28 22:58:32 +00:00
2023-12-19 11:48:02 +00:00
String shader_get_binary_cache_key ( ) const ;
Vector < uint8_t > shader_compile_binary_from_spirv ( const Vector < ShaderStageSPIRVData > & p_spirv , const String & p_shader_name = " " ) ;
2019-07-28 22:58:32 +00:00
2023-12-19 11:48:02 +00:00
RID shader_create_from_spirv ( const Vector < ShaderStageSPIRVData > & p_spirv , const String & p_shader_name = " " ) ;
RID shader_create_from_bytecode ( const Vector < uint8_t > & p_shader_binary , RID p_placeholder = RID ( ) ) ;
RID shader_create_placeholder ( ) ;
Implement Binary Shader Compilation
* Added an extra stage before compiling shader, which is generating a binary blob.
* On Vulkan, this allows caching the SPIRV reflection information, which is expensive to parse.
* On other (future) RenderingDevices, it allows caching converted binary data, such as DXIL or MSL.
This PR makes the shader cache include the reflection information, hence editor startup times are significantly improved.
I tested this well and it appears to work, and I added a lot of consistency checks, but because it includes writing and reading binary information, rare bugs may pop up, so be aware.
There was not much of a choice for storing the reflection information, given shaders can be a lot, take a lot of space and take time to parse.
2021-07-25 14:22:55 +00:00
2023-12-19 11:48:02 +00:00
uint64_t shader_get_vertex_input_attribute_mask ( RID p_shader ) ;
2019-06-07 16:07:57 +00:00
/******************/
/**** UNIFORMS ****/
/******************/
2020-06-25 13:33:28 +00:00
enum StorageBufferUsage {
2022-12-15 10:27:57 +00:00
STORAGE_BUFFER_USAGE_DISPATCH_INDIRECT = 1 ,
2020-06-25 13:33:28 +00:00
} ;
2023-12-19 11:48:02 +00:00
RID uniform_buffer_create ( uint32_t p_size_bytes , const Vector < uint8_t > & p_data = Vector < uint8_t > ( ) ) ;
RID storage_buffer_create ( uint32_t p_size , const Vector < uint8_t > & p_data = Vector < uint8_t > ( ) , BitField < StorageBufferUsage > p_usage = 0 ) ;
RID texture_buffer_create ( uint32_t p_size_elements , DataFormat p_format , const Vector < uint8_t > & p_data = Vector < uint8_t > ( ) ) ;
2019-06-07 16:07:57 +00:00
struct Uniform {
2023-12-19 11:48:02 +00:00
UniformType uniform_type = UNIFORM_TYPE_IMAGE ;
uint32_t binding = 0 ; // Binding index as specified in shader.
2019-06-07 16:07:57 +00:00
2022-03-06 11:57:09 +00:00
private :
2022-03-31 12:06:10 +00:00
// In most cases only one ID is provided per binding, so avoid allocating memory unnecessarily for performance.
2022-03-06 11:57:09 +00:00
RID id ; // If only one is provided, this is used.
Vector < RID > ids ; // If multiple ones are provided, this is used instead.
2019-06-07 16:07:57 +00:00
2022-03-06 11:57:09 +00:00
public :
_FORCE_INLINE_ uint32_t get_id_count ( ) const {
return ( id . is_valid ( ) ? 1 : ids . size ( ) ) ;
}
_FORCE_INLINE_ RID get_id ( uint32_t p_idx ) const {
if ( id . is_valid ( ) ) {
ERR_FAIL_COND_V ( p_idx ! = 0 , RID ( ) ) ;
return id ;
} else {
return ids [ p_idx ] ;
}
}
_FORCE_INLINE_ void set_id ( uint32_t p_idx , RID p_id ) {
if ( id . is_valid ( ) ) {
ERR_FAIL_COND ( p_idx ! = 0 ) ;
id = p_id ;
} else {
ids . write [ p_idx ] = p_id ;
}
}
_FORCE_INLINE_ void append_id ( RID p_id ) {
if ( ids . is_empty ( ) ) {
if ( id = = RID ( ) ) {
id = p_id ;
} else {
ids . push_back ( id ) ;
ids . push_back ( p_id ) ;
id = RID ( ) ;
}
} else {
ids . push_back ( p_id ) ;
}
}
_FORCE_INLINE_ void clear_ids ( ) {
id = RID ( ) ;
ids . clear ( ) ;
}
_FORCE_INLINE_ Uniform ( UniformType p_type , int p_binding , RID p_id ) {
uniform_type = p_type ;
binding = p_binding ;
id = p_id ;
}
_FORCE_INLINE_ Uniform ( UniformType p_type , int p_binding , const Vector < RID > & p_ids ) {
uniform_type = p_type ;
binding = p_binding ;
ids = p_ids ;
}
2023-12-19 11:48:02 +00:00
_FORCE_INLINE_ Uniform ( ) = default ;
2019-06-07 16:07:57 +00:00
} ;
2023-12-19 11:48:02 +00:00
private :
// This structure contains the descriptor set. They _need_ to be allocated
// for a shader (and will be erased when this shader is erased), but should
// work for other shaders as long as the hash matches. This covers using
// them in shader variants.
//
// Keep also in mind that you can share buffers between descriptor sets, so
// the above restriction is not too serious.
struct UniformSet {
uint32_t format = 0 ;
RID shader_id ;
uint32_t shader_set = 0 ;
RDD : : UniformSetID driver_id ;
struct AttachableTexture {
uint32_t bind = 0 ;
RID texture ;
} ;
2019-06-07 16:07:57 +00:00
2023-12-19 11:48:02 +00:00
LocalVector < AttachableTexture > attachable_textures ; // Used for validation.
Vector < Texture * > mutable_sampled_textures ; // Used for layout change.
Vector < Texture * > mutable_storage_textures ; // Used for layout change.
InvalidationCallback invalidated_callback = nullptr ;
void * invalidated_callback_userdata = nullptr ;
} ;
2019-06-07 16:07:57 +00:00
2023-12-19 11:48:02 +00:00
RID_Owner < UniformSet > uniform_set_owner ;
2021-07-09 19:48:28 +00:00
2023-12-19 11:48:02 +00:00
public :
RID uniform_set_create ( const Vector < Uniform > & p_uniforms , RID p_shader , uint32_t p_shader_set ) ;
bool uniform_set_is_valid ( RID p_uniform_set ) ;
void uniform_set_set_invalidation_callback ( RID p_uniform_set , InvalidationCallback p_callback , void * p_userdata ) ;
/*******************/
/**** PIPELINES ****/
/*******************/
// Render pipeline contains ALL the
// information required for drawing.
// This includes all the rasterizer state
// as well as shader used, framebuffer format,
// etc.
// While the pipeline is just a single object
// (VkPipeline) a lot of values are also saved
// here to do validation (vulkan does none by
// default) and warn the user if something
// was not supplied as intended.
private :
struct RenderPipeline {
// Cached values for validation.
# ifdef DEBUG_ENABLED
struct Validation {
FramebufferFormatID framebuffer_format ;
uint32_t render_pass = 0 ;
uint32_t dynamic_state = 0 ;
VertexFormatID vertex_format ;
bool uses_restart_indices = false ;
uint32_t primitive_minimum = 0 ;
uint32_t primitive_divisor = 0 ;
} validation ;
# endif
// Actual pipeline.
RID shader ;
RDD : : ShaderID shader_driver_id ;
uint32_t shader_layout_hash = 0 ;
Vector < uint32_t > set_formats ;
RDD : : PipelineID driver_id ;
uint32_t push_constant_size = 0 ;
2021-07-09 19:48:28 +00:00
} ;
2023-12-19 11:48:02 +00:00
RID_Owner < RenderPipeline > render_pipeline_owner ;
bool pipelines_cache_enabled = false ;
size_t pipelines_cache_size = 0 ;
String pipelines_cache_file_path ;
WorkerThreadPool : : TaskID pipelines_cache_save_task = WorkerThreadPool : : INVALID_TASK_ID ;
Vector < uint8_t > _load_pipeline_cache ( ) ;
void _update_pipeline_cache ( bool p_closing = false ) ;
static void _save_pipeline_cache ( void * p_data ) ;
struct ComputePipeline {
RID shader ;
RDD : : ShaderID shader_driver_id ;
uint32_t shader_layout_hash = 0 ;
Vector < uint32_t > set_formats ;
RDD : : PipelineID driver_id ;
uint32_t push_constant_size = 0 ;
uint32_t local_group_size [ 3 ] = { 0 , 0 , 0 } ;
2021-07-09 19:48:28 +00:00
} ;
2023-12-19 11:48:02 +00:00
RID_Owner < ComputePipeline > compute_pipeline_owner ;
public :
RID render_pipeline_create ( RID p_shader , FramebufferFormatID p_framebuffer_format , VertexFormatID p_vertex_format , RenderPrimitive p_render_primitive , const PipelineRasterizationState & p_rasterization_state , const PipelineMultisampleState & p_multisample_state , const PipelineDepthStencilState & p_depth_stencil_state , const PipelineColorBlendState & p_blend_state , BitField < PipelineDynamicStateFlags > p_dynamic_state_flags = 0 , uint32_t p_for_render_pass = 0 , const Vector < PipelineSpecializationConstant > & p_specialization_constants = Vector < PipelineSpecializationConstant > ( ) ) ;
bool render_pipeline_is_valid ( RID p_pipeline ) ;
RID compute_pipeline_create ( RID p_shader , const Vector < PipelineSpecializationConstant > & p_specialization_constants = Vector < PipelineSpecializationConstant > ( ) ) ;
bool compute_pipeline_is_valid ( RID p_pipeline ) ;
/****************/
/**** SCREEN ****/
/****************/
int screen_get_width ( DisplayServer : : WindowID p_screen = 0 ) const ;
int screen_get_height ( DisplayServer : : WindowID p_screen = 0 ) const ;
FramebufferFormatID screen_get_framebuffer_format ( ) const ;
2019-06-07 16:07:57 +00:00
/*************************/
2023-12-19 11:48:02 +00:00
/**** DRAW LISTS (II) ****/
2019-06-07 16:07:57 +00:00
/*************************/
2023-12-19 11:48:02 +00:00
typedef int64_t DrawListID ;
private :
// Draw list contains both the command buffer
// used for drawing as well as a LOT of
// information used for validation. This
// validation is cheap so most of it can
// also run in release builds.
// When using split command lists, this is
// implemented internally using secondary command
// buffers. As they can be created in threads,
// each needs its own command pool.
struct SplitDrawListAllocator {
RDD : : CommandPoolID command_pool ;
Vector < RDD : : CommandBufferID > command_buffers ; // One for each frame.
2019-06-07 16:07:57 +00:00
} ;
2023-12-19 11:48:02 +00:00
Vector < SplitDrawListAllocator > split_draw_list_allocators ;
2019-06-07 16:07:57 +00:00
2023-12-19 11:48:02 +00:00
struct DrawList {
RDD : : CommandBufferID command_buffer ; // If persistent, this is owned, otherwise it's shared with the ringbuffer.
Rect2i viewport ;
bool viewport_set = false ;
2019-06-07 16:07:57 +00:00
2023-12-19 11:48:02 +00:00
struct SetState {
uint32_t pipeline_expected_format = 0 ;
uint32_t uniform_set_format = 0 ;
RDD : : UniformSetID uniform_set_driver_id ;
RID uniform_set ;
bool bound = false ;
} ;
2019-06-07 16:07:57 +00:00
2023-12-19 11:48:02 +00:00
struct State {
SetState sets [ MAX_UNIFORM_SETS ] ;
uint32_t set_count = 0 ;
RID pipeline ;
RID pipeline_shader ;
RDD : : ShaderID pipeline_shader_driver_id ;
uint32_t pipeline_shader_layout_hash = 0 ;
RID vertex_array ;
RID index_array ;
} state ;
# ifdef DEBUG_ENABLED
struct Validation {
bool active = true ; // Means command buffer was not closed, so you can keep adding things.
// Actual render pass values.
uint32_t dynamic_state = 0 ;
VertexFormatID vertex_format = INVALID_ID ;
uint32_t vertex_array_size = 0 ;
uint32_t vertex_max_instances_allowed = 0xFFFFFFFF ;
bool index_buffer_uses_restart_indices = false ;
uint32_t index_array_size = 0 ;
uint32_t index_array_max_index = 0 ;
uint32_t index_array_offset = 0 ;
Vector < uint32_t > set_formats ;
Vector < bool > set_bound ;
Vector < RID > set_rids ;
// Last pipeline set values.
bool pipeline_active = false ;
uint32_t pipeline_dynamic_state = 0 ;
VertexFormatID pipeline_vertex_format = INVALID_ID ;
RID pipeline_shader ;
bool pipeline_uses_restart_indices = false ;
uint32_t pipeline_primitive_divisor = 0 ;
uint32_t pipeline_primitive_minimum = 0 ;
uint32_t pipeline_push_constant_size = 0 ;
bool pipeline_push_constant_supplied = false ;
} validation ;
# else
struct Validation {
uint32_t vertex_array_size = 0 ;
uint32_t index_array_size = 0 ;
uint32_t index_array_offset ;
} validation ;
# endif
2019-06-07 16:07:57 +00:00
} ;
2023-12-19 11:48:02 +00:00
DrawList * draw_list = nullptr ; // One for regular draw lists, multiple for split.
uint32_t draw_list_subpass_count = 0 ;
uint32_t draw_list_count = 0 ;
RDD : : RenderPassID draw_list_render_pass ;
RDD : : FramebufferID draw_list_vkframebuffer ;
# ifdef DEBUG_ENABLED
FramebufferFormatID draw_list_framebuffer_format = INVALID_ID ;
# endif
uint32_t draw_list_current_subpass = 0 ;
2019-06-07 16:07:57 +00:00
2023-12-19 11:48:02 +00:00
bool draw_list_split = false ;
Vector < RID > draw_list_bound_textures ;
Vector < RID > draw_list_storage_textures ;
bool draw_list_unbind_color_textures = false ;
bool draw_list_unbind_depth_textures = false ;
2019-06-07 16:07:57 +00:00
2023-12-19 11:48:02 +00:00
void _draw_list_insert_clear_region ( DrawList * p_draw_list , Framebuffer * p_framebuffer , Point2i p_viewport_offset , Point2i p_viewport_size , bool p_clear_color , const Vector < Color > & p_clear_colors , bool p_clear_depth , float p_depth , uint32_t p_stencil ) ;
Error _draw_list_setup_framebuffer ( Framebuffer * p_framebuffer , InitialAction p_initial_color_action , FinalAction p_final_color_action , InitialAction p_initial_depth_action , FinalAction p_final_depth_action , RDD : : FramebufferID * r_framebuffer , RDD : : RenderPassID * r_render_pass , uint32_t * r_subpass_count ) ;
Error _draw_list_render_pass_begin ( Framebuffer * p_framebuffer , InitialAction p_initial_color_action , FinalAction p_final_color_action , InitialAction p_initial_depth_action , FinalAction p_final_depth_action , const Vector < Color > & p_clear_colors , float p_clear_depth , uint32_t p_clear_stencil , Point2i p_viewport_offset , Point2i p_viewport_size , RDD : : FramebufferID p_framebuffer_driver_id , RDD : : RenderPassID p_render_pass , RDD : : CommandBufferID p_command_buffer , RDD : : CommandBufferType p_cmd_buffer_mode , const Vector < RID > & p_storage_textures , bool p_constrained_to_region ) ;
_FORCE_INLINE_ DrawList * _get_draw_list_ptr ( DrawListID p_id ) ;
Error _draw_list_allocate ( const Rect2i & p_viewport , uint32_t p_splits , uint32_t p_subpass ) ;
void _draw_list_free ( Rect2i * r_last_viewport = nullptr ) ;
2019-06-07 16:07:57 +00:00
2023-12-19 11:48:02 +00:00
public :
DrawListID draw_list_begin_for_screen ( DisplayServer : : WindowID p_screen = 0 , const Color & p_clear_color = Color ( ) ) ;
DrawListID draw_list_begin ( RID p_framebuffer , InitialAction p_initial_color_action , FinalAction p_final_color_action , InitialAction p_initial_depth_action , FinalAction p_final_depth_action , const Vector < Color > & p_clear_color_values = Vector < Color > ( ) , float p_clear_depth = 1.0 , uint32_t p_clear_stencil = 0 , const Rect2 & p_region = Rect2 ( ) , const Vector < RID > & p_storage_textures = Vector < RID > ( ) ) ;
Error draw_list_begin_split ( RID p_framebuffer , uint32_t p_splits , DrawListID * r_split_ids , InitialAction p_initial_color_action , FinalAction p_final_color_action , InitialAction p_initial_depth_action , FinalAction p_final_depth_action , const Vector < Color > & p_clear_color_values = Vector < Color > ( ) , float p_clear_depth = 1.0 , uint32_t p_clear_stencil = 0 , const Rect2 & p_region = Rect2 ( ) , const Vector < RID > & p_storage_textures = Vector < RID > ( ) ) ;
2019-06-07 16:07:57 +00:00
2023-12-19 11:48:02 +00:00
void draw_list_set_blend_constants ( DrawListID p_list , const Color & p_color ) ;
void draw_list_bind_render_pipeline ( DrawListID p_list , RID p_render_pipeline ) ;
void draw_list_bind_uniform_set ( DrawListID p_list , RID p_uniform_set , uint32_t p_index ) ;
void draw_list_bind_vertex_array ( DrawListID p_list , RID p_vertex_array ) ;
void draw_list_bind_index_array ( DrawListID p_list , RID p_index_array ) ;
void draw_list_set_line_width ( DrawListID p_list , float p_width ) ;
void draw_list_set_push_constant ( DrawListID p_list , const void * p_data , uint32_t p_data_size ) ;
2019-06-07 16:07:57 +00:00
2023-12-19 11:48:02 +00:00
void draw_list_draw ( DrawListID p_list , bool p_use_indices , uint32_t p_instances = 1 , uint32_t p_procedural_vertices = 0 ) ;
2019-06-07 16:07:57 +00:00
2023-12-19 11:48:02 +00:00
void draw_list_enable_scissor ( DrawListID p_list , const Rect2 & p_rect ) ;
void draw_list_disable_scissor ( DrawListID p_list ) ;
2019-06-07 16:07:57 +00:00
2023-12-19 11:48:02 +00:00
uint32_t draw_list_get_current_pass ( ) ;
DrawListID draw_list_switch_to_next_pass ( ) ;
Error draw_list_switch_to_next_pass_split ( uint32_t p_splits , DrawListID * r_split_ids ) ;
2019-06-07 16:07:57 +00:00
2023-12-19 11:48:02 +00:00
void draw_list_end ( BitField < BarrierMask > p_post_barrier = BARRIER_MASK_ALL_BARRIERS ) ;
2019-06-07 16:07:57 +00:00
2023-12-19 11:48:02 +00:00
/***********************/
/**** COMPUTE LISTS ****/
/***********************/
2019-06-16 02:45:24 +00:00
2023-12-19 11:48:02 +00:00
typedef int64_t ComputeListID ;
2019-06-07 16:07:57 +00:00
2023-12-19 11:48:02 +00:00
private :
struct ComputeList {
RDD : : CommandBufferID command_buffer ; // If persistent, this is owned, otherwise it's shared with the ringbuffer.
struct SetState {
uint32_t pipeline_expected_format = 0 ;
uint32_t uniform_set_format = 0 ;
RDD : : UniformSetID uniform_set_driver_id ;
RID uniform_set ;
bool bound = false ;
} ;
2019-06-07 16:07:57 +00:00
2023-12-19 11:48:02 +00:00
struct State {
HashSet < Texture * > textures_to_sampled_layout ;
SetState sets [ MAX_UNIFORM_SETS ] ;
uint32_t set_count = 0 ;
RID pipeline ;
RID pipeline_shader ;
RDD : : ShaderID pipeline_shader_driver_id ;
uint32_t pipeline_shader_layout_hash = 0 ;
uint32_t local_group_size [ 3 ] = { 0 , 0 , 0 } ;
bool allow_draw_overlap ;
} state ;
# ifdef DEBUG_ENABLED
struct Validation {
bool active = true ; // Means command buffer was not closed, so you can keep adding things.
Vector < uint32_t > set_formats ;
Vector < bool > set_bound ;
Vector < RID > set_rids ;
// Last pipeline set values.
bool pipeline_active = false ;
RID pipeline_shader ;
uint32_t invalid_set_from = 0 ;
uint32_t pipeline_push_constant_size = 0 ;
bool pipeline_push_constant_supplied = false ;
} validation ;
# endif
2019-06-07 16:07:57 +00:00
} ;
2023-12-19 11:48:02 +00:00
ComputeList * compute_list = nullptr ;
2019-06-07 16:07:57 +00:00
2023-12-19 11:48:02 +00:00
void _compute_list_add_barrier ( BitField < BarrierMask > p_post_barrier , BitField < RDD : : PipelineStageBits > p_stages , BitField < RDD : : BarrierAccessBits > p_access ) ;
2019-09-25 19:44:44 +00:00
2023-12-19 11:48:02 +00:00
public :
ComputeListID compute_list_begin ( bool p_allow_draw_overlap = false ) ;
void compute_list_bind_compute_pipeline ( ComputeListID p_list , RID p_compute_pipeline ) ;
void compute_list_bind_uniform_set ( ComputeListID p_list , RID p_uniform_set , uint32_t p_index ) ;
void compute_list_set_push_constant ( ComputeListID p_list , const void * p_data , uint32_t p_data_size ) ;
void compute_list_dispatch ( ComputeListID p_list , uint32_t p_x_groups , uint32_t p_y_groups , uint32_t p_z_groups ) ;
void compute_list_dispatch_threads ( ComputeListID p_list , uint32_t p_x_threads , uint32_t p_y_threads , uint32_t p_z_threads ) ;
void compute_list_dispatch_indirect ( ComputeListID p_list , RID p_buffer , uint32_t p_offset ) ;
void compute_list_add_barrier ( ComputeListID p_list ) ;
2019-09-25 19:44:44 +00:00
2023-12-19 11:48:02 +00:00
void compute_list_end ( BitField < BarrierMask > p_post_barrier = BARRIER_MASK_ALL_BARRIERS ) ;
2019-06-07 16:07:57 +00:00
2023-12-19 11:48:02 +00:00
void barrier ( BitField < BarrierMask > p_from = BARRIER_MASK_ALL_BARRIERS , BitField < BarrierMask > p_to = BARRIER_MASK_ALL_BARRIERS ) ;
void full_barrier ( ) ;
2019-06-07 16:07:57 +00:00
2023-12-19 11:48:02 +00:00
/**************************/
/**** FRAME MANAGEMENT ****/
/**************************/
2019-06-07 16:07:57 +00:00
2023-12-19 11:48:02 +00:00
// This is the frame structure. There are normally
// 3 of these (used for triple buffering), or 2
// (double buffering). They are cycled constantly.
//
// It contains two command buffers, one that is
// used internally for setting up (creating stuff)
// and another used mostly for drawing.
//
// They also contains a list of things that need
// to be disposed of when deleted, which can't
// happen immediately due to the asynchronous
// nature of the GPU. They will get deleted
// when the frame is cycled.
2019-06-07 16:07:57 +00:00
2023-12-19 11:48:02 +00:00
private :
struct Frame {
// List in usage order, from last to free to first to free.
List < Buffer > buffers_to_dispose_of ;
List < Texture > textures_to_dispose_of ;
List < Framebuffer > framebuffers_to_dispose_of ;
List < RDD : : SamplerID > samplers_to_dispose_of ;
List < Shader > shaders_to_dispose_of ;
List < UniformSet > uniform_sets_to_dispose_of ;
List < RenderPipeline > render_pipelines_to_dispose_of ;
List < ComputePipeline > compute_pipelines_to_dispose_of ;
RDD : : CommandPoolID command_pool ;
// Used for filling up newly created buffers with data provided on creation.
// Primarily intended to be accessed by worker threads.
// Ideally this cmd buffer should use an async transfer queue.
RDD : : CommandBufferID setup_command_buffer ; // Used at the beginning of every frame for set-up.
// The main cmd buffer for drawing and compute.
// Primarily intended to be used by the main thread to do most stuff.
RDD : : CommandBufferID draw_command_buffer ; // Used at the beginning of every frame for set-up.
struct Timestamp {
String description ;
uint64_t value = 0 ;
} ;
2019-06-07 16:07:57 +00:00
2023-12-19 11:48:02 +00:00
RDD : : QueryPoolID timestamp_pool ;
2019-06-10 17:12:24 +00:00
2023-12-19 11:48:02 +00:00
TightLocalVector < String > timestamp_names ;
TightLocalVector < uint64_t > timestamp_cpu_values ;
uint32_t timestamp_count = 0 ;
TightLocalVector < String > timestamp_result_names ;
TightLocalVector < uint64_t > timestamp_cpu_result_values ;
TightLocalVector < uint64_t > timestamp_result_values ;
uint32_t timestamp_result_count = 0 ;
uint64_t index = 0 ;
} ;
2019-06-07 16:07:57 +00:00
2023-12-19 11:48:02 +00:00
uint32_t max_timestamp_query_elements = 0 ;
2019-06-07 16:07:57 +00:00
2023-12-19 11:48:02 +00:00
TightLocalVector < Frame > frames ; // Frames available, for main device they are cycled (usually 3), for local devices only 1.
int frame = 0 ; // Current frame.
int frame_count = 0 ; // Total amount of frames.
uint64_t frames_drawn = 0 ;
RID local_device ;
bool local_device_processing = false ;
2019-06-07 16:07:57 +00:00
2023-12-19 11:48:02 +00:00
void _free_pending_resources ( int p_frame ) ;
2019-06-07 16:07:57 +00:00
2023-12-19 11:48:02 +00:00
ApiContextRD * context = nullptr ;
2021-06-24 13:58:36 +00:00
2023-12-19 11:48:02 +00:00
uint64_t texture_memory = 0 ;
uint64_t buffer_memory = 0 ;
2019-06-07 16:07:57 +00:00
2023-12-19 11:48:02 +00:00
void _free_internal ( RID p_id ) ;
void _flush ( bool p_current_frame ) ;
2019-09-25 19:44:44 +00:00
2023-12-19 11:48:02 +00:00
bool screen_prepared = false ;
2019-09-25 19:44:44 +00:00
2023-12-19 11:48:02 +00:00
template < class T >
void _free_rids ( T & p_owner , const char * p_type ) ;
2019-10-03 20:39:08 +00:00
2023-12-19 11:48:02 +00:00
void _finalize_command_bufers ( ) ;
void _begin_frame ( ) ;
2019-09-25 19:44:44 +00:00
2023-12-19 11:48:02 +00:00
# ifdef DEV_ENABLED
HashMap < RID , String > resource_names ;
# endif
2020-06-25 13:33:28 +00:00
2023-12-19 11:48:02 +00:00
public :
void initialize ( ApiContextRD * p_context , bool p_local_device = false ) ;
void finalize ( ) ;
2019-06-07 16:07:57 +00:00
2023-12-19 11:48:02 +00:00
void free ( RID p_id ) ;
2019-06-16 02:45:24 +00:00
2019-09-20 20:58:06 +00:00
/****************/
/**** Timing ****/
/****************/
2023-12-19 11:48:02 +00:00
void capture_timestamp ( const String & p_name ) ;
uint32_t get_captured_timestamps_count ( ) const ;
uint64_t get_captured_timestamps_frame ( ) const ;
uint64_t get_captured_timestamp_gpu_time ( uint32_t p_index ) const ;
uint64_t get_captured_timestamp_cpu_time ( uint32_t p_index ) const ;
String get_captured_timestamp_name ( uint32_t p_index ) const ;
2019-09-20 20:58:06 +00:00
2019-07-10 20:44:55 +00:00
/****************/
/**** LIMITS ****/
/****************/
2023-12-19 11:48:02 +00:00
uint64_t limit_get ( Limit p_limit ) const ;
2019-07-10 20:44:55 +00:00
2019-06-16 02:45:24 +00:00
//methods below not exposed, used by RenderingDeviceRD
2023-12-19 11:48:02 +00:00
void prepare_screen_for_drawing ( ) ;
2019-10-05 13:27:43 +00:00
2023-12-19 11:48:02 +00:00
void swap_buffers ( ) ;
2019-10-05 13:27:43 +00:00
2023-12-19 11:48:02 +00:00
uint32_t get_frame_delay ( ) const ;
2019-06-16 02:45:24 +00:00
2023-12-19 11:48:02 +00:00
void submit ( ) ;
void sync ( ) ;
2020-04-18 23:30:57 +00:00
2021-07-02 23:14:19 +00:00
enum MemoryType {
MEMORY_TEXTURES ,
MEMORY_BUFFERS ,
MEMORY_TOTAL
} ;
2023-12-19 11:48:02 +00:00
uint64_t get_memory_usage ( MemoryType p_type ) const ;
2020-05-01 12:34:23 +00:00
2023-12-19 11:48:02 +00:00
RenderingDevice * create_local_device ( ) ;
2020-04-18 23:30:57 +00:00
2023-12-19 11:48:02 +00:00
void set_resource_name ( RID p_id , const String & p_name ) ;
2021-01-24 06:21:54 +00:00
2023-12-19 11:48:02 +00:00
void draw_command_begin_label ( String p_label_name , const Color & p_color = Color ( 1 , 1 , 1 , 1 ) ) ;
void draw_command_insert_label ( String p_label_name , const Color & p_color = Color ( 1 , 1 , 1 , 1 ) ) ;
void draw_command_end_label ( ) ;
2021-01-24 06:21:54 +00:00
2023-12-19 11:48:02 +00:00
String get_device_vendor_name ( ) const ;
String get_device_name ( ) const ;
DeviceType get_device_type ( ) const ;
String get_device_api_version ( ) const ;
String get_device_pipeline_cache_uuid ( ) const ;
2021-02-02 19:51:36 +00:00
2023-12-19 11:48:02 +00:00
uint64_t get_driver_resource ( DriverResource p_resource , RID p_rid = RID ( ) , uint64_t p_index = 0 ) ;
2021-08-29 02:52:19 +00:00
2019-06-16 02:45:24 +00:00
static RenderingDevice * get_singleton ( ) ;
2020-04-20 02:19:21 +00:00
2023-12-19 11:48:02 +00:00
RenderingDevice ( ) ;
~ RenderingDevice ( ) ;
2022-12-08 10:56:08 +00:00
2023-12-19 11:48:02 +00:00
private :
/*****************/
/**** BINDERS ****/
/*****************/
2022-12-08 10:56:08 +00:00
2020-04-21 15:16:45 +00:00
RID _texture_create ( const Ref < RDTextureFormat > & p_format , const Ref < RDTextureView > & p_view , const TypedArray < PackedByteArray > & p_data = Array ( ) ) ;
2020-04-20 02:19:21 +00:00
RID _texture_create_shared ( const Ref < RDTextureView > & p_view , RID p_with_texture ) ;
2021-08-03 07:07:32 +00:00
RID _texture_create_shared_from_slice ( const Ref < RDTextureView > & p_view , RID p_with_texture , uint32_t p_layer , uint32_t p_mipmap , uint32_t p_mipmaps = 1 , TextureSliceType p_slice_type = TEXTURE_SLICE_2D ) ;
2023-07-10 12:31:27 +00:00
Ref < RDTextureFormat > _texture_get_format ( RID p_rd_texture ) ;
2020-04-20 02:19:21 +00:00
2021-06-24 13:58:36 +00:00
FramebufferFormatID _framebuffer_format_create ( const TypedArray < RDAttachmentFormat > & p_attachments , uint32_t p_view_count ) ;
FramebufferFormatID _framebuffer_format_create_multipass ( const TypedArray < RDAttachmentFormat > & p_attachments , const TypedArray < RDFramebufferPass > & p_passes , uint32_t p_view_count ) ;
RID _framebuffer_create ( const TypedArray < RID > & p_textures , FramebufferFormatID p_format_check = INVALID_ID , uint32_t p_view_count = 1 ) ;
RID _framebuffer_create_multipass ( const TypedArray < RID > & p_textures , const TypedArray < RDFramebufferPass > & p_passes , FramebufferFormatID p_format_check = INVALID_ID , uint32_t p_view_count = 1 ) ;
2023-12-19 11:48:02 +00:00
2020-04-20 02:19:21 +00:00
RID _sampler_create ( const Ref < RDSamplerState > & p_state ) ;
2023-12-19 11:48:02 +00:00
2020-04-21 15:16:45 +00:00
VertexFormatID _vertex_format_create ( const TypedArray < RDVertexAttribute > & p_vertex_formats ) ;
2022-11-11 14:45:36 +00:00
RID _vertex_array_create ( uint32_t p_vertex_count , VertexFormatID p_vertex_format , const TypedArray < RID > & p_src_buffers , const Vector < int64_t > & p_offsets = Vector < int64_t > ( ) ) ;
2020-04-20 02:19:21 +00:00
Implement Binary Shader Compilation
* Added an extra stage before compiling shader, which is generating a binary blob.
* On Vulkan, this allows caching the SPIRV reflection information, which is expensive to parse.
* On other (future) RenderingDevices, it allows caching converted binary data, such as DXIL or MSL.
This PR makes the shader cache include the reflection information, hence editor startup times are significantly improved.
I tested this well and it appears to work, and I added a lot of consistency checks, but because it includes writing and reading binary information, rare bugs may pop up, so be aware.
There was not much of a choice for storing the reflection information, given shaders can be a lot, take a lot of space and take time to parse.
2021-07-25 14:22:55 +00:00
Ref < RDShaderSPIRV > _shader_compile_spirv_from_source ( const Ref < RDShaderSource > & p_source , bool p_allow_cache = true ) ;
2021-08-16 17:51:29 +00:00
Vector < uint8_t > _shader_compile_binary_from_spirv ( const Ref < RDShaderSPIRV > & p_bytecode , const String & p_shader_name = " " ) ;
RID _shader_create_from_spirv ( const Ref < RDShaderSPIRV > & p_spirv , const String & p_shader_name = " " ) ;
2020-04-20 02:19:21 +00:00
2022-08-31 17:24:04 +00:00
RID _uniform_set_create ( const TypedArray < RDUniform > & p_uniforms , RID p_shader , uint32_t p_shader_set ) ;
2020-04-20 02:19:21 +00:00
2023-12-19 11:48:02 +00:00
Error _buffer_update_bind ( RID p_buffer , uint32_t p_offset , uint32_t p_size , const Vector < uint8_t > & p_data , BitField < BarrierMask > p_post_barrier = BARRIER_MASK_ALL_BARRIERS ) ;
2020-04-20 02:19:21 +00:00
2022-12-11 12:37:35 +00:00
RID _render_pipeline_create ( RID p_shader , FramebufferFormatID p_framebuffer_format , VertexFormatID p_vertex_format , RenderPrimitive p_render_primitive , const Ref < RDPipelineRasterizationState > & p_rasterization_state , const Ref < RDPipelineMultisampleState > & p_multisample_state , const Ref < RDPipelineDepthStencilState > & p_depth_stencil_state , const Ref < RDPipelineColorBlendState > & p_blend_state , BitField < PipelineDynamicStateFlags > p_dynamic_state_flags , uint32_t p_for_render_pass , const TypedArray < RDPipelineSpecializationConstant > & p_specialization_constants ) ;
2021-07-09 19:48:28 +00:00
RID _compute_pipeline_create ( RID p_shader , const TypedArray < RDPipelineSpecializationConstant > & p_specialization_constants ) ;
2020-04-20 02:19:21 +00:00
2023-04-24 22:21:32 +00:00
DrawListID _draw_list_begin ( RID p_framebuffer , InitialAction p_initial_color_action , FinalAction p_final_color_action , InitialAction p_initial_depth_action , FinalAction p_final_depth_action , const Vector < Color > & p_clear_color_values = Vector < Color > ( ) , float p_clear_depth = 1.0 , uint32_t p_clear_stencil = 0 , const Rect2 & p_region = Rect2 ( ) , const TypedArray < RID > & p_storage_textures = TypedArray < RID > ( ) ) ;
2020-06-25 13:33:28 +00:00
Vector < int64_t > _draw_list_begin_split ( RID p_framebuffer , uint32_t p_splits , InitialAction p_initial_color_action , FinalAction p_final_color_action , InitialAction p_initial_depth_action , FinalAction p_final_depth_action , const Vector < Color > & p_clear_color_values = Vector < Color > ( ) , float p_clear_depth = 1.0 , uint32_t p_clear_stencil = 0 , const Rect2 & p_region = Rect2 ( ) , const TypedArray < RID > & p_storage_textures = TypedArray < RID > ( ) ) ;
2020-04-20 02:19:21 +00:00
void _draw_list_set_push_constant ( DrawListID p_list , const Vector < uint8_t > & p_data , uint32_t p_data_size ) ;
void _compute_list_set_push_constant ( ComputeListID p_list , const Vector < uint8_t > & p_data , uint32_t p_data_size ) ;
2021-06-24 13:58:36 +00:00
Vector < int64_t > _draw_list_switch_to_next_pass_split ( uint32_t p_splits ) ;
2019-06-07 16:07:57 +00:00
} ;
2021-12-10 16:01:51 +00:00
VARIANT_ENUM_CAST ( RenderingDevice : : DeviceType )
2021-08-29 02:52:19 +00:00
VARIANT_ENUM_CAST ( RenderingDevice : : DriverResource )
2020-04-20 02:19:21 +00:00
VARIANT_ENUM_CAST ( RenderingDevice : : ShaderStage )
VARIANT_ENUM_CAST ( RenderingDevice : : ShaderLanguage )
VARIANT_ENUM_CAST ( RenderingDevice : : CompareOperator )
VARIANT_ENUM_CAST ( RenderingDevice : : DataFormat )
2022-11-21 08:28:14 +00:00
VARIANT_BITFIELD_CAST ( RenderingDevice : : BarrierMask ) ;
2020-04-20 02:19:21 +00:00
VARIANT_ENUM_CAST ( RenderingDevice : : TextureType )
VARIANT_ENUM_CAST ( RenderingDevice : : TextureSamples )
2022-11-26 10:01:24 +00:00
VARIANT_BITFIELD_CAST ( RenderingDevice : : TextureUsageBits )
2020-04-20 02:19:21 +00:00
VARIANT_ENUM_CAST ( RenderingDevice : : TextureSwizzle )
VARIANT_ENUM_CAST ( RenderingDevice : : TextureSliceType )
VARIANT_ENUM_CAST ( RenderingDevice : : SamplerFilter )
VARIANT_ENUM_CAST ( RenderingDevice : : SamplerRepeatMode )
VARIANT_ENUM_CAST ( RenderingDevice : : SamplerBorderColor )
VARIANT_ENUM_CAST ( RenderingDevice : : VertexFrequency )
VARIANT_ENUM_CAST ( RenderingDevice : : IndexBufferFormat )
2022-12-15 10:27:57 +00:00
VARIANT_BITFIELD_CAST ( RenderingDevice : : StorageBufferUsage )
2020-04-20 02:19:21 +00:00
VARIANT_ENUM_CAST ( RenderingDevice : : UniformType )
VARIANT_ENUM_CAST ( RenderingDevice : : RenderPrimitive )
VARIANT_ENUM_CAST ( RenderingDevice : : PolygonCullMode )
VARIANT_ENUM_CAST ( RenderingDevice : : PolygonFrontFace )
VARIANT_ENUM_CAST ( RenderingDevice : : StencilOperation )
VARIANT_ENUM_CAST ( RenderingDevice : : LogicOperation )
VARIANT_ENUM_CAST ( RenderingDevice : : BlendFactor )
VARIANT_ENUM_CAST ( RenderingDevice : : BlendOperation )
2022-12-11 12:37:35 +00:00
VARIANT_BITFIELD_CAST ( RenderingDevice : : PipelineDynamicStateFlags )
2021-07-09 19:48:28 +00:00
VARIANT_ENUM_CAST ( RenderingDevice : : PipelineSpecializationConstantType )
2020-04-20 02:19:21 +00:00
VARIANT_ENUM_CAST ( RenderingDevice : : InitialAction )
VARIANT_ENUM_CAST ( RenderingDevice : : FinalAction )
VARIANT_ENUM_CAST ( RenderingDevice : : Limit )
2021-07-02 23:14:19 +00:00
VARIANT_ENUM_CAST ( RenderingDevice : : MemoryType )
2022-02-11 11:33:54 +00:00
VARIANT_ENUM_CAST ( RenderingDevice : : Features )
2020-04-20 02:19:21 +00:00
2019-06-16 02:45:24 +00:00
typedef RenderingDevice RD ;
2019-06-07 16:07:57 +00:00
# endif // RENDERING_DEVICE_H