godot/doc/classes/Transform2D.xml

194 lines
6.3 KiB
XML
Raw Normal View History

<?xml version="1.0" encoding="UTF-8" ?>
2019-04-01 10:33:56 +00:00
<class name="Transform2D" category="Built-In Types" version="3.2">
<brief_description>
2D transformation (3×2 matrix).
</brief_description>
<description>
Represents one or many transformations in 2D space such as translation, rotation, or scaling. It consists of two [member x] and [member y] [Vector2]s and an [member origin]. It is similar to a 3×2 matrix.
</description>
<tutorials>
</tutorials>
<methods>
<method name="Transform2D">
<return type="Transform2D">
</return>
<argument index="0" name="from" type="Transform">
</argument>
<description>
Constructs the transform from a 3D [Transform].
</description>
</method>
<method name="Transform2D">
<return type="Transform2D">
</return>
<argument index="0" name="x_axis" type="Vector2">
</argument>
<argument index="1" name="y_axis" type="Vector2">
</argument>
<argument index="2" name="origin" type="Vector2">
</argument>
<description>
Constructs the transform from 3 [Vector2]s representing x, y, and origin.
</description>
</method>
<method name="Transform2D">
<return type="Transform2D">
</return>
<argument index="0" name="rotation" type="float">
</argument>
<argument index="1" name="position" type="Vector2">
</argument>
<description>
Constructs the transform from a given angle (in radians) and position.
</description>
</method>
<method name="affine_inverse">
<return type="Transform2D">
</return>
<description>
Returns the inverse of the matrix.
</description>
</method>
<method name="basis_xform">
<return type="Vector2">
</return>
<argument index="0" name="v" type="Vector2">
</argument>
<description>
Transforms the given vector by this transform's basis (no translation).
</description>
</method>
<method name="basis_xform_inv">
<return type="Vector2">
</return>
<argument index="0" name="v" type="Vector2">
</argument>
<description>
Inverse-transforms the given vector by this transform's basis (no translation).
</description>
</method>
<method name="get_origin">
<return type="Vector2">
</return>
<description>
Returns the transform's origin (translation).
</description>
</method>
<method name="get_rotation">
<return type="float">
</return>
<description>
Returns the transform's rotation (in radians).
</description>
</method>
<method name="get_scale">
<return type="Vector2">
</return>
<description>
Returns the scale.
</description>
</method>
<method name="interpolate_with">
<return type="Transform2D">
</return>
<argument index="0" name="transform" type="Transform2D">
</argument>
<argument index="1" name="weight" type="float">
</argument>
<description>
Returns a transform interpolated between this transform and another by a given weight (0-1).
</description>
</method>
<method name="inverse">
<return type="Transform2D">
</return>
<description>
Returns the inverse of the transform, under the assumption that the transformation is composed of rotation and translation (no scaling, use affine_inverse for transforms with scaling).
</description>
</method>
2019-11-08 07:33:48 +00:00
<method name="is_equal_approx">
<return type="bool">
</return>
<argument index="0" name="transform" type="Transform2D">
</argument>
<description>
Returns [code]true[/code] if this transform and [code]transform[/code] are approximately equal, by calling [code]is_equal_approx[/code] on each component.
2019-11-08 07:33:48 +00:00
</description>
</method>
<method name="orthonormalized">
<return type="Transform2D">
</return>
<description>
2017-10-14 10:45:26 +00:00
Returns the transform with the basis orthogonal (90 degrees), and normalized axis vectors.
</description>
</method>
<method name="rotated">
<return type="Transform2D">
</return>
<argument index="0" name="phi" type="float">
</argument>
<description>
Rotates the transform by the given angle (in radians).
</description>
</method>
<method name="scaled">
<return type="Transform2D">
</return>
<argument index="0" name="scale" type="Vector2">
</argument>
<description>
Scales the transform by the given factor.
</description>
</method>
<method name="translated">
<return type="Transform2D">
</return>
<argument index="0" name="offset" type="Vector2">
</argument>
<description>
Translates the transform by the given offset.
</description>
</method>
<method name="xform">
<return type="Variant">
</return>
<argument index="0" name="v" type="Variant">
</argument>
<description>
Transforms the given [Vector2], [Rect2], or [PoolVector2Array] by this transform.
</description>
</method>
<method name="xform_inv">
<return type="Variant">
</return>
<argument index="0" name="v" type="Variant">
</argument>
<description>
Inverse-transforms the given [Vector2], [Rect2], or [PoolVector2Array] by this transform.
</description>
</method>
</methods>
<members>
<member name="origin" type="Vector2" setter="" getter="" default="Vector2( 0, 0 )">
The transform's translation offset.
</member>
<member name="x" type="Vector2" setter="" getter="" default="Vector2( 1, 0 )">
The X axis of 2×2 basis matrix containing 2 [Vector2]s as its columns: X axis and Y axis. These vectors can be interpreted as the basis vectors of local coordinate system traveling with the object.
</member>
<member name="y" type="Vector2" setter="" getter="" default="Vector2( 0, 1 )">
The Y axis of 2×2 basis matrix containing 2 [Vector2]s as its columns: X axis and Y axis. These vectors can be interpreted as the basis vectors of local coordinate system traveling with the object.
</member>
</members>
<constants>
2018-08-20 22:35:30 +00:00
<constant name="IDENTITY" value="Transform2D( 1, 0, 0, 1, 0, 0 )">
[Transform2D] with no translation, rotation or scaling applied. When applied to other data structures, [constant IDENTITY] performs no transformation.
2018-08-20 22:35:30 +00:00
</constant>
<constant name="FLIP_X" value="Transform2D( -1, 0, 0, 1, 0, 0 )">
[Transform2D] with mirroring applied parallel to the X axis.
2018-08-20 22:35:30 +00:00
</constant>
<constant name="FLIP_Y" value="Transform2D( 1, 0, 0, -1, 0, 0 )">
[Transform2D] with mirroring applied parallel to the Y axis.
2018-08-20 22:35:30 +00:00
</constant>
</constants>
</class>